organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Andreas F. G. Glawar,^a David J. Watkin,^a* Gangadhar J. Sanjayan,^b George E. Tranter,^c Alison A. Edwards^c and George W. J. Fleet^d

^aChemical Crystallography, Chemical Research Laboratory, University of Oxford, Oxford OX1 3TA, England, ^bDivision of Organic Synthesis, National Chemical Laboratory, Pune 411 008, India, ^cBiological Chemistry, Division of Biomedical Sciences, Imperial College, London SW7 2AZ, England, and ^dDepartment of Organic Chemistry, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England

Correspondence e-mail: david.watkin@chem.ox.ac.uk

Key indicators

Single-crystal X-ray study T = 190 KMean $\sigma(\text{C}-\text{C}) = 0.003 \text{ Å}$ R factor = 0.050 wR factor = 0.096 Data-to-parameter ratio = 20.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Isopropyl 2,5-anhydro-3,4-di-O-tert-butyldiphenyl-silyl-L-ribonate

Determination of the crystal structure of the title compound, $C_{40}H_{50}O_5Si_2$, firmly established its relative configuration and hence that of some related tetrahydrofuran carboxylates. The material crystallizes with Z' = 2. Except for the chiral centres, the two independent molecules are related by a pseudo-centre of symmetry.

Received 15 July 2005 Accepted 25 July 2005 Online 27 July 2005

Comment

The reaction of methanol with lactones containing 2-Otrifluoromethanesulfonates (trifluoromethanesulfonates) in the presence of either acid (Wheatley et al., 1993) or base (Choi et al., 1992) provides a general synthesis of methyl tetrahydrofuran-2-carboxylates. Such materials have been exploited in the preparation of sugar amino acids (SAAs) for use as peptidomimetics (Chakraborty et al., 2004; Grotenberg et al., 2004; Smith et al., 2003). Many THF SAA scaffolds are predisposed to form secondary structures in short oligomers (Claridge et al., 2005; Long et al., 1999, 2002; Hungerford et al., 2000). There are only limited reports of γ -peptides based on cyclic templates (Curran et al., 1996; Crisma et al., 2001). In a programme directed towards the synthesis of γ -THF SAAs, it was found that reaction of the δ -lactone trifluoromethanesulfonate (1) (Stewart et al., 2002) with methanol in the presence of sodium carbonate gave a mixture of the THF carboxylates (2) and (3). In order to ensure the correct assignment of the stereochemistry at C-2 in the epimers, (3) was converted to the crystalline disilyl ether (4), the structure of which is reported in this paper (Fig. 1).

The structure of (4) contains two molecules in the asymmetric unit (Z' = 2). Except for the 1,4-anhydroribonate units (which are chiral and therefore cannot be related by an improper operator), the molecules are related by a pseudocentre of symmetry at $(\frac{1}{2}, \frac{1}{5}, \frac{3}{4})$. The absolute configuration of the material was known unambiguously from the synthesis; the Flack (1983) parameter is in agreement with this assignment.

The structure consists of molecular layers (Fig. 2) lying parallel to the bc plane, and characterized by a hydrophilic and a hydrophobic surface. The hydrophobic surface of one layer faces the equivalent surface of the adjacent layer (Fig. 3).

Figure 2 The crystal structure projected on to the *bc* plane.

The crystal structure projected along the b axis, showing two hydrophobic faces opposing each other. By symmetry, pairs of hydrophilic faces also oppose each other.

The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C-H = 0.93–98 Å) and displacement parameters [$U_{\rm iso}$ (H) = 1.2–1.5 $U_{\rm eq}$ (parent atom)], after which they were refined with riding constraints. The pseudo-centre of inversion did not lead to any refinement problems.

Data collection: *COLLECT* (Nonius, 2001); cell refinement: *DENZO/SCALEPACK*; data reduction: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS*.

Financial support (to AAE) from the EPSRC and (to GJS) from DST, New Delhi, for a BOYSCAST Fellowship, is gratefully acknowledged.

Figure 1

The structure of one molecule of the title compound with displacement ellipsoids drawn at the 50% probability level. All H atoms, except for H31, H41, H61 and H71, have been omitted for clarity. The H atoms are drawn with an arbitary radius.

Experimental

Epimer (3) was converted to the corresponding disilyl ether by standard procedures (Sanjayan *et al.*, 2003) and was crystallized from ethyl acetate–hexane (1:4).

Crystal data

$C_{40}H_{50}O_5Si_2$
$M_r = 667.01$
Monoclinic, P2 ₁
a = 17.2952 (2) Å
b = 10.7468 (2) Å
c = 20.4914 (4) Å
$\beta = 100.7864 \ (5)^{\circ}$
V = 3741.40 (11) Å ³
Z = 4
Data collection
Nonius KappaCCD diffractometer
ω scans
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwi-
nowski & Minor, 1997)
$T_{\rm min} = 0.70, T_{\rm max} = 0.97$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.096$ S = 0.9717372 reflections 848 parameters H-atom parameters constrained

27685 measured reflections

 $D_x = 1.184 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 8312 reflections $\theta = 5-30^{\circ}$ $\mu = 0.14 \text{ mm}^{-1}$ T = 190 KPrism, colourless $0.40 \times 0.20 \times 0.20 \text{ mm}$

17372 independent reflections 17372 reflections with $I > -3\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 30.0^{\circ}$ $h = -24 \rightarrow 24$ $k = -15 \rightarrow 15$ $l = -28 \rightarrow 28$

$$\begin{split} &w = 1/[\sigma^2(F^2) + (0.02P)^2 \\ &+ 2.21P] \\ &where \ P = [max(F_o^2,0) + 2F_c^2]/3 \\ (\Delta/\sigma)_{max} = 0.003 \\ \Delta\rho_{max} = 0.70 \ e \ Å^{-3} \\ \Delta\rho_{min} = -0.47 \ e \ Å^{-3} \\ Absolute \ structure: \ Flack \ (1983), \\ 17372 \ Friedel \ pairs \\ Flack \ parameter: \ 0.05 \ (7) \end{split}$$

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Chakraborty, T. K., Srinivasi, P., Tapadar, S. & Mohan, B. K. (2004). J. Chem. Sci. 116, 187–207.
- Choi, S. S., Myerscough, P. M., Fairbanks, A. J., Skead, B. M., Bichard, C. J. F., Mantell, S. J., Fleet, G. W. J., Saunders, J. & Brown, D. (1992). J. Chem. Soc. Chem. Commun. pp. 1605–1607.
- Claridge, T. D. W., Long, D. D., Baker, C. M., Odell, B., Grant, G. H., Edwards, A. A., Tranter, G. E., Fleet., G. W. J. & Smith, M. D. (2005). J. Org. Chem. 70, 2082–2090.
- Crisma, M., Moretto, A., Toniolo, C., Kaczmarek, K. & Zabrocki, J. (2001). Macromolecules, 14, 5048–5052.
- Curran, T. P., Chandler, N. M., Kennedy, R. J. & Keaney, M. T. (1996). Tetrahedron Lett. 37, 1933–1936.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Grotenberg, G. M., Timmerj, M. S. M., Llamas-Saiz, A. L., Verdoes, M., van der Marel, G. A., van Raaij, M. J., Overkleeft, H. S. & Overhand, M. (2004). J. Am. Chem. Soc. 126, 3444–3446.

- Hungerford, N. L., Claridge, T. D. W., Watterson, M. P., Aplin, R. T., Moreno, A. & Fleet, G. W. J. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 3666– 3679.
- Long, D. D., Hungerford, N. L., Smith, M. D., Brittain, D. E. A., Marquess, D. G., Claridge, T. D. W. & Fleet, G. W. J. (1999). *Tetrahedron Lett.* 40, 2195–2198.
- Long, D. D., Smith M. D., Martin, A., Wheatley, J. R., Watkin, D. G., Muller, M. & Fleet, G. W. J. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 1982–1998.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sanjayan, G. J., Stewart, A. J., Hachisu, S., Gonzalez, R., Watterson., M. P. & Fleet, G. W. J. (2003). *Tetrahedron Lett.* 44, 5847–5852.
- Smith, M. D., Claridge, T. D. W., Sansom, M. P. & Fleet, G. W. J. (2003). Org. Biomol. Chem. 1, 3647–3655.
- Stewart, A. J., Evans, R. M., Weymouth-Wilson, A. C., Cowley, A. R., Watkin, D. J. & Fleet, G. W. J. (2002). *Tetrahedron Asymmetry*, 13, 2667–2672.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.
- Wheatley, J. R., Bichard, C. J. F., Mantell, S. J., Son, J. C., Hughes, D. J., Fleet, G. W. J. & Brown, D. (1993). J. Chem. Soc. Chem. Commun. pp. 1065– 1067.

Acta Cryst. (2005). E61, o2724–o2726 [https://doi.org/10.1107/S1600536805023822]

Isopropyl 2,5-anhydro-3,4-di-O-tert-butyldiphenylsilyl-L-ribonate

Andreas F. G. Glawar, David J. Watkin, Gangadhar J. Sanjayan, George E. Tranter, Alison A. Edwards and George W. J. Fleet

F(000) = 1432

 $\theta = 5-30^{\circ}$

T = 190 K

 $\mu = 0.14 \text{ mm}^{-1}$

Prism, colourless

 $0.40 \times 0.20 \times 0.20$ mm

 $D_{\rm x} = 1.184 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 8312 reflections

Isopropyl 2,5-anhydro-3,4-di-O-tert-butyldiphenylsilyl-L-ribonate

Crystal data

 $\begin{array}{l} C_{40}H_{50}O_5Si_2\\ M_r = 667.01\\ Monoclinic, P2_1\\ a = 17.2952 \ (2) \ \text{\AA}\\ b = 10.7468 \ (2) \ \text{\AA}\\ c = 20.4914 \ (4) \ \text{\AA}\\ \beta = 100.7864 \ (5)^\circ\\ V = 3741.40 \ (11) \ \text{\AA}^3\\ Z = 4 \end{array}$

Data collection

Nonius KappaCCD	27685 measured reflections
diffractometer	17372 independent reflections
Graphite monochromator	17372 reflections with $I > -3\sigma(I)$
ω scans	$R_{\rm int}=0.027$
Absorption correction: multi-scan	$\theta_{\rm max} = 30.0^\circ, \ \theta_{\rm min} = 5.1^\circ$
(DENZO/SCALEPACK; Otwinowski & Minor,	$h = -24 \rightarrow 24$
1997)	$k = -15 \rightarrow 15$
$T_{\min} = 0.70, \ T_{\max} = 0.97$	$l = -28 \rightarrow 28$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.050$	H-atom parameters constrained
$wR(F^2) = 0.096$	$w = 1/[\sigma^2(F^2) + (0.02P)^2 + 2.21P]$
S = 0.97	where $P = [\max(F_o^2, 0) + 2F_c^2]/3$
17372 reflections	$(\Delta/\sigma)_{\rm max} = 0.003$
848 parameters	$\Delta \rho_{\rm max} = 0.70 \text{ e } \text{\AA}^{-3}$
370 restraints	$\Delta \rho_{\rm min} = -0.47 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	Absolute structure: Flack (1983), 17372 Friedel
direct methods	pairs

Absolute structure parameter: 0.05 (7)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Si101	0.27529 (3)	0.30044 (6)	0.61323 (3)	0.0217
O102	0.22809 (7)	0.31163 (14)	0.53577 (7)	0.0246

C103	0.16486 (10)	0.23538 (18)	0.50601 (11)	0.0217
C104	0.10903 (11)	0.3046 (2)	0.45241 (11)	0.0282
O105	0.06189 (8)	0.20842 (15)	0.41694 (9)	0.0345
C106	0 10724 (10)	0.0968(2)	0.42112(11)	0.0256
C107	0.18749(10)	0.12338(18)	0.46664(10)	0.0200
0108	0.10749(10)	0.16056 (13)	0.40004(10) 0.43144(8)	0.0238
S:100	0.24011(7) 0.28550(2)	0.10030(13)	0.43144(8) 0.27104(3)	0.0238
S1109	0.28339(3)	0.09829(0)	0.37194(3)	0.0200
C110	0.33216 (10)	-0.05648 (19)	0.39734 (11)	0.0243
CIII	0.34049 (12)	-0.1010(2)	0.46209 (13)	0.0336
C112	0.37400 (13)	-0.2174 (2)	0.47959 (14)	0.0422
C113	0.40042 (13)	-0.2900(2)	0.43265 (16)	0.0409
C114	0.39413 (12)	-0.2468 (2)	0.36844 (14)	0.0372
C115	0.35986 (11)	-0.1320 (2)	0.35080 (13)	0.0306
C116	0.20935 (10)	0.06992 (19)	0.29509 (11)	0.0249
C117	0.17521 (14)	0.1650 (2)	0.25346 (14)	0.0449
C118	0.11585 (17)	0.1416 (3)	0.19988 (16)	0.0666
C119	0.08840 (14)	0.0229 (3)	0.18565 (15)	0.0565
C120	0.12005 (12)	-0.0733(3)	0.22609 (13)	0.0408
C121	0.17941 (11)	-0.0500(2)	0.27999 (12)	0.0307
C122	0 36373 (11)	0 2169 (2)	0.36274(12)	0.0264
C123	0 42608 (13)	0.2103(2)	0.42695(14)	0.0388
C124	0.32958(14)	0.3495(2)	0.35564(15)	0.0405
C125	0.32930(14) 0.29827(17)	0.5455(2)	0.55504(15) 0.62102(18)	0.0405
C125	0.29827(17) 0.40210(14)	0.3351(2) 0.1865(2)	0.02102(10) 0.30316(14)	0.0305
C146	0.40210(14)	0.1803(2)	0.30310(14)	0.0393
0127	0.00373(10)	-0.00800(19)	0.43023(11)	0.0280
0127	0.09712(9)	-0.11342(14)	0.43047(9)	0.0392
C128	0.0/31/(14)	-0.2296 (2)	0.46593 (14)	0.0414
C129	0.1227(2)	-0.2470(5)	0.5320 (3)	0.1084
C130	0.0765 (4)	-0.3287 (3)	0.4166 (3)	0.1335
0131	0.01441 (10)	0.00282 (16)	0.48086 (11)	0.0526
C132	0.34696 (12)	0.4345 (2)	0.62344 (13)	0.0310
C133	0.39454 (14)	0.4398 (2)	0.56774 (14)	0.0414
C134	0.40334 (15)	0.4268 (3)	0.69109 (14)	0.0448
C136	0.20439 (11)	0.31981 (19)	0.67144 (11)	0.0254
C137	0.22535 (12)	0.2833 (2)	0.73774 (12)	0.0314
C138	0.17757 (14)	0.3079 (2)	0.78365 (13)	0.0383
C139	0.10643 (14)	0.3670 (2)	0.76361 (15)	0.0452
C140	0.08355 (14)	0.4029 (2)	0.69816 (15)	0.0460
C141	0.13198 (13)	0.3803 (2)	0.65244 (14)	0.0376
C142	0.32126 (11)	0.1427 (2)	0.62873 (11)	0.0255
C143	0.39989 (12)	0.1172 (2)	0.62551 (13)	0.0377
C144	0.43137(13)	-0.0014(2)	0.63734(13)	0.0429
C145	0.38510 (14)	-0.0979 (2)	0.65155 (12)	0.0380
C146	0 30716 (13)	-0.0770(2)	0.65378(11)	0.0338
C147	0.33710(13) 0.27602(12)	0.0770(2) 0.0428(2)	0.64205 (11)	0.0330
H1031	0.27002 (12)	0.0420 (2)	0.5394	0.0299
U10/1	0.1370	0.2030	0.3324	0.0312
111041	0.1397	0.3400	0.4200	0.039/*
п1042	0.0772	0.3044	0.4092	0.0400*

H1061	0.1140	0.0722	0.3764	0.0355*
H1071	0.2038	0.0506	0.4953	0.0263*
H1111	0.3233	-0.0524	0.4946	0.0475*
H1121	0.3788	-0.2470	0.5242	0.0598*
H1131	0.4235	-0.3674	0.4446	0.0570*
H1141	0.4138	-0.2959	0 3365	0.0521*
H1151	0.3546	-0.1055	0.3062	0.0321
H1171	0.1932	0.2471	0.2614	0.0590*
H1181	0.0953	0.2471	0.1737	0.0570
H1101	0.0786	0.2078	0.1707	0.0072
H1201	0.0480	-0.1562	0.1491	0.0747
H1201	0.0998	-0.1100	0.2170	0.0300*
П1211	0.2018	-0.1190	0.3079	0.0417*
H1231	0.4008	0.2728	0.4252	0.0672*
H1232	0.4509	0.1318	0.4315	0.0664*
H1233	0.4015	0.2263	0.4648	0.06/8*
H1241	0.3711	0.4093	0.3573	0.0727*
H1242	0.2942	0.3572	0.3128	0.0727*
H1243	0.3004	0.3650	0.3918	0.0728*
H1281	0.0173	-0.2170	0.4720	0.0623*
H1291	0.1030	-0.3142	0.5558	0.1845*
H1292	0.1743	-0.2726	0.5226	0.1841*
H1293	0.1277	-0.1714	0.5573	0.1853*
H1301	0.0446	-0.3984	0.4247	0.2656*
H1302	0.0602	-0.2953	0.3730	0.2656*
H1303	0.1307	-0.3525	0.4223	0.2660*
H1331	0.4273	0.5142	0.5714	0.0744*
H1332	0.3594	0.4434	0.5249	0.0753*
H1333	0.4280	0.3667	0.5689	0.0745*
H1341	0.4376	0.4988	0.6959	0.0794*
H1342	0.4372	0.3521	0.6953	0.0795*
H1343	0.3727	0.4290	0.7274	0.0797*
H1371	0.2740	0.2420	0.7510	0.0450*
H1381	0.1945	0.2836	0.8290	0.0550*
H1391	0.0710	0.3800	0.7938	0.0669*
H1401	0.0352	0.4432	0.6844	0.0655*
H1411	0.1158	0.4078	0.6075	0.0532*
H1431	0.4336	0.1828	0.6146	0.0538*
H1441	0.4839	-0.0177	0.6323	0.0626*
H1451	0.4055	-0.1784	0.6598	0.0529*
H1461	0.2759	-0.1458	0.6626	0.0479*
H1471	0.2235	0.0561	0.6482	0.0414*
H1251	0.3341	0.6245	0.6741	0.0972*
H1252	0.2621	0.5606	0.5790	0.0922
H1252	0.2621	0.5000	0.6573	0.0910
H1255	0.2094	0.3373	0.0375	0.0714
H1/87	0.3638	0.2400	0.2371	0.0726*
111 4 02 Ш1402	0.3030	0.1072	0.2025	0.0730
11140J C:1	0.4230	0.1033	0.3003	0.0731*
511	0.72304(3)	0.300/3(0)	1.12084 (3)	0.0204

O2	0.75835 (7)	0.24766 (14)	1.06464 (8)	0.0260
C3	0.82073 (11)	0.26353 (19)	1.03004 (12)	0.0255
C4	0.90180 (11)	0.2759 (2)	1.07447 (12)	0.0309
05	0.92895 (9)	0.15133 (16)	1.09127 (10)	0.0419
C6	0.87482 (11)	0.06489 (19)	1.05594 (11)	0.0262
C7	0.83186 (10)	0.13924 (18)	0.99583 (10)	0.0215
08	0.76326 (7)	0.07700 (13)	0.96519 (7)	0.0229
Si9	0.71442 (3)	0.09575 (6)	0.88852 (3)	0.0208
C10	0.66986 (11)	0.25538 (19)	0.87472 (11)	0.0236
C11	0.59149 (12)	0.2803 (2)	0.87726 (12)	0.0348
C12	0.56001 (13)	0.3987 (2)	0.86442 (13)	0.0414
C13	0.60653 (14)	0.4952 (2)	0.84966 (12)	0.0371
C14	0.68474 (14)	0.4740(2)	0.84830(12)	0.0360
C15	0.71607 (12)	0.3554(2)	0.86050 (12)	0.0302
C16	0.78341(10)	0.07544(18)	0.82865(11)	0.0245
C17	0.85308(12)	0.0067(2)	0.82862(11) 0.84432(13)	0.0213
C18	0.90013(13)	-0.0147(2)	0 79708 (15)	0.0405
C19	0.87767 (14)	0.0310(2)	0.73354(14)	0.0420
C20	0.80865 (14)	0.0910(2) 0.0981(2)	0.71612 (13)	0.0404
C21	0.76297 (12)	0.0001(2) 0.1211(2)	0.76376(12)	0.0309
C22	0.64055(12)	-0.0354(2)	0.87710(12)	0.0280
C23	0.59349(14)	-0.0406(2)	0.93337(14)	0.0399
C24	0.68739 (15)	-0.1577(2)	0.87864 (16)	0.0333
C25	0 58456 (13)	-0.0253(3)	0.81001 (13)	0.0399
C26	0.91929 (10)	-0.04672(19)	1,03593(10)	0.0269
027	0.88236 (9)	-0.15138(14)	1.03575(10) 1.04527(11)	0.0209
C28	0.91735(14)	-0.2698(2)	1 02870 (15)	0.0426
C29	0.9674 (3)	-0.3147(4)	1.0886 (2)	0.1224
C30	0.8509(2)	-0.3547(4)	1.0019 (3)	0.1365
031	0.97855 (9)	-0.04067(15)	1.01401 (10)	0.0422
C32	0.64550 (11)	0.18924 (19)	1.13738 (12)	0.0259
C33	0.58200 (13)	0.1943 (2)	1.07413 (15)	0.0386
C34	0.60892(14)	0.2200(2)	1.19755 (14)	0.0396
C35	0.67821 (13)	0.0551(2)	1.14394 (15)	0.0393
C36	0.80372 (10)	0.33135 (19)	1.20143 (11)	0.0252
C37	0.83211 (12)	0.4511 (2)	1.21847 (12)	0.0311
C38	0.89514 (12)	0.4715 (2)	1.27029 (13)	0.0395
C39	0.93142 (14)	0.3739 (3)	1.30614 (14)	0.0527
C40	0.90507 (16)	0.2544 (3)	1.29044 (16)	0.0646
C41	0.84217 (14)	0.2334 (2)	1.23836 (14)	0.0454
C42	0.67599 (10)	0.46124 (19)	1.10335 (11)	0.0232
C43	0.64981 (11)	0.5375 (2)	1.15032 (12)	0.0281
C44	0.61324 (11)	0.6509 (2)	1.13260 (13)	0.0327
C45	0.60239 (13)	0.6909 (2)	1.06750 (16)	0.0395
C46	0.62701 (13)	0.6172 (2)	1.02008 (14)	0.0409
C47	0.66296 (12)	0.5029 (2)	1.03770 (12)	0.0317
H31	0.8099	0.3330	0.9981	0.0353*
H41	0.9003	0.3225	1.1146	0.0440*

H42	0.9368	0.3186	1.0504	0.0445*
H61	0.8380	0.0319	1.0828	0.0346*
H71	0.8700	0.1499	0.9647	0.0290*
H111	0.5578	0.2129	0.8884	0.0487*
H121	0.5055	0.4116	0.8656	0.0588*
H131	0.5852	0.5746	0.8413	0.0519*
H141	0.7181	0.5375	0.8382	0.0517*
H151	0.7695	0.3425	0.8590	0.0445*
H171	0.8684	-0.0266	0.8870	0.0456*
H181	0 9472	-0.0615	0.8081	0.0594*
H191	0.9091	0.0150	0.7022	0.0637*
H201	0.7933	0.1303	0.6730	0.0597*
H211	0.7173	0.1693	0.7523	0.0397
H231	0.5613	-0.1158	0.9258	0.0773*
H231 H232	0.6271	-0.0484	0.9238	0.0723
П232	0.0271	0.0203	0.9771	0.0716*
H233	0.5590	0.0293	0.9327	0.0764*
H241	0.0303	-0.2273	0.0742	0.0704
П242	0.7231	-0.1008	0.9209	0.0703°
H243	0.7162	-0.1389	0.8413	0.0773*
H251	0.5511	-0.0992	0.8046	0.0684*
H252	0.5508	0.0490	0.8086	0.0689*
H253	0.6140	-0.0220	0.7725	0.0685*
H281	0.9427	-0.2555	0.9917	0.0645*
H291	1.0073	-0.3692	1.0765	0.2047*
H292	0.9275	-0.3628	1.1093	0.2041*
H293	0.9889	-0.2487	1.1179	0.2057*
H301	0.8700	-0.4403	1.0034	0.2369*
H302	0.8063	-0.3442	1.0243	0.2373*
H303	0.8342	-0.3322	0.9556	0.2374*
H331	0.5420	0.1350	1.0755	0.0679*
H332	0.5573	0.2752	1.0679	0.0661*
H333	0.6027	0.1747	1.0344	0.0669*
H341	0.5667	0.1604	1.1991	0.0727*
H342	0.6478	0.2112	1.2378	0.0729*
H343	0.5884	0.3041	1.1940	0.0739*
H351	0.6351	-0.0039	1.1449	0.0688*
H352	0.7169	0.0447	1.1836	0.0700*
H353	0.7019	0.0374	1.1068	0.0699*
H371	0.8103	0.5183	1.1929	0.0431*
H381	0.9109	0.5541	1.2814	0.0550*
H391	0.9746	0.3889	1.3415	0.0705*
H401	0.9275	0.1871	1.3145	0.0831*
H411	0.8261	0.1523	1.2278	0.0598*
H431	0.6578	0.5132	1.1955	0.0393*
H441	0.5950	0.7015	1.1651	0.0455*
H451	0.5773	0.7684	1.0554	0.0549*
H461	0.6197	0.6445	0.9761	0.0578*
H471	0 6791	0 4522	1 0050	0.0437*
	0.0771		1.0000	5.0.57

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Si101	0.0227 (2)	0.0186 (2)	0.0240 (3)	-0.0011 (2)	0.0046 (2)	-0.0021 (2)
O102	0.0272 (6)	0.0222 (6)	0.0241 (8)	-0.0041 (6)	0.0043 (5)	-0.0013 (6)
C103	0.0180 (7)	0.0240 (9)	0.0234 (10)	-0.0005 (7)	0.0048 (7)	0.0006 (8)
C104	0.0231 (8)	0.0260 (9)	0.0356 (11)	0.0059 (8)	0.0058 (8)	0.0042 (9)
O105	0.0216 (6)	0.0347 (8)	0.0424 (10)	0.0025 (6)	-0.0060 (6)	0.0043 (7)
C106	0.0196 (7)	0.0302 (10)	0.0266 (10)	-0.0019 (8)	0.0033 (7)	-0.0003 (9)
C107	0.0174 (7)	0.0207 (9)	0.0215 (10)	0.0000 (6)	0.0025 (7)	0.0000 (7)
O108	0.0199 (6)	0.0256 (7)	0.0271 (8)	-0.0031 (5)	0.0075 (5)	-0.0054 (6)
Si109	0.0177 (2)	0.0211 (2)	0.0209 (3)	0.00225 (19)	0.00274 (18)	-0.0004(2)
C110	0.0197 (8)	0.0244 (10)	0.0269 (11)	0.0029 (7)	-0.0007 (7)	-0.0015 (9)
C111	0.0326 (10)	0.0343 (12)	0.0329 (14)	0.0103 (9)	0.0039 (9)	0.0029 (11)
C112	0.0461 (13)	0.0406 (14)	0.0383 (16)	0.0147 (11)	0.0038 (11)	0.0136 (12)
C113	0.0386 (12)	0.0270 (11)	0.0535 (19)	0.0131 (9)	-0.0010 (11)	0.0052 (12)
C114	0.0324 (10)	0.0308 (11)	0.0453 (16)	0.0091 (9)	-0.0011 (10)	-0.0100 (11)
C115	0.0299 (9)	0.0302 (11)	0.0304 (13)	0.0042 (8)	0.0025 (9)	-0.0029 (10)
C116	0.0217 (8)	0.0289 (10)	0.0235 (10)	0.0038 (7)	0.0030 (7)	-0.0028 (8)
C117	0.0456 (13)	0.0344 (13)	0.0459 (16)	0.0044 (10)	-0.0142 (12)	0.0026 (12)
C118	0.0658 (18)	0.0546 (18)	0.061 (2)	0.0127 (15)	-0.0352 (16)	0.0082 (16)
C119	0.0435 (14)	0.0607 (18)	0.0529 (19)	0.0042 (13)	-0.0232 (12)	-0.0104 (15)
C120	0.0292 (10)	0.0434 (13)	0.0457 (16)	0.0021 (9)	-0.0034 (10)	-0.0142 (12)
C121	0.0265 (9)	0.0321 (11)	0.0313 (12)	0.0020 (8)	0.0001 (8)	-0.0038 (10)
C122	0.0220 (8)	0.0268 (10)	0.0310 (12)	-0.0033 (7)	0.0061 (8)	-0.0004 (9)
C123	0.0277 (10)	0.0477 (14)	0.0381 (15)	-0.0084 (10)	-0.0012 (10)	-0.0011 (12)
C124	0.0392 (12)	0.0282 (11)	0.0554 (18)	-0.0043 (9)	0.0125 (11)	0.0037 (12)
C125	0.0608 (16)	0.0212 (11)	0.072 (2)	-0.0071 (11)	0.0183 (15)	-0.0060 (13)
C148	0.0374 (11)	0.0452 (14)	0.0410 (15)	-0.0054 (10)	0.0200 (10)	-0.0018 (12)
C126	0.0194 (8)	0.0313 (10)	0.0335 (11)	-0.0057 (7)	0.0054 (7)	-0.0069 (8)
0127	0.0443 (8)	0.0288 (7)	0.0525 (11)	-0.0037 (6)	0.0299 (8)	-0.0047 (7)
C128	0.0444 (12)	0.0323 (11)	0.0546 (16)	-0.0044 (9)	0.0272 (11)	-0.0014 (11)
C129	0.079 (3)	0.126 (4)	0.107 (4)	-0.025 (3)	-0.016 (2)	0.060 (3)
C130	0.274 (7)	0.0324 (16)	0.135 (5)	-0.037 (3)	0.141 (5)	-0.023 (2)
0131	0.0464 (9)	0.0373 (9)	0.0866 (16)	-0.0035 (7)	0.0446 (10)	-0.0030 (9)
C132	0.0327 (10)	0.0257 (10)	0.0347 (13)	-0.0081 (8)	0.0069 (9)	-0.0047 (10)
C133	0.0458 (13)	0.0367 (13)	0.0440 (15)	-0.0163 (11)	0.0148 (11)	-0.0034 (12)
C134	0.0431 (13)	0.0474 (15)	0.0423 (16)	-0.0168 (11)	0.0040 (11)	-0.0145 (13)
C136	0.0283 (8)	0.0235 (9)	0.0251 (10)	-0.0022 (7)	0.0064 (7)	-0.0036 (9)
C137	0.0333 (10)	0.0305 (11)	0.0304 (12)	-0.0004 (8)	0.0058 (9)	0.0008 (9)
C138	0.0475 (12)	0.0409 (13)	0.0282 (12)	-0.0055 (11)	0.0117 (10)	0.0013 (11)
C139	0.0468 (13)	0.0491 (15)	0.0458 (16)	0.0011 (12)	0.0248 (12)	-0.0097 (13)
C140	0.0370 (12)	0.0566 (16)	0.0461 (16)	0.0141 (11)	0.0122 (11)	-0.0031 (13)
C141	0.0367 (11)	0.0416 (13)	0.0347 (14)	0.0114 (10)	0.0071 (9)	0.0004 (11)
C142	0.0245 (8)	0.0242 (9)	0.0276 (11)	0.0015 (7)	0.0041 (8)	-0.0020 (9)
C143	0.0261 (9)	0.0299 (12)	0.0578 (17)	0.0006 (8)	0.0099 (10)	0.0015 (12)
C144	0.0286 (10)	0.0372 (13)	0.063 (2)	0.0115 (10)	0.0090 (11)	0.0029 (13)
C145	0.0452 (12)	0.0266 (11)	0.0403 (16)	0.0090 (9)	0.0034 (11)	0.0025 (11)

C146	0.0416 (11)	0.0248 (10)	0.0356 (14)	-0.0010 (9)	0.0089 (10)	0.0029 (10)
C147	0.0273 (9)	0.0278 (11)	0.0347 (13)	0.0004 (8)	0.0061 (9)	0.0016 (10)
Si1	0.0194 (2)	0.0204 (2)	0.0210 (3)	0.00287 (19)	0.00248 (19)	0.0002 (2)
02	0.0214 (6)	0.0279(7)	0.0300 (9)	0.0009 (5)	0.0079 (6)	-0.0052 (6)
C3	0.0227 (8)	0.0230 (9)	0.0321 (12)	-0.0005 (7)	0.0087 (8)	-0.0007(9)
C4	0.0224 (8)	0.0337 (11)	0.0373 (13)	-0.0061 (8)	0.0075 (8)	-0.0129 (9)
05	0.0340 (8)	0.0385 (9)	0.0450 (11)	0.0072 (7)	-0.0137 (7)	-0.0127 (8)
C6	0.0234 (8)	0.0279 (10)	0.0259 (10)	0.0053 (7)	0.0008 (7)	-0.0031 (8)
C7	0.0214 (8)	0.0228 (9)	0.0211 (10)	-0.0007 (7)	0.0061 (7)	-0.0005 (8)
08	0.0219 (6)	0.0235 (7)	0.0228 (7)	-0.0017 (5)	0.0027 (5)	-0.0005 (6)
Si9	0.0202 (2)	0.0204 (2)	0.0215 (3)	0.0002 (2)	0.00308 (19)	-0.0002(2)
C10	0.0236 (8)	0.0208 (9)	0.0256 (11)	0.0006 (7)	0.0025 (8)	0.0027 (8)
C11	0.0267 (9)	0.0274 (11)	0.0508 (16)	0.0009 (8)	0.0088 (9)	0.0024 (11)
C12	0.0306 (10)	0.0328 (12)	0.0609 (19)	0.0066 (9)	0.0088 (11)	0.0019 (12)
C13	0.0464 (12)	0.0245 (11)	0.0393 (15)	0.0109 (9)	0.0050 (11)	0.0033 (10)
C14	0.0456 (12)	0.0233 (10)	0.0401 (15)	-0.0032(9)	0.0107 (11)	0.0056 (10)
C15	0.0300 (9)	0.0261 (10)	0.0354 (13)	0.0024 (8)	0.0085 (9)	0.0026 (10)
C16	0.0241 (8)	0.0229 (9)	0.0269(11)	-0.0011(7)	0.0057(7)	-0.0012(8)
C17	0.0330 (10)	0.0345(11)	0.0290 (12)	0.0060 (9)	0.0065 (9)	-0.0034(10)
C18	0.0314 (11)	0.0421 (13)	0.0510 (16)	0.0080 (9)	0.0157 (10)	-0.0065(12)
C19	0.0472 (13)	0.0433 (14)	0.0424 (15)	-0.0038(11)	0.0261 (11)	-0.0056(12)
C20	0.0535 (13)	0.0423 (13)	0.0295 (13)	-0.0007(12)	0.0183 (10)	0.0041 (11)
C21	0.0319 (9)	0.0330 (11)	0.0290 (12)	0.0005 (8)	0.0085 (8)	0.0011 (10)
C22	0.0269 (9)	0.0235 (9)	0.0324 (12)	-0.0052(8)	0.0028 (8)	-0.0024(9)
C23	0.0401 (11)	0.0398 (13)	0.0420 (15)	-0.0148(10)	0.0139 (10)	0.0014 (12)
C24	0.0445 (12)	0.0227 (11)	0.0623 (19)	-0.0024(9)	0.0081 (12)	-0.0037(12)
C25	0.0350 (11)	0.0483 (15)	0.0332 (14)	-0.0107 (10)	-0.0019 (10)	-0.0076(12)
C26	0.0224 (8)	0.0296 (9)	0.0275 (10)	0.0059 (7)	0.0012 (7)	0.0008 (8)
O27	0.0384 (8)	0.0267 (7)	0.0776 (14)	0.0054 (6)	0.0291 (8)	0.0011 (8)
C28	0.0402 (12)	0.0272 (10)	0.0661 (18)	0.0077 (9)	0.0249 (12)	0.0032 (11)
C29	0.185 (5)	0.091 (3)	0.074 (3)	0.101 (3)	-0.020(3)	-0.020(2)
C30	0.079 (3)	0.063 (2)	0.246 (8)	0.021 (2)	-0.027(3)	-0.054 (4)
O31	0.0328 (7)	0.0343 (8)	0.0643 (12)	0.0025 (6)	0.0219 (8)	-0.0004 (8)
C32	0.0229 (8)	0.0265 (10)	0.0290 (12)	0.0013 (7)	0.0068 (8)	0.0008 (9)
C33	0.0279 (10)	0.0429 (13)	0.0421 (16)	-0.0065 (9)	-0.0006 (10)	-0.0009(12)
C34	0.0413 (12)	0.0411 (13)	0.0411 (15)	-0.0054 (10)	0.0198 (11)	0.0008 (12)
C35	0.0352 (11)	0.0235 (10)	0.0599 (19)	-0.0005 (9)	0.0105 (11)	0.0038 (12)
C36	0.0218 (8)	0.0286 (10)	0.0240 (10)	0.0035 (7)	0.0014 (7)	-0.0008(8)
C37	0.0262 (9)	0.0303 (11)	0.0351 (13)	0.0026 (8)	0.0012 (9)	0.0003 (10)
C38	0.0304 (10)	0.0424 (13)	0.0409 (14)	-0.0078 (9)	-0.0054 (10)	-0.0061 (12)
C39	0.0389 (12)	0.0598 (17)	0.0489 (18)	-0.0090(12)	-0.0194 (12)	0.0073 (14)
C40	0.0575 (17)	0.0462 (16)	0.072 (2)	0.0009 (13)	-0.0351 (16)	0.0166 (16)
C41	0.0458 (13)	0.0309 (12)	0.0504 (17)	0.0013 (10)	-0.0142 (12)	0.0076 (12)
C42	0.0202 (8)	0.0228 (9)	0.0254 (11)	0.0024 (7)	0.0008 (7)	-0.0002(9)
C43	0.0276 (9)	0.0299 (11)	0.0247 (11)	0.0066 (8)	-0.0006 (8)	-0.0021 (9)
C44	0.0295 (10)	0.0291 (11)	0.0375 (14)	0.0068 (8)	0.0013 (9)	-0.0073 (10)
C45	0.0363 (11)	0.0297 (12)	0.0494 (18)	0.0111 (9)	0.0000 (11)	0.0063 (12)
C46	0.0480 (13)	0.0401 (14)	0.0337 (14)	0.0122 (11)	0.0055 (11)	0.0122 (12)
	× /	× /	<pre></pre>	× /	× /	· · /

C47	0.0342 (10)	0.0355 (12)	0.0244 (12)	0.0065 (9)	0.0032 (9)	0.0016 (10)
Geomet	ric parameters (Å,	°)				
Si101—	-0102	1.6478 (1	6)	Si1—O2		1.6354 (15)
Si101-	-C132	1.887 (2)		Si1—C32		1.891 (2)
Si101-	-C136	1.876 (2)		Si1—C36		1.879 (2)
Si101—	-C142	1.874 (2)		Si1—C42		1.876 (2)
O102—	-C103	1.411 (2)		O2—C3		1.408 (2)
C103—	C104	1.515 (3)		C3—C4		1.528 (3)
C103—	C107	1.540 (3)		C3—C7		1.537 (3)
C103—	H1031	0.956		C3—H31		0.988
C104—	O105	1.428 (3)		C4—O5		1.439 (3)
C104—	H1041	0.986		C4—H41		0.968
C104—	H1042	0.952		C4—H42		0.966
O105—	-C106	1.427 (2)		O5—C6		1.418 (2)
C106—	C107	1.547 (3)		C6—C7		1.538 (3)
C106—	C126	1.522 (3)		C6—C26		1.522 (3)
C106—	H1061	0.981		C6—H61		0.983
C107—	O108	1.408 (2)		С7—О8		1.404 (2)
C107—	H1071	0.986		C7—H71		1.005
O108—	-Si109	1.6469 (1	5)	O8—Si9		1.6512 (16)
Si109—	-C110	1.879 (2)		Si9—C10		1.880 (2)
Si109—	-C116	1.880 (2)		Si9—C16		1.877 (2)
Si109—	-C122	1.893 (2)		Si9—C22		1.887 (2)
C110—	C111	1.392 (3)		C10-C11		1.392 (3)
C110—	C115	1.403 (3)		C10—C15		1.402 (3)
C111—	C112	1.397 (3)		C11—C12		1.390 (3)
C111—	H1111	0.937		C11—H111		0.983
C112—	C113	1.381 (4)		C12—C13		1.380 (3)
C112—	H1121	0.956		C12—H121		0.957
C113—	C114	1.380 (4)		C13—C14		1.377 (3)
C113—	H1131	0.935		C13—H131		0.932
C114—	C115	1.386 (3)		C14—C15		1.390 (3)
C114—	H1141	0.953		C14—H141		0.941
C115—	H1151	0.946		C15—H151		0.940
C116—	C117	1.390 (3)		C16—C17		1.398 (3)
C116—	C121	1.402 (3)		C16—C21		1.399 (3)
C117—	C118	1.379 (4)		C17—C18		1.395 (3)
C117—	H1171	0.939		C17—H171		0.935
C118—	C119	1.374 (5)		C18—C19		1.378 (4)
C118—	H1181	0.921		C18—H181		0.947
C119—	C120	1.373 (4)		C19—C20		1.383 (4)
C119—	H1191	0.931		C19—H191		0.932
C120—	C121	1.383 (3)		C20—C21		1.388 (3)
C120—	H1201	0.963		C20—H201		0.939
C121—	H1211	0.971		C21—H211		0.937
C122—	C123	1.538 (3)		C22—C23		1.532 (3)

C100 C104	1 529 (2)	G22 G24	1 5 4 2 (2)
C122—C124	1.538 (3)	C22—C24	1.542 (3)
C122—C148	1.530 (3)	C22—C25	1.530 (3)
С123—Н1231	0.971	С23—Н231	0.977
C123—H1232	0.953	C23—H232	0.976
С123—Н1233	0.965	C23—H233	0.957
C124—H1241	0.960	C24—H241	0.978
C124—H1242	0.975	C24—H242	0.987
C124—H1243	0.986	C24—H243	0.988
C125—C132	1.541 (3)	C25—H251	0.976
C125—H1251	0.964	С25—Н252	0.986
C125—H1252	0.967	С25—Н253	0.999
C125—H1253	0.969	C26—O27	1.325 (2)
C148—H1481	1.011	C26—O31	1.195 (2)
C148—H1482	0.967	O27—C28	1.475 (3)
C148—H1483	0.974	C28—C29	1.446 (5)
C126—O127	1.323 (2)	C28—C30	1.491 (5)
C126 - 0127	1 186 (2)	C28—H281	0.956
0127 0131	1.100(2)	C20 H201	0.950
$C_{128} = C_{128}$	1.401(3) 1.472(5)	$C_{29} = H_{291}$	1.016
C120 - C129	1.475(3)	C29—H292	1.010
C128 - C130	1.4//(4)	C29—H293	0.959
C128—H1281	1.006	C30—H301	0.977
C129—H1291	0.969	C30—H302	0.975
C129—H1292	0.987	С30—Н303	0.968
С129—Н1293	0.959	C32—C33	1.535 (3)
С130—Н1301	0.962	C32—C34	1.524 (3)
C130—H1302	0.954	C32—C35	1.545 (3)
С130—Н1303	0.958	С33—Н331	0.945
C132—C133	1.528 (3)	С33—Н332	0.966
C132—C134	1.541 (4)	С33—Н333	0.971
C133—H1331	0.975	C34—H341	0.977
C133—H1332	0.970	C34—H342	0.967
С133—Н1333	0.973	С34—Н343	0.968
C134—H1341	0.969	С35—Н351	0.982
C134—H1342	0.988	С35—Н352	0.957
C134—H1343	0.991	C35—H353	0.949
C_{136} C_{137}	1 395 (3)	C_{36} C_{37}	1 399 (3)
C136-C141	1.393(3)	$C_{36} - C_{41}$	1.399(3)
$C_{130} - C_{141}$	1.400(3)	$C_{30} = C_{41}$	1.391(3)
$C_{137} = C_{138}$	1.369 (3)	$C_{27} = U_{27}$	1.369 (3)
C13/—H13/1	0.945	C3/—H3/1	0.930
C138—C139	1.377 (4)	C38—C39	1.364 (4)
С138—Н1381	0.957	C38—H381	0.944
C139—C140	1.380 (4)	C39—C40	1.381 (4)
C139—H1391	0.958	С39—Н391	0.952
C140—C141	1.390 (3)	C40—C41	1.392 (4)
C140—H1401	0.938	C40—H401	0.919
C141—H1411	0.957	C41—H411	0.927
C142—C143	1.401 (3)	C42—C43	1.402 (3)
C142—C147	1.391 (3)	C42—C47	1.396 (3)

C143—C144	1.389 (3)	C43—C44	1.390(3)
C143—H1431	0.967	C43—H431	0.946
C144—C145	1.374 (4)	C44—C45	1.381 (4)
C144—H1441	0.949	C44—H441	0.958
C145—C146	1.376 (3)	C45—C46	1.381 (4)
C145—H1451	0.938	C45—H451	0.951
C146—C147	1,397 (3)	C46—C47	1.394 (3)
C146—H1461	0.952	C46—H461	0.933
C147—H1471	0.932	C47—H471	0.935
	0.915		0.915
0102—Si101—C132	104 35 (10)	Ω^2 —Si1—C32	101 78 (9)
0102 Sil01 C132	109.85 (8)	02 - 8i1 - C36	101.70(9) 111.48(8)
C_{132} Silo1 $-C_{136}$	109.83(0)	C_{32} Sil C_{36}	115 76 (10)
0102—Si101—C142	110 31 (9)	02 - Si1 - C42	110.57 (9)
$C_{132} = S_{1101} = C_{142}$	110.31(0)	C_{2}^{2} Sil C_{42}^{2}	110.37(9) 100.35(8)
$C_{132} = S_{1101} = C_{142}$	113.03(10) 107.44(0)	$C_{32} = S_{11} = C_{42}$	109.35(8) 107.80(0)
Silo1 O102 C102	107.44(9) 125.22(12)	C30—311—C42	107.80(9)
S1101 - O102 - C103	125.55 (15)	SII = 02 = C3	140.04 (14)
0102 - 0103 - 0104	111.43 (10)	02 - C3 - C4	114.49 (19)
0102 - 0103 - 0107	115.35 (14)	02 - 03 - 07	107.31 (15)
C104 - C103 - C107	101.20 (17)	C4 - C3 - C7	99.66 (16)
0102—C103—H1031	109.4	02—C3—H31	111.0
C104—C103—H1031	110.5	C4—C3—H31	111.7
C107—C103—H1031	108.7	С7—С3—Н31	112.2
C103—C104—O105	103.81 (16)	C3—C4—O5	106.50 (16)
C103—C104—H1041	109.2	C3—C4—H41	112.6
O105—C104—H1041	110.8	O5—C4—H41	109.7
C103—C104—H1042	113.8	C3—C4—H42	109.2
O105—C104—H1042	111.0	O5—C4—H42	110.9
H1041—C104—H1042	108.2	H41—C4—H42	107.9
C104—O105—C106	108.85 (14)	C4—O5—C6	109.43 (15)
O105—C106—C107	107.59 (16)	O5—C6—C7	104.03 (16)
O105—C106—C126	110.81 (15)	O5—C6—C26	109.59 (15)
C107—C106—C126	109.67 (17)	C7—C6—C26	112.73 (17)
O105—C106—H1061	109.3	O5—C6—H61	112.7
C107—C106—H1061	111.3	C7—C6—H61	111.7
C126—C106—H1061	108.2	C26—C6—H61	106.2
C103—C107—C106	99.95 (14)	C6—C7—C3	99.74 (17)
C103—C107—O108	108.95 (15)	C6-C7-08	110.60 (16)
$C_{106} - C_{107} - O_{108}$	113 22 (17)	$C_{3} - C_{7} - 0_{8}$	116 78 (15)
C_{103} C_{107} H_{1071}	112.3	C6-C7-H71	106.9
$C_{106} - C_{107} - H_{1071}$	109.7	$C_3 - C_7 - H_71$	110.0
0108 - C107 - H1071	112.2	08-07-07	111.8
C107 - 0108 - 5100	134 60 (13)	C7 - 08 - Si9	127 24 (12)
0108 Si109 C110	111 73 (0)	08-5i9-610	127.37(13) 112 14 (0)
0108 Si109 C116	111.73(7)	08 80 C16	112.14(7) 100.46(9)
C110 = S1109 = C110	111.29 (0)	$C_{10} = C_{10} = C_{10}$	107.40 (8)
C_{110} S_{1109} C_{110} C_{122}	101.60 (9)	08 8:0 022	107.49 (9)
C108 - S1109 - C122	101.09 (9)	03 - 519 - 0.22	103.93 (9)
C110—51109—C122	110.29 (9)	C10-S19-C22	114.44 (9)

C116—Si109—C122	115.33 (10)	C16—Si9—C22	109.30 (10)
Si109—C110—C111	122.06 (16)	Si9—C10—C11	122.98 (15)
Si109—C110—C115	120.48 (17)	Si9—C10—C15	119.79 (14)
C111—C110—C115	117.5 (2)	C11—C10—C15	117.22 (19)
C110—C111—C112	121.1 (2)	C10-C11-C12	121.2 (2)
C110—C111—H1111	119.7	C10—C11—H111	119.4
C112—C111—H1111	119.2	C12—C11—H111	119.4
C111—C112—C113	120.2 (3)	C11—C12—C13	120.4 (2)
C111—C112—H1121	120.0	C11—C12—H121	118.7
C113—C112—H1121	119.8	C13—C12—H121	120.9
C112—C113—C114	119.8 (2)	C12—C13—C14	119.7 (2)
C112—C113—H1131	120.1	C12—C13—H131	120.1
C114—C113—H1131	120.2	C14—C13—H131	120.2
C113—C114—C115	120.1 (2)	C13—C14—C15	120.0 (2)
C113—C114—H1141	119.6	C13—C14—H141	122.0
C115—C114—H1141	120.3	C15—C14—H141	118.0
C110-C115-C114	121.4 (2)	C10-C15-C14	121.49 (19)
C110-C115-H1151	119.9	C10-C15-H151	119 7
C114—C115—H1151	118.7	C14-C15-H151	118.8
Si109—C116—C117	123.05 (17)	Si9-C16-C17	122 49 (17)
Si109—C116—C121	120.41 (16)	Si9-C16-C21	122.19(17) 120.12(14)
C_{117} C_{116} C_{121}	116 3 (2)	C_{17} C_{16} C_{21}	120.12(11) 117.18(19)
$C_{116} - C_{117} - C_{118}$	121 5 (3)	C_{16} C_{17} C_{18}	117.10(17)
$C_{116} - C_{117} - H_{1171}$	110 7	C_{16} C_{17} H_{171}	121.1 (2)
$C_{118} = C_{117} = H_{1171}$	119.7	$C_{10} = C_{17} = H_{171}$	119.9
$C_{113} - C_{113} - C_{113} - C_{110}$	110.0 121.0(2)	$C_{10} = C_{17} = M_{17} = M_{17}$	119.0 110.0(2)
$C_{117} = C_{118} = C_{119}$	121.0 (5)	C17 C18 H181	119.9 (2)
$C_{11} = C_{118} = H_{1181}$	120.0	$C_{10} = C_{18} = H_{181}$	120.5
$C_{119} - C_{110} - C_{120}$	120.9	C19-C10-C10	119.5
$C_{118} = C_{119} = C_{120}$	119.2 (2)	C18 - C19 - C20	120.4 (2)
C120 C110 H1101	120.4	C18—C19—H191	119.2
C120 - C119 - H1191	120.5	C10 C20 C21	120.5
C119 - C120 - C121	119.9 (2)	C19 - C20 - C21	119.3 (2)
C119—C120—H1201	119.4	C19 - C20 - H201	120.9
C121 - C120 - H1201	120.7	$C_{21} = C_{20} = H_{201}$	119.8
C116 - C121 - C120	122.1 (2)	C16 - C21 - C20	122.0 (2)
C116—C121—H1211	118.8	C16—C21—H211	118.9
C120—C121—H1211	119.1	C20—C21—H211	119.1
Si109—C122—C123	106.72 (16)	S19—C22—C23	112.14 (16)
S1109—C122—C124	111.37 (13)	S19—C22—C24	107.06 (14)
C123—C122—C124	108.2 (2)	C23—C22—C24	107.7 (2)
Si109—C122—C148	111.10 (16)	Si9—C22—C25	111.02 (16)
C123—C122—C148	109.55 (19)	C23—C22—C25	110.05 (18)
C124—C122—C148	109.8 (2)	C24—C22—C25	108.7 (2)
C122—C123—H1231	109.8	C22—C23—H231	106.2
C122—C123—H1232	110.4	C22—C23—H232	112.6
H1231—C123—H1232	107.3	H231—C23—H232	107.3
С122—С123—Н1233	109.7	С22—С23—Н233	112.2
H1231—C123—H1233	110.4	H231—C23—H233	108.1

H1232—C123—H1233	109.3	H232—C23—H233	110.1
C122—C124—H1241	110.2	C22—C24—H241	108.5
C122—C124—H1242	109.2	C22—C24—H242	111.1
H1241—C124—H1242	108.3	H241—C24—H242	108.7
C122—C124—H1243	109.1	C22—C24—H243	109.5
H1241—C124—H1243	110.2	H241—C24—H243	109.6
H1242—C124—H1243	109.8	H242—C24—H243	109.4
C132—C125—H1251	107.9	C22—C25—H251	107.8
C132—C125—H1252	109.8	C22—C25—H252	110.8
H1251—C125—H1252	108.2	H251—C25—H252	108.7
$C_{132} - C_{125} - H_{1253}$	110.7	C^{22} — C^{25} —H ²⁵³	111.5
$H_{1251} - C_{125} - H_{1253}$	110.7	$H_{251} - C_{25} - H_{253}$	108 5
H1252_C125_H1253	109.9	$H_{252} = C_{25} = H_{253}$	109.4
$C_{122} = C_{123} = H_{1233}$	109.9	C_{6}	110 39 (16)
$C_{122} = C_{140} = H_{1401}$	111.0	$C_{0}^{2} = C_{20}^{2} = C_{21}^{2}$	124.78(10)
$U_{122} - U_{140} - 111402$ $U_{1481} - U_{148} - U_{1482}$	100.1	027 026 031	124.78(19) 124.82(10)
111401 - C140 - 111402	109.1	$C_{2}^{-} = C_{2}^{-} = C_{3}^{-} = C_{3}^{-}$	124.02(19)
C122—C146—П1465	109.8	$C_{20} = O_{27} = C_{28}$	117.98 (10)
H1481 - C148 - H1483	107.4	027 - 028 - 029	107.4 (3)
H1482—C148—H1483	107.5	02/-028-030	107.0 (2)
C106-C126-O127	108.69 (16)	$C_{29} - C_{28} - C_{30}$	114.0 (4)
C106—C126—O131	125.83 (19)	027—C28—H281	108.2
0127—C126—O131	125.5 (2)	C29—C28—H281	115.8
C126—O127—C128	118.79 (16)	C30—C28—H281	104.1
O127—C128—C129	109.0 (2)	C28—C29—H291	109.0
O127—C128—C130	105.8 (2)	C28—C29—H292	100.3
C129—C128—C130	116.6 (4)	H291—C29—H292	111.7
O127—C128—H1281	107.0	С28—С29—Н293	112.7
C129—C128—H1281	108.1	H291—C29—H293	113.3
C130-C128-H1281	110.0	H292—C29—H293	109.2
C128—C129—H1291	110.9	C28—C30—H301	109.3
C128—C129—H1292	104.4	С28—С30—Н302	112.3
H1291—C129—H1292	107.8	H301—C30—H302	112.8
C128—C129—H1293	111.6	С28—С30—Н303	106.0
H1291—C129—H1293	111.4	H301—C30—H303	107.7
H1292—C129—H1293	110.4	H302—C30—H303	108.4
C128—C130—H1301	110.2	Si1—C32—C33	107.06 (16)
C128—C130—H1302	109.1	Si1—C32—C34	111.17 (16)
H1301—C130—H1302	112.1	C33—C32—C34	109.61 (19)
C128—C130—H1303	105.7	Si1-C32-C35	112.03 (13)
H_{1301} $-C_{130}$ $-H_{1303}$	110.5	C_{33} C_{32} C_{35}	1074(2)
H1302_C130_H1303	109.0	C_{34} C_{32} C_{35}	107.4(2) 109.4(2)
C_{125} C_{132} S_{101}	107.16(15)	C_{32} C_{32} C_{33} H_{331}	107.4 (2)
$C_{125} = C_{132} = C_{133}$	107.10(13) 108.2(2)	C_{32} C_{33} H_{332}	111.5
Sil01 C132 C133	112 32 (16)	H331 C33 H332	107 7
$C_{125} = C_{122} = C_{123}$	112.32(10) 108.0(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.7
$C_{12} - C_{132} - C_{134}$	100.9(2) 110.53(17)	U32—U33—П333 Ш231 С22 Ш222	112.3
$C_{122} = C_{122} = C_{124}$	110.33(17) 100.60(10)	$11331 - C33 - \Pi 333$	103.5
$C_{122} = C_{122} = U_{1221}$	109.00 (19)	$H_{332} - H_{333} - H_{333}$	107.9
U132-U133-H1331	111.0	U32-U34-H341	108.1

C132—C133—H1332	110.1	С32—С34—Н342	109.9
H1331—C133—H1332	107.1	H341—C34—H342	108.3
С132—С133—Н1333	110.7	С32—С34—Н343	110.1
H1331—C133—H1333	109.0	H341—C34—H343	110.4
H1332—C133—H1333	108.9	H342—C34—H343	110.1
C132—C134—H1341	108.7	С32—С35—Н351	109.7
C132—C134—H1342	112.8	С32—С35—Н352	111.7
H1341—C134—H1342	107.4	H351—C35—H352	108.7
C132—C134—H1343	109.6	С32—С35—Н353	108.9
H1341—C134—H1343	108.0	H351—C35—H353	109.3
H1342—C134—H1343	110.2	H352—C35—H353	108.6
Si101-C136-C137	120.42 (15)	Si1—C36—C37	120.23 (16)
Si101—C136—C141	122.15 (17)	Si1—C36—C41	122.72 (17)
C137—C136—C141	117.20 (19)	C37—C36—C41	116.8 (2)
C136—C137—C138	121.8 (2)	C36—C37—C38	121.6 (2)
C136—C137—H1371	117.9	С36—С37—Н371	119.1
C138—C137—H1371	120.3	С38—С37—Н371	119.1
C137—C138—C139	119.8 (2)	C37—C38—C39	120.4 (2)
C137—C138—H1381	119.6	С37—С38—Н381	118.8
C139—C138—H1381	120.6	С39—С38—Н381	120.7
C138—C139—C140	119.7 (2)	C38—C39—C40	119.4 (2)
C138—C139—H1391	121.2	С38—С39—Н391	119.7
C140—C139—H1391	119.0	С40—С39—Н391	120.8
C139—C140—C141	120.4 (2)	C39—C40—C41	120.4 (3)
C139—C140—H1401	119.9	C39—C40—H401	121.3
C141—C140—H1401	119.6	C41—C40—H401	118.3
C136—C141—C140	121.0 (2)	C40—C41—C36	121.3 (2)
C136—C141—H1411	119.8	C40—C41—H411	119.2
C140—C141—H1411	119.2	C36—C41—H411	119.4
Si101—C142—C143	123.59 (17)	Si1—C42—C43	121.59 (17)
Si101—C142—C147	119.75 (14)	Si1—C42—C47	121.01 (16)
C143—C142—C147	116.6 (2)	C43—C42—C47	117.36 (19)
C142—C143—C144	121.5 (2)	C42—C43—C44	121.5 (2)
C142—C143—H1431	120.1	C42—C43—H431	120.2
C144—C143—H1431	118.4	C44—C43—H431	118.2
C143—C144—C145	120.3 (2)	C43—C44—C45	119.9 (2)
C143—C144—H1441	120.2	C43—C44—H441	120.6
C145—C144—H1441	119.3	C45—C44—H441	119.5
C144—C145—C146	119.8 (2)	C44—C45—C46	119.8 (2)
C144—C145—H1451	121.3	C44—C45—H451	119.9
C146—C145—H1451	118.9	C46—C45—H451	120.3
C145—C146—C147	119.7 (2)	C45—C46—C47	120.3 (2)
C145—C146—H1461	118.3	C45—C46—H461	119.7
C147—C146—H1461	122.0	C47—C46—H461	120.0
C146—C147—C142	121.95 (19)	C42—C47—C46	121.1 (2)
C146—C147—H1471	118.1	C42—C47—H471	118.8
C142—C147—H1471	119.8	C46—C47—H471	120.1
· · · · ·			