Received 25 July 2005 Accepted 29 July 2005

Online 6 August 2005

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Xian-Wen Li,^{a,b} Feng Zhi,^b Jian-Hua Shen^b and Yi-Qiao Hu^b*

^aSchool of Life Sciences, Nanjing University, Nanjing 210093, People's Republic of China, and ^bDepartment of Biochemistry, Fujian Institute of Education Euzhou 350001 Euijan People's Republic of China

Correspondence e-mail: hu_yiqiao@yahoo.com.cn

Kev indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.050 wR factor = 0.140 Data-to-parameter ratio = 13.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-Cyclopropyl-6-fluoro-7-(4-formylpiperazin-1-yl)-4-oxo-1,4-dihydroguinoline-3-carboxylic acid. Corrigendum

The crystal structure of the title compound, $C_{18}H_{18}FN_3O_4$, was published [Li et al. (2005). Acta Cryst. E61, o2235-o2236] with an error in the chemical formula and without location of the carboxyl H atom. This has now been corrected. The missing H atom was located and refined. This H atom is involved in an intramolecular O-H···O hydrogen bond with the carbonyl O atom.

Z = 2

 $\theta = 9 - 13^{\circ}$

 $D_r = 1.482 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 25

reflections

 $\mu = 0.11 \text{ mm}^{-1}$

T = 293 (2) K

Block, yellow

 $R_{int} = 0.027$

 $\theta_{\rm max} = 26.0^{\circ}$

 $h = 0 \rightarrow 10$

 $k = -11 \rightarrow 11$ $l = -12 \rightarrow 12$

3 standard reflections

+ 0.035P]

every 200 reflections

intensity decay: none

where $P = (F_0^2 + 2F_c^2)/3$

 $0.48 \times 0.21 \times 0.19 \text{ mm}$

1822 reflections with $I > 2\sigma(I)$

Experimental

Crystal data
C18H18FN3O4
$M_r = 359.35$
Triclinic, $P\overline{1}$
a = 8.414 (2) Å
b = 9.513 (2) Å
c = 10.497 (2) Å
$\alpha = 102.57 \ (3)^{\circ}$
$\beta = 96.58 \ (3)^{\circ}$
$\gamma = 97.08 \ (3)^{\circ}$
V = 805.1 (3) Å ³
Data collection

Enraf-Nonius CAD-4 diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (XCAD4; Harms & Wocadlo, 1995) $T_{\min} = 0.947, T_{\max} = 0.979$ 3379 measured reflections 3154 independent reflections

Refinement

Refinement on F^2 $w = 1/[\sigma^2({F_{\rm o}}^2) + (0.06P)^2$ $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.140$ S = 1.01 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.19 \text{ e} \text{ \AA}^{-3}$ 3154 reflections $\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$ 238 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O3−H3···O2	0.90 (1)	1.69 (2)	2.514 (3)	151 (3)

References

Harms, K. & Wocadlo, S. (1995) XCAD4. University of Marburg, Germany. Li, X.-W., Zhi, F., Shen, J.-H. & Hu, Y.-Q. (2005). Acta Cryst. E61, o2235o2236.

© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

supporting information

Acta Cryst. (2005). E61, e3 [https://doi.org/10.1107/S1600536805024426]

1-Cyclopropyl-6-fluoro-7-(4-formylpiperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid. Corrigendum

Xian-Wen Li, Feng Zhi, Jian-Hua Shen and Yi-Qiao Hu

1-Cyclopropyl-6-fluoro-7-(4-formylpiperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3- carboxylic acid

Crystal data

 $C_{18}H_{18}FN_{3}O_{4}$ $M_{r} = 359.35$ Triclinic, *P*1 Hall symbol: -P 1 a = 8.414 (2) Å b = 9.513 (2) Å c = 10.497 (2) Å a = 102.57 (3)° $\beta = 96.58$ (3)° $\gamma = 97.08$ (3)° V = 805.1 (3) Å³

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (XCAD4; Harms & Wocadlo, 1995) $T_{\min} = 0.947, T_{\max} = 0.979$ 3379 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.140$ S = 1.013154 reflections 238 parameters 1 restraint Primary atom site location: structure-invariant direct methods Z = 2 F(000) = 376 $D_x = 1.482 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 9-13^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 293 K Block, yellow $0.48 \times 0.21 \times 0.19 \text{ mm}$

3154 independent reflections 1822 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = 0 \rightarrow 10$ $k = -11 \rightarrow 11$ $I = -12 \rightarrow 12$ 3 standard reflections every 200 reflections intensity decay: none

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.06P)^2 + 0.035P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.19 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.23 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	v	7.	$U_{iso}*/U_{oa}$	
	0 52063 (18)	0 74819 (15)	-0.07309(14)		
01	0.52005(18) 0.7511(3)	1,3189(2)	0.07309(14) 0.4184(2)	0.0470(4) 0.0826(8)	
0^{1}	0.7511(5) 0.0708(2)	1.3109(2) 0.32708(18)	-0.24166(17)	0.0620(6)	
02	-0.1250(3)	0.32798(18) 0.1022(2)	-0.25234(19)	0.0431(5) 0.0545(5)	
04	-0.1230(3)	0.1022(2) 0.0351(2)	-0.06989(19)	0.0544(5)	
N1	0.1754(2) 0.7420(3)	1.0744(2)	0.00989(19)	0.0544(5) 0.0403(5)	
N2	0.7420(3) 0.5558(2)	0.8162(2)	0.30387(19) 0.20153(19)	0.0403(5)	
N3	0.5556(2) 0.1515(2)	0.3102(2) 0.38818(19)	0.20133(19) 0.16083(18)	0.0302(5)	
C1	0.1515(2) 0.7561(4)	1,2033(3)	0.10003(10) 0.4492(3)	0.0510(3)	
	0.7501 (4)	1.2055 (5)	0.5389	0.0548 (8)	
C^2	0.7711 0.7396 (3)	0.9372(3)	0.3337 0.4054(2)	0.000 0.0435(7)	
С2 H2B	0.7390 (3)	0.9572 (5)	0.5008	0.052*	
H2C	0.8322	0.8929	0.3790	0.052*	
C3	0.0322 0.5846 (3)	0.8319(3)	0.3435(2)	0.052 0.0440 (7)	
НЗА	0.5040 (5)	0.7375	0.3623	0.053*	
H3R	0.3932	0.8678	0.3822	0.053*	
C4	0.4557 0.5543 (3)	0.9592 (3)	0.1686 (3)	0.0491 (7)	
H4A	0.5545 (5)	1 0040	0.2039	0.059*	
H4R	0.5366	0.9459	0.0735	0.059*	
C5	0.3300 0.7127(3)	1.0574(3)	0.0755 0.2252(2)	0.035 0.0458 (7)	
С5 Н5А	0.8001	1.0374 (3)	0.1856	0.055*	
H5R	0.7093	1 1519	0.2051	0.055*	
C6	0.4412(3)	0.6999(2)	0.1267(2)	0.0329 (6)	
C7	0.4207(3)	0.6684(2)	-0.0128(2)	0.0321(6)	
C8	0.1207(3) 0.3098(3)	0.5589(2)	-0.0912(2)	0.0342(6)	
H8A	0.2966	0.5468	-0.1823	0.041*	
C9	0.2149(3)	0.4638(2)	-0.0344(2)	0.0318 (6)	
C10	0.0981(3)	0.3454(2)	-0.1176(2)	0.0335(6)	
C11	0.0169(3)	0.2494(2)	-0.0500(2)	0.0343 (6)	
C12	-0.1022(3)	0.1194(3)	-0.1222(3)	0.0391(6)	
C13	0.0465(3)	0.2758(2)	0.0842(2)	0.0340(6)	
H13A	-0.0094	0.2120	0.1251	0.041*	
C14	0.2387 (3)	0.4863(2)	0.1032(2)	0.0298 (5)	
C15	0.3470(3)	0.6054(2)	0.1819(2)	0.0328 (6)	
H15A	0.3561	0.6216	0.2732	0.039*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

C16	0.1684 (3)	0.4125 (3)	0.3041 (2)	0.0364 (6)	
H16A	0.1203	0.4948	0.3491	0.044*	
C17	0.1618 (4)	0.2866 (3)	0.3656 (3)	0.0519 (8)	
H17A	0.1490	0.1901	0.3079	0.062*	
H17B	0.1088	0.2922	0.4435	0.062*	
C18	0.3182 (3)	0.3848 (3)	0.3778 (3)	0.0487 (7)	
H18A	0.3599	0.4500	0.4631	0.058*	
H18B	0.4001	0.3479	0.3274	0.058*	
H3	-0.066 (3)	0.174 (3)	-0.277 (3)	0.080*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
F1	0.0499 (10)	0.0444 (9)	0.0495 (9)	-0.0030 (7)	0.0129 (7)	0.0197 (7)
O1	0.110(2)	0.0391 (12)	0.0880 (18)	0.0120 (13)	0.0026 (15)	-0.0020 (11)
O2	0.0506 (12)	0.0433 (10)	0.0369 (10)	0.0042 (9)	-0.0016 (9)	0.0053 (8)
O3	0.0563 (13)	0.0474 (12)	0.0469 (12)	-0.0068 (10)	-0.0070 (10)	-0.0012 (9)
O4	0.0480 (12)	0.0434 (11)	0.0616 (13)	-0.0125 (9)	-0.0044 (10)	0.0075 (10)
N1	0.0481 (14)	0.0320 (11)	0.0355 (12)	-0.0028 (10)	0.0015 (10)	0.0041 (9)
N2	0.0397 (13)	0.0290 (10)	0.0375 (12)	-0.0045 (9)	-0.0032 (9)	0.0128 (9)
N3	0.0324 (12)	0.0250 (10)	0.0346 (11)	-0.0003 (8)	0.0035 (9)	0.0046 (8)
C1	0.0558 (19)	0.0458 (17)	0.0520 (18)	-0.0011 (14)	0.0053 (15)	-0.0054 (14)
C2	0.0512 (17)	0.0388 (14)	0.0351 (14)	-0.0024 (13)	-0.0029 (12)	0.0074 (11)
C3	0.0490 (17)	0.0368 (14)	0.0435 (16)	-0.0042 (12)	0.0013 (13)	0.0127 (11)
C4	0.0552 (18)	0.0328 (14)	0.0544 (17)	-0.0023 (13)	-0.0128 (14)	0.0157 (12)
C5	0.0565 (18)	0.0326 (14)	0.0466 (16)	-0.0039 (13)	0.0041 (13)	0.0135 (12)
C6	0.0328 (14)	0.0262 (12)	0.0392 (14)	0.0052 (10)	0.0005 (11)	0.0085 (10)
C7	0.0351 (14)	0.0297 (12)	0.0403 (14)	0.0046 (11)	0.0058 (11)	0.0144 (11)
C8	0.0423 (15)	0.0316 (12)	0.0296 (13)	0.0092 (11)	0.0043 (11)	0.0074 (10)
C9	0.0334 (14)	0.0258 (12)	0.0359 (13)	0.0069 (10)	0.0030 (11)	0.0064 (10)
C10	0.0322 (14)	0.0293 (12)	0.0380 (15)	0.0095 (10)	0.0022 (11)	0.0049 (10)
C11	0.0296 (13)	0.0286 (12)	0.0412 (15)	0.0056 (10)	0.0005 (11)	0.0023 (11)
C12	0.0335 (15)	0.0319 (13)	0.0469 (16)	0.0051 (11)	-0.0017 (12)	0.0024 (11)
C13	0.0312 (14)	0.0258 (12)	0.0435 (15)	-0.0003 (10)	0.0040 (11)	0.0082 (10)
C14	0.0308 (13)	0.0233 (11)	0.0354 (13)	0.0056 (10)	0.0061 (10)	0.0057 (9)
C15	0.0370 (14)	0.0275 (12)	0.0330 (13)	0.0036 (10)	0.0039 (11)	0.0065 (10)
C16	0.0401 (15)	0.0322 (13)	0.0346 (13)	-0.0007 (11)	0.0058 (11)	0.0064 (10)
C17	0.0624 (19)	0.0425 (15)	0.0472 (16)	-0.0100 (14)	-0.0013 (14)	0.0176 (13)
C18	0.0450 (17)	0.0559 (17)	0.0414 (15)	0.0025 (14)	-0.0017 (13)	0.0102 (13)

Geometric parameters (Å, °)

F1—C7	1.363 (3)	С5—Н5А	0.97	
01—C1	1.216 (3)	С5—Н5В	0.97	
O2—C10	1.267 (3)	C6—C15	1.388 (3)	
O3—C12	1.328 (3)	C6—C7	1.415 (3)	
O3—H3	0.900 (10)	C7—C8	1.359 (3)	
O4—C12	1.206 (3)	C8—C9	1.406 (3)	

N1—C1	1.326 (3)	C8—H8A	0.93
N1C5	1.439 (3)	C9—C14	1.400 (3)
N1—C2	1.452 (3)	C9—C10	1.449 (3)
N2—C6	1.398 (3)	C10—C11	1.429 (3)
N2—C3	1.454 (3)	C11—C13	1.363 (3)
N2—C4	1.475 (3)	C11—C12	1.490 (3)
N3—C13	1.341 (3)	C13—H13A	0.93
N3—C14	1.398 (3)	C14—C15	1.401 (3)
N3—C16	1.650(3)	C15—H15A	0.93
C1—H1A	0.93	C16-C17	1477(3)
$C^2 - C^3$	1 525 (3)	C16-C18	1.177(3) 1.485(4)
C2—C3	0.97	C16—H16A	0.98
$C_2 = H_2C$	0.97	C10 $-110A$	1,402(4)
$C_2 = H_2 C$	0.97	C17 - C18	1.492 (4)
Сэ_нэр	0.97		0.97
С3—Н3В	0.97		0.97
C4—C5	1.508 (4)	CI8—HI8A	0.97
C4—H4A	0.97	C18—H18B	0.97
C4—H4B	0.97		
C12 O3 H3	112 (2)	C7 $C8$ $C9$	110.9(2)
C1 N1 C5	112(2) 1220(2)	C_{7} C_{8} H_{8}	119.9 (2)
C1 = N1 = C2	122.0(2) 124.2(2)	$C_1 - C_2 - H_{2A}$	120.1
CI = NI = C2	124.3(2) 112.52(10)	$C_9 = C_8 = R_8 A$	120.1
C_{2}	115.55 (19)	C14 - C9 - C8	118.1(2)
C6-N2-C3	117.8 (2)	C14—C9—C10	121.8 (2)
C6—N2—C4	117.43 (19)	C8—C9—C10	120.2 (2)
C3—N2—C4	111.2 (2)	O2—C10—C11	122.5 (2)
C13—N3—C14	119.8 (2)	O2—C10—C9	122.2 (2)
C13—N3—C16	120.2 (2)	C11—C10—C9	115.4 (2)
C14—N3—C16	119.98 (18)	C13—C11—C10	120.2 (2)
01—C1—N1	125.5 (3)	C13—C11—C12	118.1 (2)
O1—C1—H1A	117.2	C10-C11-C12	121.7 (2)
N1—C1—H1A	117.2	O4—C12—O3	121.4 (2)
N1—C2—C3	111.7 (2)	O4—C12—C11	124.3 (2)
N1—C2—H2B	109.3	O3—C12—C11	114.3 (2)
С3—С2—Н2В	109.3	N3—C13—C11	124.1 (2)
N1—C2—H2C	109.3	N3—C13—H13A	118.0
C3—C2—H2C	109.3	C11—C13—H13A	118.0
H2B—C2—H2C	107.9	N3—C14—C9	118.8 (2)
N2—C3—C2	111.0 (2)	N3—C14—C15	120.5 (2)
N2—C3—H3A	109.4	C9—C14—C15	120.7 (2)
С2—С3—НЗА	109.4	C6-C15-C14	121.6(2)
N^2 C^3 H^3B	109.4	C6-C15-H15A	119.2
C^2 — C^3 — H^3B	109.4	C14— $C15$ — $H15A$	119.2
H_{3A} C_{3} H_{3B}	102.4	N3C16C17	119.2
N2_C4_C5	110.0	$N_3 - C_{16} - C_{18}$	110.7(2)
$N_2 = C_4 = C_3$	10.4 (2)	$C_{17} C_{16} C_{18}$	60.40(19)
$\frac{1}{2} - \frac{1}{4} + \frac{1}$	107.0	$\frac{1}{-16} = \frac{116}{116}$	00.49 (18) 115 4
U_{J} U_{4} $\Pi_{4}A$	109.0	$1N3 - C10 - \Pi10A$	113.4
1N2—U4—П4D	107.0	UI/UIU	113.4

C5—C4—H4B H4A—C4—H4B	109.6 108.1	C18—C16—H16A C16—C17—C18	115.4 60.02 (17)
N1—C5—C4	109.9 (2)	С16—С17—Н17А	117.8
N1—C5—H5A	109.7	C18—C17—H17A	117.8
C4—C5—H5A	109.7	C16—C17—H17B	117.8
N1—C5—H5B	109.7	C18—C17—H17B	117.8
C4—C5—H5B	109.7	H17A—C17—H17B	114.9
H5A—C5—H5B	108.2	C16—C18—C17	59.49 (17)
C15—C6—N2	123.4 (2)	C16—C18—H18A	117.8
C15—C6—C7	116.0 (2)	C17—C18—H18A	117.8
N2—C6—C7	120.6 (2)	C16—C18—H18B	117.8
C8—C7—F1	117.5 (2)	C17—C18—H18B	117.8
C8—C7—C6	123.6 (2)	H18A—C18—H18B	115.0
F1—C7—C6	118.9 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O3—H3…O2	0.90 (1)	1.69 (2)	2.514 (3)	151 (3)