metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ronan M. Bellabarba, Mark Nieuwenhuyzen and Graham C. Saunders*

School of Chemistry, Queen's University Belfast, David Keir Building, Belfast BT9 5AG, Northern Ireland

Correspondence e-mail: g.saunders@qub.ac.uk

Key indicators

Single-crystal X-ray study T = 153 K Mean σ (C–C) = 0.006 Å R factor = 0.047 wR factor = 0.109 Data-to-parameter ratio = 15.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

(Acetonitrile- κN){1,2-bis[bis(pentafluorophenyl)phosphino]ethane- $\kappa^2 P$,P}(η^5 -pentamethylcyclopentadienyl)ruthenium(II) hexafluorophosphate

The cation of the title salt, $[Ru(\eta^5-C_5Me_5)(NCMe)-{(C_6F_5)_2PCH_2CH_2P(C_6F_5)_2]}PF_6$ or $[Ru(C_{10}H_{15})(C_{26}H_4F_{20}P_2)-(C_2H_3N)]PF_6$, has contacts with three anions. One lies close to the pentamethylcyclopentadienyl ring, such that three F atoms of the anion are *ca* 3.5 Å from two of the ring methyl C atoms of the cation and there is one $H \cdots F$ distance shorter than the sum of the van der Waals radii.

Comment

Salts of the cation $[(\eta^5-C_5Me_5)RhCl{(C_6F_5)_2PCH_2CH_2P-(C_6F_5)_2]]^+$ have been found to undergo intramolecular dehydrofluorinative C–C reactions on thermolysis or in the presence of a proton sponge or fluoride, to yield $[\{\eta^5, \kappa P, \kappa P-C_5Me_4CH_2C_6F_4-2-P(C_6F_5)CH_2CH_2P(C_6F_5)_2\}RhCl]^+$ and then $[\{\eta^5, \kappa P, \kappa P-C_5Me_3[CH_2C_6F_4-2-P(C_6F_5)CH_2]-1,3\}RhCl]^+$ (Atherton *et al.*, 1996; Bellabarba *et al.*, 2001). The thermolysis is dependent on the solvent and the anion. The reaction for the tetrafluoroborate salt occurs only in polar protic solvents, such as ethanol, whereas for chloride, hexafluorophosphate and tetraphenylborate salts, the reaction also occurs readily in non-polar aprotic solvents, such as benzene (Atherton *et al.*, 1999).

The structure of $[(\eta^5-C_5Me_5)RhCl\{(C_6F_5)_2PCH_2CH_2P (C_6F_5)_2$]BF₄ revealed that a tetrafluoroborate anion is positioned close to the pentamethylcyclopentadienyl ligand, such that three F atoms of the anion form a plane almost parallel $(5.1^{\circ} \text{ deviation})$ to the C₅ plane, with a separation between the two planes of *ca* 3.19 Å. The anion is displaced slightly from the $(\eta^5 - C_5 Me_5)$ -Rh axis, giving rise to short $F \cdots H$ and $F \cdots C$ distances between the anion and the pentamethylcyclopentadienyl ligand of 2.4-2.7 and 3.1-3.3 Å, respectively (Atherton et al., 1996). A similar positioning of the anion and cation is found in the related salts $[(\eta^5-C_5Me_5)IrCl{(C_6F_5)_2PCH_2CH_2P (C_6F_5)_2$]BF₄ (Atherton *et al.*, 1996) and $[(\eta^5-C_5Me_5)RhCl-$ {(C₆H₃F₂-2,6)₂PCH₂CH₂P(C₆H₃F₂-2,6)₂]]BF₄ (Fawcett *et al.*, 1998). If $BF_4 \cdots C_5 Me_5$ interactions are present in aprotic solvents, then the absence of similar anion $\cdot \cdot \cdot C_5Me_5$ interactions in the salts of the other anions may provide the basis for an explanation for the difference in reactivity. Of particular relevance is the salt of the hexafluorophosphate anion, which is the most similar to the tetrafluoroborate anion. These two anions comprise a periphery of F atoms, with equilateral triangular faces with edges of ca 2.1-2.3 Å (Allen et al., 1987; Atherton et al., 1996; Fawcett et al., 1998). Unfortunately, crystals suitable for single-crystal X-ray diffraction studies of the non-tetrafluoroborate salts of $[(\eta^5-C_5Me_5)RhCl \{(C_6F_5)_2PCH_2CH_2P(C_6F_5)_2\}^+$ have been elusive. However, the structure of the title isoelectronic ruthenium salt, $[(\eta^5 C_5Me_5$ $Ru(NCMe){(C_6F_5)_2PCH_2CH_2P(C_6F_5)_2}PF_6$, (I), has now been determined and is presented here.

Received 26 April 2005 Accepted 24 June 2005 Online 16 July 2005

The structure of (I) (Fig. 1) reveals that the hexafluorophosphate anion does not adopt a similar position to that of the tetrafluoroborate anion in $[(\eta^5-C_5Me_5)RhCl{(C_6F_5)_2} PCH_2CH_2P(C_6F_5)_2$]BF₄ and $[(\eta^5-C_5Me_5)RhCl{(C_6H_3F_2-2,6)_2-}$ $PCH_2CH_2P(C_6H_3F_2-2,6)_2$]BF₄. The cation shows contacts to three anions which are shorter than the sum of the van der Waals radii of the respective atoms. One anion position is close to the pentamethylcyclopentadienyl ligand, such that there is one $F \cdot \cdot H$ distance shorter than the sum of the van der Waals radii (F36···H10C = 2.626 Å). The shortest inter-ion $F \cdots C(C_5 Me_5)$ distances are between atoms F34 and C9 [3.493 (6) Å], F36 and C10 [3.564 (7) Å], and F32 and C10 [3.597 (7) Å]. However, for this anion, the shortest inter-ion $F \cdot \cdot \cdot C$ distance of 3.028 (6) Å is between atoms F36 and C2S of the acetonitrile. The distance between atoms C3S and F36 is 3.123 (5) Å, with F36···H3S2 = 2.609 Å, and that between atoms C3S and F34 is 3.396 (7) Å, with $F34 \cdot \cdot \cdot H3S2 = 2.481$ Å.

Another anion position gives three short contacts with a C_6F_5 ring $(F32 \cdots F26B = 2.888 (6) \text{ Å}, F32 \cdots C26B = 2.964 (6) \text{ Å} and <math>F32 \cdots C25B = 3.110 (6) \text{ Å}$) and a contact with a CH_2 H atom $(F35 \cdots H2A2 = 2.633 \text{ Å})$. The third anion position gives a contact with a C_6F_5 ring $(F31 \cdots C14B = 3.113 (7) \text{ Å})$, a CH_2 H atom $(F33 \cdots H1A1 = 2.599 \text{ Å})$ and an acetonitrile H atom $(F35 \cdots H3S1 = 2.428 \text{ Å})$.

Figure 1

A view of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

The title complex was obtained from the reaction of $[(\eta^5 - C_5Me_5)Ru(NCMe)_3]PF_6$ with $(C_6F_5)_2PCH_2CH_2P(C_6F_5)_2$ in dichloromethane (10 ml) gave a yellow–green solution from which a small number of yellow crystals of (I) were obtained by cooling the reaction mixture to 273 K.

Crystal data

 $[Ru(C_{10}H_{15})(C_{26}H_4F_{20}P_2)(C_2H_3N)]$ - $D_x = 1.874 \text{ Mg m}^{-3}$ PF_6 Mo $K\alpha$ radiation $M_{\rm r} = 1180.55$ Cell parameters from 5351 Monoclinic, $P2_1/n$ reflections a = 12.5380 (9) Å $\theta = 4-50^{\circ}$ $\mu = 0.64 \text{ mm}^{-1}$ b = 10.6157 (8) Å c = 31.760 (2) Å T = 153 (2) K $\beta = 98.062 (2)^{\circ}$ Needle red $V = 4185.4 (5) \text{ Å}^3$ $0.42 \times 0.10 \times 0.08 \text{ mm}$ Z = 4Data collection Bruker SMART 1000 CCD area-9479 independent reflections detector diffractometer 5575 reflections with $I > 2\sigma(I)$ ω and ω scans $R_{\rm int} = 0.098$ $\theta_{\rm max} = 27.5^{\circ}$ Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $h = -16 \rightarrow 16$ $T_{\min} = 0.775, T_{\max} = 0.951$ $k = -13 \rightarrow 13$ 37499 measured reflections $l = -41 \rightarrow 40$ Refinement Refinement on F^2 H-atom parameters constrained $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.109$ $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0422P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ S = 0.94 $(\Delta/\sigma)_{\rm max} < 0.001$

H atoms were added in idealized positions and a riding model with fixed displacement parameters $[U_{iso}(H) = 1.2U_{eq} \text{ of the parent atom } (1.5U_{eq} \text{ for methyl H atoms}].$

 $\Delta \rho_{\rm max} = 0.67 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.83 \text{ e } \text{\AA}^{-3}$

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SHELXTL* (Bruker, 2001) and *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We thank the EPSRC for support.

References

9479 reflections

627 parameters

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Atherton, M. J., Fawcett, J., Holloway, J. H., Hope, E. G., Karaçar, A., Russell, D. R. & Saunders, G. C. (1996). J. Chem. Soc. Dalton Trans. pp. 3215–3220.
- Atherton, M. J. Fawcett, J., Holloway, J. H., Hope, E. G., Russell, D. R. & Saunders G. C. (1999). J. Organomet. Chem. 582, 163–172.
- Bellabarba, R. M., Nieuwenhuyzen, M. & Saunders, G. C. (2001). J. Chem. Soc. Dalton Trans. pp. 512–514.
- Bruker (2001). SMART (Version 5.622) and SHELXTL (Version 6.12). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2002). SAINT. Version 6.36a. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fawcett, J., Friedrichs, S., Holloway, J. H., Hope, E. G., McKee, V., Nieuwenhuyzen, M., Russell, D. R. & Saunders, G. C. (1998). J. Chem. Soc. Dalton Trans. pp. 1477–1484.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Acta Cryst. (2005). E61, m1588–m1589 [https://doi.org/10.1107/S1600536805020052]

(Acetonitrile- κN){1,2-bis[bis(pentafluorophenyl)phosphino]ethane- $\kappa^2 P, P$ }(η^5 -pentamethylcyclopentadienyl)ruthenium(II) hexafluorophosphate

Ronan M. Bellabarba, Mark Nieuwenhuyzen and Graham C. Saunders

(Acetonitrile- κ N){1,2-bis[bis(pentafluorophenyl)phosphino]ethane- κ^2 P,P}(η^5 -pentamethylcyclopentadienyl)ruthenium(II) hexafluorophosphate

Crystal data

 $[\operatorname{Ru}(\operatorname{C}_{10}\operatorname{H}_{15})(\operatorname{C}_{26}\operatorname{H}_{4}\operatorname{F}_{20}\operatorname{P}_{2})(\operatorname{C}_{2}\operatorname{H}_{3}\operatorname{N})]\operatorname{PF}_{6}$ $M_{r} = 1180.55$ Monoclinic, $P2_{1}/n$ a = 12.5380 (9) Å b = 10.6157 (8) Å c = 31.760 (2) Å $\beta = 98.062 (2)^{\circ}$ $V = 4185.4 (5) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART 1000 CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.775, T_{\max} = 0.951$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.109$ S = 0.949479 reflections 627 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 2320 $D_x = 1.874 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5351 reflections $\theta = 4-50^{\circ}$ $\mu = 0.64 \text{ mm}^{-1}$ T = 153 KNeedle, red $0.42 \times 0.10 \times 0.08 \text{ mm}$

37499 measured reflections 9479 independent reflections 5575 reflections with $I > 2\sigma(I)$ $R_{int} = 0.098$ $\theta_{max} = 27.5^\circ, \ \theta_{min} = 1.3^\circ$ $h = -16 \rightarrow 16$ $k = -13 \rightarrow 13$ $l = -41 \rightarrow 40$

Secondary atom site location: difference Fourier map Hydrogen site location: geom and difmap for Me H H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0422P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.67$ e Å⁻³ $\Delta\rho_{min} = -0.83$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ х Ζ v 0.02476 (9) Ru1 0.11895 (3) 0.13441(3)0.386595 (10) C1 0.0814 (4) 0.0344(10)0.1383(4)0.45544 (13) C2 0.0259(3)0.0940(4)0.44016 (13) 0.0338(10)C3 -0.0011(3)0.0004 (4) 0.40794 (13) 0.0334 (10) 0.40313 (13) C4 0.0929(3)-0.0680(4)0.0326 (10) C5 0.1810(3)-0.0172(4)0.43183 (13) 0.0310(10)C6 0.1987 (4) 0.49471 (13) 0.1406 (4) 0.0426(11) H6A 0.1538 0.2057 0.5053 0.064* H6B 0.2653 0.1788 0.4878 0.064*H6C 0.2163 0.0760 0.5166 0.064* C7 -0.0529(4)0.1709 (4) 0.46049 (15) 0.0489 (13) H7A -0.08220.1200 0.4819 0.073* H7B 0.1981 0.073* -0.11170.4388 H7C -0.01640.2451 0.4741 0.073* C8 -0.0332(5)0.38813 (15) 0.0479 (13) -0.1145(4)H8A -0.1122-0.07570.3609 0.072* 0.0437 H8B -0.15770.3834 0.072* H8C -0.1470-0.08950.4073 0.072* C9 0.1016(4)-0.1771(4)0.37448 (15) 0.0471 (13) H9A 0.1719 -0.17550.3644 0.071* H9B 0.0444 -0.17210.3501 0.071* H9C 0.0941 0.071* -0.25560.3901 C10 0.2918 (4) -0.0755(4)0.43991 (16) 0.0464 (12) H10A 0.2859 0.4491 0.070* -0.1630H10B 0.3367 -0.02790.4622 0.070* H10C 0.070* 0.3247 -0.07340.4137 P1 0.27318 (10) 0.34249 (3) 0.01571 (8) 0.0243(2)C11A -0.0839(3)0.3702(4)0.36536(11) 0.0253 (8) C12A -0.1899(3)0.3329(4)0.36497 (13) 0.0322 (10) -0.22560(18)0.0442(7)F12A 0.2244(2)0.34630 (8) -0.2644(3)0.4012(4)0.38383(14)0.0368(11)C13A F13A 0.3605(3)0.38198 (9) 0.0552 (8) -0.3655(2)C14A -0.2331(4)0.5123 (4) 0.40430 (14) 0.0396(11) F14A -0.3026(2)0.5787 (3) 0.42356 (9) 0.0577 (8) C15A -0.1292(4)0.5530(4)0.40570(13) 0.0361 (11)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

F15A	-0.0969 (2)	0.6597 (2)	0.42586 (9)	0.0553 (8)
C16A	-0.0572 (3)	0.4830 (4)	0.38573 (13)	0.0305 (10)
F16A	0.04305 (19)	0.5298 (2)	0.38709 (8)	0.0406 (6)
C11B	-0.0692(3)	0.2292 (4)	0.29221 (12)	0.0284 (9)
C12B	-0.0825(3)	0.1088 (4)	0.27615 (13)	0.0314 (10)
F12B	-0.03597 (19)	0.0094 (2)	0.29806 (8)	0.0391 (6)
C13B	-0.1424 (4)	0.0806 (5)	0.23738 (14)	0.0396 (11)
F13B	-0.1493(2)	-0.0382(3)	0.22318 (8)	0.0530(7)
C14B	-0.1957(4)	0.1761 (5)	0.21398(14)	0.0428 (12)
F14B	-0.2558(2)	0 1507 (3)	0 17677 (8)	0.0633(9)
C15B	-0.1852(3)	0.2980(5)	0.22826(14)	0.0396(11)
F15B	-0.2360(2)	0.2900(3) 0.3917(3)	0.22523(8)	0.0590(11) 0.0529(7)
C16B	-0.1228(3)	0.3231(4)	0.20525(0)	0.0322(7)
E16B	-0.11228(3)	0.3231(4) 0.4451(2)	0.20027(13)	0.0304(10)
CIA	0.11495(10) 0.1001(2)	0.4431(2) 0.2770(4)	0.27040(7) 0.21700(12)	0.0378(0)
	0.1091 (3)	0.3770 (4)	0.31799 (12)	0.0283 (9)
	0.1290	0.3347	0.2924	0.034*
HIA2	0.0708	0.4558	0.3086	0.034*
C2A	0.2128 (3)	0.4109 (4)	0.34770 (12)	0.0291 (9)
H2A1	0.2033	0.4932	0.3613	0.035*
H2A2	0.2731	0.4190	0.3308	0.035*
P2	0.24670 (8)	0.28992 (10)	0.38917 (3)	0.0261 (2)
C21A	0.3767 (3)	0.2212 (4)	0.38038 (14)	0.0314 (10)
C22A	0.4452 (3)	0.1681 (4)	0.41375 (15)	0.0371 (11)
F22A	0.4254 (2)	0.1869 (2)	0.45387 (8)	0.0457 (7)
C23A	0.5333 (4)	0.0951 (4)	0.40833 (19)	0.0478 (13)
F23A	0.5957 (2)	0.0465 (3)	0.44162 (11)	0.0735 (10)
C24A	0.5545 (4)	0.0730 (5)	0.3679 (2)	0.0575 (16)
F24A	0.6387 (2)	-0.0004 (3)	0.36203 (13)	0.0825 (11)
C25A	0.4908 (4)	0.1249 (5)	0.33344 (18)	0.0527 (14)
F25A	0.5121 (2)	0.1039 (3)	0.29398 (11)	0.0774 (10)
C26A	0.4045 (4)	0.1966 (4)	0.34006 (15)	0.0394 (11)
F26A	0.3439 (2)	0.2439 (3)	0.30516 (8)	0.0481 (7)
C21B	0.2839 (3)	0.4011 (4)	0.43330 (13)	0.0311 (10)
C22B	0.2068 (4)	0.4407 (4)	0.45785 (13)	0.0349 (10)
F22B	0.1089 (2)	0.3850 (2)	0.45389 (8)	0.0421 (6)
C23B	0.2221 (4)	0.5382 (4)	0.48622 (14)	0.0423 (12)
F23B	0.1433 (3)	0.5716 (3)	0.50852 (9)	0.0625 (8)
C24B	0.3180 (5)	0.6007 (5)	0.49196 (15)	0.0523 (14)
F24B	0.3349(3)	0.6951 (3)	0 52025 (9)	0.0691 (9)
C25B	0.3983(4)	0 5671 (4)	0.46856 (15)	0.0453(13)
E25B	0.4913 (2)	0.5071(1) 0.6298(3)	0.47281(9)	0.0606 (8)
C26B	0.4915(2) 0.3801(4)	0.0290(3) 0.4689(4)	0.47201(9) 0.43942(14)	0.0356(11)
E26B	0.3001(4)	0.4037(4)	0.43742(14) 0.41727(0)	0.0350(11)
N1S	0.43933(19) 0.1761(3)	0.4423(2) 0.0731(3)	0.41727(9) 0.33285(10)	0.0434(7)
C28	0.1701(3) 0.2011(3)	0.0751(5) 0.0202(4)	0.33203(10) 0.30227(14)	0.0200(0)
C25	0.2011(3) 0.2301(4)	-0.0292(4)	0.30337(14) 0.26464(14)	0.0310(10)
U30 11201	0.2301 (4)	0.0239 (3)	0.20404 (14)	0.0494(13)
пэ <u>э</u> 1	0.1080	-0.0223	0.2422	$0.0/4^{*}$
H3S2	0.2515	-0.1139	0.2699	0.0/4*

H3S3	0.2902	0.0213	0.2557	0.074*	
P3	0.40845 (10)	0.71325 (12)	0.33113 (4)	0.0385 (3)	
F31	0.5311 (2)	0.7346 (3)	0.34824 (10)	0.0687 (9)	
F32	0.3840 (2)	0.6759 (3)	0.37704 (9)	0.0632 (9)	
F33	0.4288 (2)	0.7504 (3)	0.28423 (9)	0.0632 (8)	
F34	0.2840 (2)	0.6917 (3)	0.31325 (9)	0.0564 (8)	
F35	0.4325 (2)	0.5692 (3)	0.32137 (9)	0.0564 (8)	
F36	0.3821 (2)	0.8565 (2)	0.34084 (9)	0.0568 (8)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ru1	0.02723 (18)	0.02367 (17)	0.02360 (17)	0.00175 (15)	0.00433 (12)	0.00038 (15)
C1	0.044 (3)	0.029 (2)	0.031 (2)	0.003 (2)	0.010 (2)	0.0092 (19)
C2	0.039 (3)	0.035 (3)	0.031 (2)	0.004 (2)	0.015 (2)	0.0086 (19)
C3	0.040 (3)	0.027 (2)	0.035 (2)	-0.004 (2)	0.009 (2)	0.0088 (19)
C4	0.041 (3)	0.025 (2)	0.033 (2)	-0.003 (2)	0.010 (2)	0.0072 (19)
C5	0.040 (3)	0.023 (2)	0.031 (2)	0.0073 (19)	0.0073 (19)	0.0087 (18)
C6	0.057 (3)	0.040 (3)	0.030 (2)	0.006 (2)	0.006 (2)	0.005 (2)
C7	0.057 (3)	0.047 (3)	0.049 (3)	0.010 (2)	0.027 (3)	0.015 (2)
C8	0.041 (3)	0.052 (3)	0.052 (3)	-0.011 (2)	0.010 (2)	0.010 (3)
C9	0.066 (3)	0.025 (2)	0.052 (3)	-0.007(2)	0.013 (3)	-0.003 (2)
C10	0.048 (3)	0.041 (3)	0.048 (3)	0.010 (2)	0.002 (2)	0.012 (2)
P1	0.0239 (5)	0.0253 (6)	0.0234 (5)	0.0000 (4)	0.0026 (4)	-0.0004 (4)
C11A	0.031 (2)	0.025 (2)	0.0198 (19)	-0.0004 (19)	0.0047 (16)	0.0007 (17)
C12A	0.035 (2)	0.032 (3)	0.029 (2)	-0.0006 (19)	0.0029 (19)	0.0005 (19)
F12A	0.0308 (14)	0.0447 (16)	0.0590 (18)	-0.0066 (12)	0.0125 (12)	-0.0120 (13)
C13A	0.032 (3)	0.047 (3)	0.034 (3)	0.004 (2)	0.011 (2)	0.005 (2)
F13A	0.0368 (16)	0.0644 (19)	0.069 (2)	0.0035 (14)	0.0224 (14)	-0.0053 (16)
C14A	0.051 (3)	0.040 (3)	0.031 (2)	0.021 (2)	0.017 (2)	0.005 (2)
F14A	0.0669 (19)	0.0585 (19)	0.0531 (18)	0.0256 (16)	0.0272 (15)	-0.0024 (15)
C15A	0.054 (3)	0.027 (2)	0.028 (2)	0.007 (2)	0.006 (2)	-0.0041 (19)
F15A	0.076 (2)	0.0374 (17)	0.0552 (18)	0.0038 (14)	0.0175 (15)	-0.0154 (13)
C16A	0.034 (2)	0.027 (2)	0.030 (2)	0.0031 (19)	0.0033 (19)	0.0042 (18)
F16A	0.0422 (15)	0.0306 (14)	0.0495 (16)	-0.0077 (12)	0.0074 (12)	-0.0119 (12)
C11B	0.025 (2)	0.035 (2)	0.025 (2)	-0.0009 (19)	0.0061 (17)	0.0017 (19)
C12B	0.027 (2)	0.035 (3)	0.033 (2)	-0.0014 (19)	0.0066 (18)	-0.0035 (19)
F12B	0.0419 (15)	0.0299 (14)	0.0446 (15)	-0.0034 (11)	0.0023 (12)	-0.0075 (12)
C13B	0.037 (3)	0.045 (3)	0.037 (3)	-0.009 (2)	0.007 (2)	-0.018 (2)
F13B	0.0536 (17)	0.0562 (18)	0.0483 (17)	-0.0147 (14)	0.0044 (14)	-0.0241 (14)
C14B	0.036 (3)	0.063 (3)	0.027 (2)	-0.006 (2)	-0.005 (2)	-0.011 (2)
F14B	0.0589 (18)	0.091 (2)	0.0336 (15)	-0.0083 (17)	-0.0157 (13)	-0.0137 (16)
C15B	0.030 (2)	0.056 (3)	0.031 (2)	0.000 (2)	0.002 (2)	0.008 (2)
F15B	0.0505 (17)	0.071 (2)	0.0330 (15)	0.0090 (15)	-0.0099 (12)	0.0093 (14)
C16B	0.027 (2)	0.036 (3)	0.027 (2)	-0.0011 (18)	0.0010 (18)	-0.0025 (19)
F16B	0.0409 (15)	0.0375 (15)	0.0333 (14)	0.0045 (12)	-0.0008 (11)	0.0050 (11)
C1A	0.026 (2)	0.033 (2)	0.027 (2)	-0.0014 (19)	0.0031 (17)	-0.0009 (19)
C2A	0.025 (2)	0.032 (2)	0.030 (2)	-0.0053 (18)	0.0023 (17)	0.0031 (18)

P2	0.0255 (6)	0.0279 (6)	0.0242 (5)	0.0011 (5)	0.0006 (4)	-0.0017 (5)
C21A	0.028 (2)	0.028 (2)	0.037 (2)	-0.0032 (18)	0.0010 (19)	-0.0030 (19)
C22A	0.033 (2)	0.032 (3)	0.043 (3)	-0.0020 (19)	-0.006 (2)	-0.012 (2)
F22A	0.0494 (16)	0.0422 (15)	0.0407 (16)	0.0090 (13)	-0.0100 (13)	-0.0002 (13)
C23A	0.029 (3)	0.032 (3)	0.077 (4)	0.003 (2)	-0.009 (3)	-0.009 (3)
F23A	0.0492 (18)	0.0526 (19)	0.108 (3)	0.0183 (15)	-0.0249 (18)	-0.0076 (18)
C24A	0.025 (3)	0.050 (3)	0.098 (5)	-0.004 (2)	0.013 (3)	-0.028 (3)
F24A	0.0333 (17)	0.066 (2)	0.151 (3)	0.0068 (15)	0.0211 (19)	-0.034 (2)
C25A	0.034 (3)	0.061 (4)	0.068 (4)	-0.008 (3)	0.024 (3)	-0.027 (3)
F25A	0.063 (2)	0.092 (3)	0.087 (2)	-0.0090 (18)	0.0463 (18)	-0.037 (2)
C26A	0.033 (3)	0.046 (3)	0.040 (3)	-0.006 (2)	0.008 (2)	-0.010 (2)
F26A	0.0518 (17)	0.0596 (18)	0.0351 (15)	-0.0093 (14)	0.0142 (13)	-0.0070 (13)
C21B	0.038 (3)	0.024 (2)	0.030 (2)	0.0091 (18)	-0.0005 (19)	0.0008 (18)
C22B	0.048 (3)	0.031 (3)	0.025 (2)	0.003 (2)	0.001 (2)	0.0052 (19)
F22B	0.0463 (16)	0.0408 (16)	0.0423 (15)	0.0066 (13)	0.0167 (12)	-0.0004 (12)
C23B	0.067 (3)	0.035 (3)	0.025 (2)	0.008 (3)	0.007 (2)	-0.002 (2)
F23B	0.098 (2)	0.0507 (18)	0.0421 (17)	0.0231 (17)	0.0206 (16)	-0.0075 (14)
C24B	0.085 (4)	0.035 (3)	0.031 (3)	0.009 (3)	-0.013 (3)	-0.007 (2)
F24B	0.120 (3)	0.0408 (17)	0.0405 (17)	0.0050 (18)	-0.0106 (17)	-0.0196 (14)
C25B	0.052 (3)	0.036 (3)	0.040 (3)	-0.001 (2)	-0.020 (2)	-0.003 (2)
F25B	0.0635 (19)	0.0414 (16)	0.066 (2)	-0.0095 (15)	-0.0272 (15)	-0.0095 (15)
C26B	0.038 (3)	0.033 (3)	0.032 (2)	0.003 (2)	-0.009 (2)	-0.002 (2)
F26B	0.0336 (15)	0.0391 (16)	0.0623 (18)	-0.0032 (12)	0.0020 (13)	-0.0102 (13)
N1S	0.0259 (18)	0.0254 (19)	0.0288 (19)	0.0000 (15)	0.0032 (15)	-0.0003 (15)
C2S	0.032 (2)	0.030 (2)	0.030 (2)	0.0037 (19)	0.0029 (19)	0.0013 (19)
C3S	0.067 (3)	0.055 (3)	0.029 (3)	0.018 (3)	0.012 (2)	-0.004 (2)
P3	0.0419 (7)	0.0380 (7)	0.0364 (7)	-0.0014 (6)	0.0082 (5)	-0.0006 (6)
F31	0.0456 (18)	0.079 (2)	0.076 (2)	-0.0089 (16)	-0.0086 (16)	-0.0006 (18)
F32	0.090 (2)	0.0595 (19)	0.0432 (17)	0.0183 (17)	0.0217 (16)	0.0120 (14)
F33	0.064 (2)	0.084 (2)	0.0467 (18)	0.0111 (17)	0.0239 (15)	0.0129 (16)
F34	0.0431 (17)	0.0541 (18)	0.072 (2)	0.0021 (14)	0.0070 (14)	-0.0095 (15)
F35	0.0586 (19)	0.0450 (17)	0.065 (2)	0.0121 (14)	0.0082 (15)	-0.0106 (15)
F36	0.078 (2)	0.0362 (16)	0.0549 (18)	-0.0010 (15)	0.0062 (15)	-0.0038 (14)

Geometric parameters (Å, °)

Ru1—N1S	2.048 (3)	C12B—C13B	1.382 (6)	
Ru1—C5	2.224 (4)	C13B—F13B	1.339 (5)	
Ru1—C2	2.235 (4)	C13B—C14B	1.374 (6)	
Ru1—C1	2.238 (4)	C14B—F14B	1.337 (5)	
Ru1—C3	2.244 (4)	C14B—C15B	1.371 (6)	
Ru1—C4	2.247 (4)	C15B—F15B	1.342 (5)	
Ru1—P2	2.2936 (11)	C15B—C16B	1.370 (6)	
Ru1—P1	2.3019 (11)	C16B—F16B	1.351 (5)	
C1—C2	1.432 (6)	C1A—C2A	1.538 (5)	
C1—C5	1.434 (6)	C1A—H1A1	0.9900	
C1—C6	1.503 (6)	C1A—H1A2	0.9900	
C2—C3	1.433 (6)	C2A—P2	1.846 (4)	

C2—C7	1.496 (6)	C2A—H2A1	0.9900
C3—C4	1.410 (6)	C2A—H2A2	0.9900
C3—C8	1.515 (6)	P2—C21B	1.841 (4)
C4—C5	1.435 (6)	P2—C21A	1.842 (4)
C4—C9	1.486 (6)	C21A—C22A	1.387 (6)
C5—C10	1.510(6)	C21A—C26A	1.398 (6)
C6—H6A	0.9800	C22A—F22A	1.347 (5)
С6—Н6В	0.9800	C22A—C23A	1.380 (6)
С6—Н6С	0.9800	C23A—F23A	1.328 (5)
С7—Н7А	0.9800	C23A—C24A	1.367 (7)
С7—Н7В	0.9800	C24A—F24A	1.347 (5)
C7—H7C	0.9800	C24A - C25A	1.377 (8)
C8—H8A	0.9800	C25A - F25A	1.336 (6)
C8—H8B	0.9800	C^{25A} C^{26A}	1.353 (6)
	0.9800	C_{25} C_{26} C_{26} C_{26}	1.305(0) 1.349(5)
	0.9800	$C_{20}A = \Gamma_{20}A$ $C_{21}B = C_{22}B$	1.349 (5)
	0.9800	$C_{21}D = C_{22}D$	1.369 (0)
С9—п9Б	0.9800	$C_{21B} = C_{20B}$	1.393 (0)
C10_H10A	0.9800	C22B—F22B	1.352 (5)
CIO-HIOA	0.9800	C22B—C23B	1.368 (6)
CI0—HI0B	0.9800	C23B—F23B	1.341 (5)
C10—H10C	0.9800	C23B—C24B	1.363 (7)
P1—C11A	1.844 (4)	C24B—F24B	1.342 (5)
P1—C11B	1.851 (4)	C24B—C25B	1.379 (7)
P1—C1A	1.857 (4)	C25B—F25B	1.333 (5)
C11A—C16A	1.380 (5)	C25B—C26B	1.391 (6)
C11A—C12A	1.385 (5)	C26B—F26B	1.328 (5)
C12A—F12A	1.343 (4)	N1S—C2S	1.129 (5)
C12A—C13A	1.384 (6)	C2S—C3S	1.453 (6)
C13A—F13A	1.333 (5)	C3S—H3S1	0.9800
C13A—C14A	1.377 (6)	C3S—H3S2	0.9800
C14A—F14A	1.334 (5)	C3S—H3S3	0.9800
C14A—C15A	1.367 (6)	P3—F31	1.574 (3)
C15A—F15A	1.335 (5)	P3—F32	1.582 (3)
C15A—C16A	1.389 (6)	P3—F36	1.595 (3)
C16A—F16A	1.347 (5)	P3—F33	1.596 (3)
C11B-C12B	1.378 (6)	P3—F35	1 598 (3)
C11B—C16B	1.570(0) 1 403 (5)	P3—F34	1.600(3)
C12B F12B	1.403(5)	15 154	1.000 (5)
C12D—112D	1.551 (5)		
N1S—Ru1—C5	100.19 (14)	F14A—C14A—C13A	120.5 (4)
N1S—Ru1—C2	148.71 (15)	C15A—C14A—C13A	119.6 (4)
C5—Ru1—C2	62.76 (15)	F15A—C15A—C14A	120.5 (4)
N1S—Ru1—C1	137.05 (14)	F15A—C15A—C16A	120.0 (4)
C5—Ru1—C1	37.50 (14)	C14A—C15A—C16A	119.5 (4)
C2—Ru1—C1	37.33 (15)	F16A—C16A—C11A	119.9 (4)
N1S—Ru1—C3	112.23 (14)	F16A—C16A—C15A	116.8 (4)
C5—Ru1—C3	62.26(15)	C11A - C16A - C15A	123 3 (4)
$C^2 = Ru1 = C^3$	37 31 (15)	C12B $C11B$ $C16B$	123.3(4) 114.7(4)
	51,51 (15)		11T, (T)

C1—Ru1—C3	62.03 (16)	C12B—C11B—P1	125.4 (3)
N1S—Ru1—C4	88.30 (14)	C16B—C11B—P1	119.8 (3)
C5—Ru1—C4	37.45 (15)	F12B—C12B—C11B	120.9 (4)
C2—Ru1—C4	61.98 (16)	F12B-C12B-C13B	115.5 (4)
C1—Ru1—C4	62.01 (16)	C11B—C12B—C13B	123.6 (4)
C3—Ru1—C4	36.61 (15)	F13B—C13B—C14B	120.6 (4)
N1S— $Ru1$ — $P2$	86.22 (9)	F13B-C13B-C12B	120.4 (4)
C5— $Ru1$ — $P2$	108.57 (11)	C14B— $C13B$ — $C12B$	119.0 (4)
C_2 —Ru1—P2	123.19(12)	F14B— $C14B$ — $C15B$	119.9 (4)
C1— $Ru1$ — $P2$	99 58 (12)	F_{14B} C_{14B} C_{13B}	120.0(4)
$C_3 = R_{11} = P_2$	160.09(11)	C15B-C14B-C13B	120.0(1) 120.0(4)
C4— $Ru1$ — $P2$	143 49 (11)	F15B $C15B$ $C16B$	120.0(1) 120.3(4)
$N1S_{P1}$	85.92 (9)	$F_{15B} = C_{15B} = C_{14B}$	120.3(4) 120.2(4)
$C5$ _Ru1_P1	16643(11)	$C_{16B} = C_{15B} = C_{14B}$	120.2(4) 119.5(4)
$C_2 = R_{\rm H} 1 = P_1$	106.06(11)	F16B C16B C15B	119.5(4)
C_2 — Ru_1 — I_1 C_1 Ru_1 P_1	136.80 (11)	F16B C16B C11B	110.0(4)
$C_1 = Ru_1 = P_1$	104.24(11)	$C_{15B} = C_{16B} = C_{11B}$	120.3(3)
C_{3} C_{4} C_{1} C_{1	104.24(11) 121.20(11)	$C_{13} = C_{10} = C_{11} = C_{11}$	123.1(4)
C4— $Ku1$ — $F1D2$ $Dy1$ $D1$	131.00(11) 92.77(4)	$C_{2A} = C_{1A} = H_{1A1}$	114.2 (3)
F_2 — K_{U1} — F_1	05.77 (4)		108.7
$C_2 = C_1 = C_3$	106.2(4)	PI = CIA = HIA2	108.7
$C_2 = C_1 = C_0$	120.8 (4)	C_{2A} — C_{1A} — H_{1A2}	108.7
C_{2}	123.9 (4)	PI—CIA—HIA2	108.7
C2—C1—Rul	/1.3 (2)	HIAI—CIA—HIA2	107.6
C5—C1—Rul	70.7 (2)	CIA—C2A—P2	111.4 (3)
C6—C1—Rul	132.8 (3)	CIA—C2A—H2AI	109.3
C1—C2—C3	107.4 (4)	P2—C2A—H2A1	109.3
C1—C2—C7	125.7 (4)	C1A—C2A—H2A2	109.3
C3—C2—C7	125.7 (4)	P2—C2A—H2A2	109.3
C1—C2—Ru1	71.4 (2)	H2A1—C2A—H2A2	108.0
C3—C2—Ru1	71.7 (2)	C21B—P2—C21A	103.55 (19)
C7—C2—Ru1	132.1 (3)	C21B—P2—C2A	96.07 (18)
C4—C3—C2	108.5 (4)	C21A—P2—C2A	106.68 (19)
C4—C3—C8	125.7 (4)	C21B—P2—Ru1	126.11 (15)
C2—C3—C8	125.0 (4)	C21A—P2—Ru1	109.75 (13)
C4—C3—Ru1	71.8 (2)	C2A—P2—Ru1	112.68 (13)
C2—C3—Ru1	71.0 (2)	C22A—C21A—C26A	114.6 (4)
C8—C3—Ru1	130.9 (3)	C22A—C21A—P2	120.8 (3)
C3—C4—C5	108.5 (4)	C26A—C21A—P2	123.5 (3)
C3—C4—C9	127.0 (4)	F22A—C22A—C23A	117.3 (4)
C5—C4—C9	124.5 (4)	F22A—C22A—C21A	119.1 (4)
C3—C4—Ru1	71.6 (2)	C23A—C22A—C21A	123.6 (5)
C5—C4—Ru1	70.4 (2)	F23A—C23A—C24A	120.7 (5)
C9—C4—Ru1	125.2 (3)	F23A—C23A—C22A	120.7 (5)
C1—C5—C4	107.2 (4)	C24A—C23A—C22A	118.5 (5)
C1—C5—C10	127.8 (4)	F24A—C24A—C23A	119.3 (5)
C4—C5—C10	124.2 (4)	F24A—C24A—C25A	120.0 (5)
C1C5Ru1	71.8 (2)	C23A—C24A—C25A	120.7 (5)
C4—C5—Ru1	72.1 (2)	F25A—C25A—C26A	120.4 (5)

C10—C5—Ru1	129.5 (3)	F25A—C25A—C24A	120.6 (5)
С1—С6—Н6А	109.5	C26A—C25A—C24A	119.0 (5)
C1—C6—H6B	109.5	F26A—C26A—C25A	116.6 (4)
H6A—C6—H6B	109.5	F26A—C26A—C21A	120.0 (4)
C1—C6—H6C	109.5	C25A—C26A—C21A	123.4 (5)
H6A—C6—H6C	109.5	C22B—C21B—C26B	114.9 (4)
H6B—C6—H6C	109.5	C22B—C21B—P2	120.0 (3)
С2—С7—Н7А	109.5	C26B—C21B—P2	124.0 (3)
С2—С7—Н7В	109.5	F22B—C22B—C23B	115.7 (4)
H7A—C7—H7B	109.5	F22B—C22B—C21B	120.6 (4)
С2—С7—Н7С	109.5	C23B—C22B—C21B	123.7 (5)
H7A—C7—H7C	109.5	F23B—C23B—C24B	120.1 (4)
H7B—C7—H7C	109.5	F23B—C23B—C22B	120.1 (5)
С3—С8—Н8А	109.5	C24B—C23B—C22B	119.8 (5)
C3—C8—H8B	109.5	F24B—C24B—C23B	120.4 (5)
H8A—C8—H8B	109.5	F24B—C24B—C25B	119.7 (5)
C3—C8—H8C	109.5	C23B—C24B—C25B	119.9 (4)
H8A—C8—H8C	109.5	F25B—C25B—C24B	120.7 (4)
H8B—C8—H8C	109.5	F25B—C25B—C26B	120.0 (5)
С4—С9—Н9А	109.5	C24B—C25B—C26B	119.2 (5)
С4—С9—Н9В	109.5	F26B—C26B—C25B	116.5 (4)
H9A—C9—H9B	109.5	F26B—C26B—C21B	121.0 (4)
С4—С9—Н9С	109.5	C25B—C26B—C21B	122.5 (5)
Н9А—С9—Н9С	109.5	C2S—N1S—Ru1	173.1 (3)
Н9В—С9—Н9С	109.5	N1S-C2S-C3S	178.2 (5)
C5-C10-H10A	109.5	C2S-C3S-H3S1	109.5
C5-C10-H10B	109.5	C2S—C3S—H3S2	109.5
H10A—C10—H10B	109.5	H3S1—C3S—H3S2	109.5
С5—С10—Н10С	109.5	C2S—C3S—H3S3	109.5
H10A—C10—H10C	109.5	H3S1—C3S—H3S3	109.5
H10B—C10—H10C	109.5	H3S2—C3S—H3S3	109.5
C11A—P1—C11B	98.14 (17)	F31—P3—F32	91.37 (18)
C11A—P1—C1A	109.58 (18)	F31—P3—F36	90.86 (17)
C11B—P1—C1A	96.20 (17)	F32—P3—F36	89.35 (16)
C11A—P1—Ru1	118.14 (12)	F31—P3—F33	90.61 (17)
C11B—P1—Ru1	124.75 (14)	F32—P3—F33	178.02 (18)
C1A—P1—Ru1	107.53 (13)	F36—P3—F33	90.52 (16)
C16A—C11A—C12A	114.9 (4)	F31—P3—F35	90.16 (17)
C16A—C11A—P1	122.4 (3)	F32—P3—F35	90.29 (16)
C12A—C11A—P1	122.6 (3)	F36—P3—F35	178.93 (17)
F12A—C12A—C13A	115.9 (4)	F33—P3—F35	89.80 (17)
F12A—C12A—C11A	120.6 (4)	F31—P3—F34	179.43 (18)
C13A—C12A—C11A	123.5 (4)	F32—P3—F34	89.20 (17)
F13A—C13A—C14A	120.3 (4)	F36—P3—F34	89.24 (16)
F13A—C13A—C12A	120.5 (4)	F33—P3—F34	88.83 (16)
C14A—C13A—C12A	119.2 (4)	F35—P3—F34	89.75 (15)
F14A—C14A—C15A	119.9 (4)		