Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Malcolm J. Todd and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.003 Å R factor = 0.022 wR factor = 0.055 Data-to-parameter ratio = 19.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Propane-1,3-diaminium hydrogenarsenate monohydrate

The title compound, $(C_3H_{12}N_2)[HAsO_4]\cdot H_2O$, contains a network of propane-1,3-diaminium cations, hydrogenarsenate anions [mean As-O = 1.687 (2) Å] and water molecules. The crystal packing involves anion-to-anion and water-to-anion $O-H\cdots O$ hydrogen bonds, resulting in infinite chains containing the unusual $R_3^3(10)$ graph-set motif. Cation-to-anion and cation-to-water $N-H\cdots O$ hydrogen bonds generate a three-dimensional overall structure.

Comment

The title compound, $(C_3H_{12}N_2)[HAsO_4]\cdot H_2O$, (I) (Fig. 1), was prepared as part of our ongoing structural studies of hydrogen-bonding interactions in protonated-amine (di)hydrogen arsenates (Lee & Harrison, 2003*a*; Wilkinson & Harrison, 2004; Todd & Harrison, 2005). In particular, (I) complements propane-1,3-diaminium bis(dihydrogenarsenate), $(C_3H_{12}N_2)[H_2AsO_4]_2$ (Wilkinson & Harrison, 2005), prepared under different pH conditions.

$$H_3N^+ \sim NH_3^+ \cdot [HAsO_4]^{2-} \cdot H_2O$$
(I)

The $[HAsO_4]^{2-}$ hydrogenarsenate group in (I) has normal tetrahedral geometry [mean As-O = 1.687 (2) Å], with the protonated As1-O4 vertex showing its usual lengthening relative to the unprotonated As-O bonds (Table 1). The propane-1,3-diaminium cation shows no unusual geometrical features.

As well as electrostatic attractions, the component species in (I) interact by means of a network of $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds (Table 2). The $[HAsO_4]^{2-}$ units and water molecules are linked into polymeric chains (Fig. 2) propagating along [010] by way of anion-to-anion O4– $H1\cdots O2^i$ and water-to-anion O5– $H14\cdots O1$ and O5–

Figure 1

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Received 6 June 2005 Accepted 29 June 2005 Online 6 July 2005 H15...O2ⁱⁱ bonds (Table 2). This arrangement results in an unusual $R_3^3(10)$ graph-set (Bernstein *et al.*, 1995) motif. The As1...As1ⁱ separation is 4.7991 (3) Å.

The organic species interacts with the hydrogenarsenate/ water chains by way of six $N-H\cdots O$ hydrogen bonds [mean $H\cdots O = 1.89$ Å, mean $N-H\cdots O = 171^{\circ}$ and mean $N\cdots O = 2.793$ (2) Å]. One of the acceptor O atoms is part of a water molecule, and the other five are parts of hydrogenarsenate groups. This hydrogen-bonding scheme results in a threedimensional network (Fig. 3).

The hydrogen-bonded hydrogenarsenate/water chains in (I) are different from the motifs seen in related structures. In bis(cycloheptylaminium) hydrogenarsenate monohydrate (Todd & Harrison, 2005) and bis(benzylammonium) hydrogenarsenate monohydrate (Lee & Harrison, 2003c), hydrogen-bonded dimers of $[HAsO_4]^{2-}$ units occur, with the dimers bridged into double chains by intervening water molecules. In the unhydrated piperidinium dihydrogenarsenate (Lee & Harrison, 2003b) and t-butylammonium dihydrogenarsenate (Wilkinson & Harrison, 2004), single chains of $[H_2AsO_4]^$ anions occur with each adjacent dihydrogenarsenate pair linked by a pair of hydrogen bonds. In propane-1,3-diaminium bis(dihydrogenarsenate) (Wilkinson & Harrison, 2005), the same organic cation as found in (I) is combined with dihydrogenarsenate $[H_2AsO_4]^-$ groups, with the latter forming double chains.

Experimental

0.5 *M* aqueous propane-1,3-diamine solution (10 ml) was added to 0.5 *M* aqueous H_3AsO_4 solution (10 ml) to result in a clear solution. Aqueous ammonia was added to this solution to raise the pH to about 12, which is beyond the second end-point for H_3AsO_4 (*i.e.* the predominant species is $[HAsO_4]^{2-}$). Platy crystals of (I) grew as the water evaporated over the course of a few days.

Crystal data

$(C_{3}H_{12}N_{2})[HAsO_{4}]\cdot H_{2}O$ $M_{r} = 234.09$ Monoclinic, $P2_{1}/c$ a = 7.1327 (2) Å b = 16.8046 (6) Å c = 7.9402 (2) Å $\beta = 113.253$ (2)° V = 874.42 (5) Å ³ Z = 4	$D_x = 1.778 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 2043 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 3.87 \text{ mm}^{-1}$ T = 120 (2) K Plate, colourless $0.32 \times 0.24 \times 0.03 \text{ mm}$
Data collection	
Nonius KappaCCD diffractometer ω and φ scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 1999) $T_{min} = 0.370, T_{max} = 0.892$ 11562 measured reflections 2002 independent reflections	1804 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 27.5^{\circ}$ $h = -9 \rightarrow 8$ $k = -20 \rightarrow 21$ $l = -10 \rightarrow 10$
Refinement	

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.055$ S = 1.052002 reflections 103 parameters H-atom parameters constrained

$w = 1/[\sigma^2(F_o^2) + (0.0218P)^2$	
+ 0.7899P]	
where $P = (F_0^2 + 2F_c^2)/3$	
$(\Delta/\sigma)_{\rm max} = 0.001$	
$\Delta \rho_{\rm max} = 0.49 \ {\rm e} \ {\rm \AA}^{-3}$	
$\Delta \rho_{\rm min} = -0.53 \text{ e } \text{\AA}^{-3}$	
Extinction correction: SHELXL9	ŗ
Extinction coefficient: 0.0032 (6)	

Detail of a hydrogen-bonded (dashed lines) hydrogenarsenate/water chain in (I).

Figure 3

The crystal packing of (I). Dashed lines indicate hydrogen bonds.

Table 1

Selected geometric parameters (Å, °).

As1-O1	1.6612 (14)	As1-O3	1.6814 (14)
As1-O2	1.6746 (13)	As1-O4	1.7302 (13)
N1-C1-C2-C3	175.33 (16)	C1-C2-C3-N2	175.49 (16)

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O4-H1···O2 ⁱ	0.93	1.71	2.6207 (19)	166
$O5-H14\cdots O1$	0.92	1.79	2.709 (2)	177
O5−H15···O2 ⁱⁱ	0.89	1.98	2.858 (2)	169
$N1 - H2 \cdot \cdot \cdot O1^{iii}$	0.91	1.81	2.711 (2)	173
$N1 - H3 \cdot \cdot \cdot O3^{i}$	0.91	1.96	2.855 (2)	166
$N1 - H4 \cdots O5^{iv}$	0.91	1.90	2.798 (2)	168
N2-H11···O3 ⁱⁱ	0.91	1.90	2.802 (2)	170
$N2-H12\cdots O2^{v}$	0.91	1.95	2.851 (2)	172
N2-H13···O3	0.91	1.84	2.743 (2)	175

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (iv) $x + 1, -y + \frac{1}{2}, z - \frac{1}{2}$; (v) $x + 1, -y + \frac{1}{2}, z + \frac{1}{2}$.

The O-bound H atoms were found in difference maps and refined as riding on their carrier O atoms in their as-found relative positions. H atoms bonded to C and N atoms were placed in idealized positions (C-H = 0.99 Å and N-H = 0.91 Å) and refined as riding, allowing for free rotation of the $-NH_3$ groups. The constraint $U_{iso}(H) = 1.2U_{eq}(\text{carrier})$ was applied in all cases.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *SCALEPACK*, *DENZO* (Otwinowski & Minor, 1997) and *SORTAV* (Blessing, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

We thank the EPSRC National Crystallography Service (University of Southampton, England) for the data collection.

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-37.
- Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Lee, C. & Harrison, W. T. A. (2003a). Acta Cryst. E59, m739-m741.
- Lee, C. & Harrison, W. T. A. (2003b). Acta Cryst. E59, m959-m960.
- Lee, C. & Harrison, W. T. A. (2003c). Acta Cryst. E59, m1151-m1153.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Todd, M. J. & Harrison, W. T. A. (2005). Acta Cryst. E61, m1024-m1026.
- Wilkinson, H. S. & Harrison, W. T. A. (2004). Acta Cryst. E60, m1359– m1361.
- Wilkinson, H. S. & Harrison, W. T. A. (2005). Acta Cryst. E61, m1289-m1291.

supporting information

Acta Cryst. (2005). E61, m1459-m1461 [https://doi.org/10.1107/S1600536805020702]

Propane-1,3-diaminium hydrogenarsenate monohydrate

Malcolm J. Todd and William T. A. Harrison

Propane-1,3-diaminium hydrogenarsenate monohydrate

Crystal data

 $(C_{3}H_{12}N_{2})$ [HAsO₄]·H₂O $M_{r} = 234.09$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc a = 7.1327 (2) Å b = 16.8046 (6) Å c = 7.9402 (2) Å $\beta = 113.253$ (2)° V = 874.42 (5) Å³ Z = 4

Data collection

Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (SADABS; Bruker, 1999) $T_{\min} = 0.370, T_{\max} = 0.892$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.022$ $wR(F^2) = 0.055$ S = 1.052002 reflections 103 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 480 $D_x = 1.778 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2043 reflections $\theta = 2.9-27.5^{\circ}$ $\mu = 3.87 \text{ mm}^{-1}$ T = 120 KPlate, colourless $0.32 \times 0.24 \times 0.03 \text{ mm}$

11562 measured reflections 2002 independent reflections 1804 reflections with $I > 2\sigma(I)$ $R_{int} = 0.036$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.0^{\circ}$ $h = -9 \rightarrow 8$ $k = -20 \rightarrow 21$ $l = -10 \rightarrow 10$

Hydrogen site location: difmap (O-H) and geom (others) H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0218P)^2 + 0.7899P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.49 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.53 \text{ e } \text{Å}^{-3}$ Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0032 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
As1	0.33625 (3)	0.169777 (11)	0.40666 (2)	0.00857 (9)
O1	0.2831 (2)	0.08464 (8)	0.48468 (19)	0.0146 (3)
O2	0.1852 (2)	0.24466 (8)	0.41487 (19)	0.0128 (3)
O3	0.5862 (2)	0.19099 (9)	0.51186 (19)	0.0128 (3)
O4	0.2905 (2)	0.15016 (8)	0.17988 (18)	0.0147 (3)
O5	0.1693 (2)	0.09842 (9)	0.7709 (2)	0.0209 (3)
N1	0.7723 (3)	0.44871 (10)	0.2130 (2)	0.0125 (3)
N2	0.7725 (3)	0.30904 (10)	0.7604 (2)	0.0108 (3)
C1	0.7251 (3)	0.45673 (12)	0.3780 (3)	0.0128 (4)
C2	0.7718 (3)	0.37949 (12)	0.4861 (3)	0.0140 (4)
C3	0.7418 (3)	0.38739 (12)	0.6644 (3)	0.0136 (4)
H1	0.2575	0.1935	0.1001	0.018*
H2	0.7457	0.4955	0.1504	0.015*
Н3	0.6938	0.4095	0.1398	0.015*
H4	0.9065	0.4361	0.2476	0.015*
Н5	0.5792	0.4703	0.3407	0.015*
H6	0.8075	0.5004	0.4562	0.015*
H7	0.9146	0.3637	0.5135	0.017*
H8	0.6814	0.3370	0.4107	0.017*
H9	0.8402	0.4266	0.7447	0.016*
H10	0.6023	0.4071	0.6384	0.016*
H11	0.7252	0.3118	0.8512	0.013*
H12	0.9079	0.2969	0.8097	0.013*
H13	0.7033	0.2706	0.6788	0.013*
H14	0.2035	0.0940	0.6706	0.025*
H15	0.1674	0.1492	0.8009	0.025*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
As1	0.00955 (13)	0.00763 (13)	0.00873 (12)	-0.00002 (7)	0.00380 (9)	-0.00067 (7)
01	0.0223 (8)	0.0088 (7)	0.0165 (7)	-0.0030 (6)	0.0117 (6)	-0.0006 (6)
O2	0.0129 (7)	0.0109 (7)	0.0148 (7)	0.0027 (6)	0.0057 (6)	-0.0021 (5)
O3	0.0095 (7)	0.0155 (7)	0.0127 (7)	-0.0013 (6)	0.0039 (6)	-0.0021 (6)
O4	0.0223 (8)	0.0119 (7)	0.0089 (7)	0.0029 (6)	0.0052 (6)	-0.0001 (6)
O5	0.0312 (9)	0.0169 (8)	0.0229 (8)	-0.0060 (7)	0.0195 (7)	-0.0049 (6)

Acta Cryst. (2005). E61, m1459-m1461

supporting information

N1	0.0148 (8)	0.0095 (8)	0.0116 (8)	-0.0023 (7)	0.0034 (7)	0.0008 (6)
N2	0.0112 (8)	0.0119 (8)	0.0105 (8)	-0.0013 (7)	0.0055 (7)	0.0005 (7)
C1	0.0143 (10)	0.0107 (10)	0.0139 (10)	0.0005 (8)	0.0061 (8)	0.0001 (8)
C2	0.0170 (10)	0.0114 (10)	0.0157 (10)	0.0038 (8)	0.0086 (9)	0.0018 (8)
C3	0.0172 (10)	0.0095 (10)	0.0160 (10)	-0.0001 (8)	0.0086 (9)	0.0017 (8)

Geometric parameters (Å, °)

As1-01	1.6612 (14)	C2—C3	1.518 (3)
As1—O2	1.6746 (13)	С2—Н7	0.9900
As1—O3	1.6814 (14)	С2—Н8	0.9900
As1—O4	1.7302 (13)	C3—N2	1.493 (2)
O4—H1	0.9323	С3—Н9	0.9900
N1-C1	1.482 (2)	C3—H10	0.9900
N1—H2	0.9100	N2—H11	0.9100
N1—H3	0.9100	N2—H12	0.9100
N1—H4	0.9100	N2—H13	0.9100
C1—C2	1.519 (3)	O5—H14	0.9237
C1—H5	0.9900	O5—H15	0.8880
С1—Н6	0.9900		
O1—As1—O2	112.81 (7)	C1—C2—C3	111.85 (16)
01—As1—O3	110.52 (7)	C1—C2—H7	109.2
O2—As1—O3	113.18 (7)	С3—С2—Н7	109.2
01—As1—O4	104.30 (7)	C1—C2—H8	109.2
O2—As1—O4	108.90 (7)	С3—С2—Н8	109.2
O3—As1—O4	106.54 (7)	Н7—С2—Н8	107.9
As1—O4—H1	116.9	N2—C3—C2	110.64 (16)
C1—N1—H2	109.5	N2—C3—H9	109.5
C1—N1—H3	109.5	С2—С3—Н9	109.5
H2—N1—H3	109.5	N2—C3—H10	109.5
C1—N1—H4	109.5	C2—C3—H10	109.5
H2—N1—H4	109.5	H9—C3—H10	108.1
H3—N1—H4	109.5	C3—N2—H11	109.5
N1-C1-C2	110.27 (16)	C3—N2—H12	109.5
N1—C1—H5	109.6	H11—N2—H12	109.5
C2—C1—H5	109.6	C3—N2—H13	109.5
N1-C1-H6	109.6	H11—N2—H13	109.5
С2—С1—Н6	109.6	H12—N2—H13	109.5
Н5—С1—Н6	108.1	H14—O5—H15	110.2
N1—C1—C2—C3	175.33 (16)	C1—C2—C3—N2	175.49 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
04—H1…O2 ⁱ	0.93	1.71	2.6207 (19)	166
O5—H14…O1	0.92	1.79	2.709 (2)	177

supporting information

O5—H15…O2 ⁱⁱ	0.89	1.98	2.858 (2)	169	
N1—H2···O1 ⁱⁱⁱ	0.91	1.81	2.711 (2)	173	
N1—H3····O3 ⁱ	0.91	1.96	2.855 (2)	166	
N1—H4····O5 ^{iv}	0.91	1.90	2.798 (2)	168	
N2—H11…O3 ⁱⁱ	0.91	1.90	2.802 (2)	170	
N2—H12···O2 ^v	0.91	1.95	2.851 (2)	172	
N2—H13…O3	0.91	1.84	2.743 (2)	175	

Symmetry codes: (i) x, -y+1/2, z-1/2; (ii) x, -y+1/2, z+1/2; (iii) -x+1, y+1/2, -z+1/2; (iv) x+1, -y+1/2, z-1/2; (v) x+1, -y+1/2, z+1/2.