metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sian C. Davies,* Samantha E. Duff and David J. Evans

Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, England

Correspondence e-mail: sianc.davies@bbsrc.ac.uk

Key indicators

Single-crystal X-ray study T = 150 K Mean σ (C–C) = 0.005 Å Disorder in main residue R factor = 0.033 wR factor = 0.089 Data-to-parameter ratio = 21.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. [1,2-Bis(diethylphosphino)ethane]dichloronickel(II)

The neutral title complex, $[NiCl_2(C_{10}H_{24}P_2)]$ or $[NiCl_2(depe)]$, where depe is 1,2-bis(diethylphosphino)ethane, has two independent molecules in the asymmetric unit. The Ni atoms in both molecules are coordinated in a slightly distorted square-planar geometry by the two P atoms and two Cl⁻ ions, with bond dimensions as expected. The geometry of the depe ligand in one of the molecules is typical; there is disorder in the ethyl groups in the second molecule, however, leading to some slightly distorted dimensions. The two independent molecules form discrete columns parallel to the crystallographic *a* axis; these 'ordered' and 'disordered' columns alternate along the crystallographic *b* and *c* directions, with short Cl···H van der Waals contacts linking four columns.

Comment

The title compound, (I), was prepared as a starting material for the preparation of new heterometallic nickel–iron complexes, which have structural and functional properties related to those of the active site of the enzyme NiFe-hydrogenase (Smith *et al.*, 2002, 2003; Evans & Pickett, 2003). Good quality crystals of (I) were obtained, as unreacted starting material, from an attempted preparation of novel dinickel coordination complexes that have an analogy to the active site structures of certain other metalloenzymes (Duff *et al.*, 2005; Evans, 2005).

There are two independent molecules in the asymmetric unit, 1 and 2, the second being disordered (see Fig. 1). Two distinct orientations were determined for the ethyl C atoms (except for one shared terminal C) in the second molecule; relative occupancies were 83.3 (4) and 16.7 (4)%. Owing to the low scattering power of the minor disordered component, bond lengths were restrained to be effectively equivalent to those in molecule 1. Each Ni atom is slightly distorted squareplanar coordinated by the two P and two Cl⁻ ions; the bond dimensions about the Ni atoms are as expected (Table 1). The Ni atoms lie 0.0185 (4) Å from the Cl₂P₂ mean plane in molecule 1, and 0.047 (2) and -0.061 (11) Å in 2*a* and 2*b* respectively (+ and – indicate opposite sides of the plane). The geometry of the depe ligand in molecule 1 is typical, with the bridging C atoms lying -0.120 (3) and 0.246 (3) Å from

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Received 11 July 2005 Accepted 26 July 2005

Online 6 August 2005

the NiP₂ plane; in molecule 2 the equivalent distances are -0.387 (4) and 0.062 (5) Å in 2a, and 0.762 (15) and 0.839 (14) Å in 2b. The torsion angles in the major component of molecule 2 are also slightly larger than those in molecule 1 (Table 1). In the ordered molecule, the atoms lie in two intersecting planes, one formed by Cl₂NiP₂ and the bridging C atoms [designated plane 1(i)], and the second formed by P_2 and the ethyl C atoms [designated plane 1(ii)] (see Fig. 2). The largest deviation from the 1(i) NiP₂ sub-plane is 0.246 (3) Å for C2 and that from the 1(ii) P₂C111 sub-plane is -0.170 (4) Å, for C122, with an angle between the normals to the sub-planes of 88.77 $(9)^{\circ}$. The disorder in the ethyl groups of the second molecule results in some degree of loss of planarity in the equivalent planes. For the major component, the largest deviation from the 2a(i) NiP₂ sub-plane is 0.387 (4) Å for C3, while the 2a(ii) P₂C311 sub-plane shows a more marked loss of planarity, the largest deviations from the sub-plane being 0.959 (5) Å for C312 and -0.430 (6) Å for C412. The angle between the normals to the 2a(i) and 2a(ii)sub-planes is 85.01 (13)°. For the minor component, planarity is virtually completely removed, the largest distances to the 2b(i) NiP₂ sub-plane being 0.839 (14) and 0.762 (15) Å for C4b and C3b respectively. The largest distances to the 2b(ii) P_2C331 sub-plane are -1.246(5), -1.156(17)and 0.477 (23) Å for atoms C322, C442 and C332, respectively; the angle between the normals to the 2b(i) and 2a(ii) sub-planes is $71.0 (8)^{\circ}$. The major orientation of the disordered molecule is similar to that of the ordered molecule, the two being related by a pseudo-twofold screw axis on which the two Ni atoms lie; no crystallographic pseudosymmetry relates the minor disordered C atoms to those in the ordered molecule and so the pseudo-monoclinic symmetry of the crystal system is reduced to triclinic.

The two independent molecules of (I) in the crystal structure form discrete columns parallel to the crystallographic *a* direction; these 'ordered' and 'disordered' columns alternate along the crystallographic *a* and *b* axial directions (see Fig. 3). Short van der Waals contacts (Table 2), or weak hydrogen bonds, between an H atom of each bridging alkyl C atom in the ordered molecule and a Cl atom of the major component of the disordered molecule, are present; these bonds link two ordered and two disordered molecules into tetrads about a centre of symmetry. The Cl₂H₄ plane is puckered, with the H2*B* atoms lying ± 1.345 Å from the Cl4₂H1*B*₂ mean plane.

Experimental

To a solution of NiCl₂·6H₂O (13.2 g, 55 mmol) in ethanol (50 ml), under an atmosphere of dinitrogen, was added a solution of depe (5 g, 55 mmol) in ethanol (10 ml). The red–orange solution that formed immediately was stirred for 1 h. After reducing the volume *in vacuo* to approximately 30 ml, the solution was placed in a freezer overnight, during which time orange material separated out. Filtration gave the product (I), which was washed with diethyl ether then dried *in vacuo* (8.63 g, 47%). Analysis expected for $C_{10}H_{24}Cl_2NiP_2$: C 35.8, H 7.2%; found C 35.9, H 7.3%. Solution ³¹P NMR (CD₃CN; ref. phosphoric acid): 78.04 p.p.m. Crystals were obtained as recovered

Figure 1

A view of both molecules in (I), showing the disorder in the second and relative orientations. The minor disordered component is shown with dashed bonds. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted.

View showing the pseudo-twofold screw axis relating the two molecules. Atoms are represented by arbitrary spheres for clarity, and H atoms have been omitted.

Packing arrangement in (I), as viewed along the [100] vector, showing tetrads generated by weak hydrogen bonds, which are drawn as dashed lines. Atoms are drawn as arbitrary spheres for clarity, and only H atoms involved in the hydrogen bonding are shown.

metal-organic papers

starting material from an attempted reaction of $[Ni(depe)Cl_2]$ with $(NEt_4)[Fe{SCH_2CH_2}_3N}(CO)]$ in acetonitrile solvent.

Z = 4

 $D_x = 1.426 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 25

reflections $\theta = 10-11^{\circ}$ $\mu = 1.76 \text{ mm}^{-1}$ T = 150 (2) KBlock, orange $0.55 \times 0.48 \times 0.41 \text{ mm}$

 $R_{\rm int} = 0.011$

 $\theta_{\rm max} = 28.0^{\circ}$ $h = -11 \rightarrow 11$

 $\begin{array}{l} k=-18 \rightarrow 18 \\ l=0 \rightarrow 17 \end{array}$

3 standard reflections

frequency: 167 min

intensity decay: none

Crystal data

$C_{10}H_{24}Cl_2NiP_2$
$M_r = 335.84$
Triclinic, $P\overline{1}$
a = 8.947 (2) Å
b = 14.082 (8) Å
c = 13.604 (2) Å
$\alpha = 91.51 \ (2)^{\circ}$
$\beta = 98.18 \ (2)^{\circ}$
$\gamma = 112.27 \ (2)^{\circ}$
V = 1564.0 (10) Å ³
Data collection
Enraf-Nonius CAD-4
diffractometer
ω/θ scans
Absorption correction: ψ scan
(EMPABS; Sheldrick et al., 1977)
$T_{\min} = 0.395, \ T_{\max} = 0.486$
7878 measured reflections
7515 independent reflections
5564 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.034P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.033$	+ 0.317P]
$wR(F^2) = 0.089$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.07	$(\Delta/\sigma)_{\rm max} = 0.001$
7514 reflections	$\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$
358 parameters	$\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Ni1-Cl1	2.2073 (12)	Ni2-Cl3	2.2035 (18)
Ni1-Cl2	2.2012 (8)	Ni2-Cl4	2.214 (2)
Ni1-P1	2.1372 (8)	Ni2-P3	2.139 (2)
Ni1-P2	2.1376 (12)	Ni2-P4	2.140 (2)
P1-C1	1.833 (3)	P3-C3	1.839 (4)
P1-C111	1.823 (3)	P3-C311	1.840 (5)
P1-C121	1.808 (3)	P3-C321	1.818 (4)
C1-C2	1.507 (4)	C3-C4	1.476 (6)
C2-P2	1.829 (3)	C4-P4	1.837 (4)
P2-C211	1.822 (3)	P4-C411	1.808 (6)
P2-C221	1.822 (3)	P4-C421	1.820 (5)
Cl2-Ni1-Cl1	95.24 (4)	Cl3-Ni2-Cl4	96.68 (11)
P1-Ni1-Cl1	87.71 (4)	P3-Ni2-Cl3	89.43 (8)
P2-Ni1-Cl1	174.57 (3)	P4-Ni2-Cl3	176.09 (13)
P1-Ni1-Cl2	174.44 (3)	P3-Ni2-Cl4	173.37 (12)
P2-Ni1-Cl2	89.51 (4)	P4-Ni2-Cl4	86.30 (12)
P1-Ni1-P2	87.78 (4)	P3-Ni2-P4	87.49 (10)
C1-P1-Ni1	111.96 (10)	C3-P3-Ni2	111.43 (14)
C2-C1-P1	111.48 (19)	C4-C3-P3	108.9 (2)
C1-C2-P2	112.39 (19)	C3-C4-P4	114.0 (3)
C2-P2-Ni1	111.28 (10)	C4-P4-Ni2	109.96 (18)
Ni1-P1-C1-C2	18.2 (3)	C3-C4-P4-Ni2	21.1 (4)
P1-C1-C2-P2	-24.5(3)	Ni2 <i>B</i> -P3 <i>B</i> -C3 <i>B</i> -C4 <i>B</i>	-18.4 (14)
C1-C2-P2-Ni1	21.8 (3)	P3B-C3B-C4B-P4B	-5.2 (14)
Ni2-P3-C3-C4	28.6 (4)	C3B-C4B-P4B-Ni2B	27.5 (12)
P3-C3-C4-P4	-30.5 (5)		

Table 2

Table of weak hydrogen-bond interactions (Å, °).

	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1 - H1B \cdots Cl4^{i}$ $C2 - H2B \cdots Cl4^{ii}$	0.99 0.99	2.784 (3) 2.793 (4)	3.716 (4) 3.683 (5)	157.2 (2) 149.8 (2)
$H1B^{iii} \cdots Cl4 \cdots H2B^{ii}$	-	-	-	77.56 (9)

Symmetry codes: (i) x, y - 1, z; (ii) 1 - x, 1 - y, -z; (iii) x, 1 + y, z.

The reflection ($\overline{120}$) was found to be unreliable and was not used in the final refinement cycles. In the minor disordered molecule, with an occupancy factor of 0.167 (4), bond lengths were restrained to be effectively equivalent to those in the ordered molecule; the C atoms of the minor disorder component were refined isotropically. H atoms were included in idealized positions and set to ride on their parent atoms, with C—H distances of 0.99 and 0.98 A for ethyl and methyl C atoms, respectively; isotropic displacement parameters were set to be 1.2 and 1.5 times $U_{eq}/U_{iso}(C)$, respectively.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1992); cell refinement: *CAD-4 EXPRESS*; data reduction: *CAD4* (Hursthouse, 1976); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

The authors thank the Biotechnology and Biological Sciences Research Council, UK, and the John Innes Foundation (SED) for financial support.

References

- Duff, S. E., Barclay, J. E., Davies, S. C. & Evans, D. J. (2005). Inorg. Chem. Commun. 8, 170–173.
- Enraf-Nonius (1992). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Evans, D. J. (2005). Coord. Chem. Rev. In the press.
- Evans, D. J. & Pickett, C. J. (2003). Chem. Soc. Rev. 32, 268-275.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hursthouse, M. B. (1976). CAD4. Queen Mary College, University of London, England.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M., Orpen, A. G., Reichert, B. E. & Raithby, P. R. (1977). Fourth European Crystallographic Meeting, Oxford, Abstracts, p. 147.
- Smith, M. C., Barclay, J. E., Cramer, S. P., Davies, S. C., Gu, W.-W., Hughes, D. L., Longhurst, S. & Evans, D. J. (2002). J. Chem. Soc. Dalton Trans. pp. 2641–2647.
- Smith, M. C., Barclay, J. E., Davies, S. C., Hughes, D. L. & Evans, D. J. (2003). Dalton Trans. pp. 4147–4151.

supporting information

Acta Cryst. (2005). E61, m1674-m1676 [https://doi.org/10.1107/S160053680502386X]

[1,2-Bis(diethylphosphino)ethane]dichloronickel(II)

Sian C. Davies, Samantha E. Duff and David J. Evans

[1,2-bis(diethylphosphino)ethane]dichloronickel(II)

Crystal data

 $C_{10}H_{24}Cl_2NiP_2$ $M_r = 335.84$ Triclinic, *P*I Hall symbol: -P 1 a = 8.947 (2) Å b = 14.082 (8) Å c = 13.604 (2) Å $a = 91.51 (2)^{\circ}$ $\beta = 98.18 (2)^{\circ}$ $\gamma = 112.27 (2)^{\circ}$ $V = 1564.0 (10) \text{ Å}^3$

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator scintillation counter; ω/θ scans Absorption correction: ψ scan (EMPABS; Sheldrick et al., 1977) $T_{\min} = 0.395$, $T_{\max} = 0.486$ 7878 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.089$ S = 1.077514 reflections 358 parameters 62 restraints Primary atom site location: structure-invariant direct methods Z = 4 F(000) = 704 $D_x = 1.426 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71069 \text{ Å}$ Cell parameters from 25 reflections $\theta = 10-11^\circ$ $\mu = 1.76 \text{ mm}^{-1}$ T = 150 KBlock, orange $0.55 \times 0.48 \times 0.41 \text{ mm}$

7515 independent reflections 5564 reflections with $I > 2\sigma(I)$ $R_{int} = 0.011$ $\theta_{max} = 28.0^{\circ}, \theta_{min} = 1.5^{\circ}$ $h = -11 \rightarrow 11$ $k = -18 \rightarrow 18$ $l = 0 \rightarrow 17$ 3 standard reflections every 167 min intensity decay: none

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.034P)^2 + 0.317P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.34$ e Å⁻³ $\Delta\rho_{min} = -0.37$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Cell parameters were refined and the structure solved in space group C-1 (equivalent to No. 2; angles closest to 90°) with subsequent cell reduction using Delauney reduction prior to final cycles of refinement (Delauney, 1933). Data were corrected using BAYES (French and Wilson, 1978) to eliminate negative intensities prior to structure solution. The reflection (-1 2 0) was found to be unreliable and was not used in the final refinement cycles. The minor disordered component was restrained to have bond lengths as in the ordered molecule using the instruction SADI. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. Delauney, B. N. (1933). *Z.* Kristallogr. 84, 109–149.

French, S. & Wilson, K. (1978). Acta Cryst. A34, 517-525. BAYES program to eliminate negative intensities.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ni1	0.42110 (3)	0.23592 (2)	0.27269 (2)	0.03919 (8)	
C11	0.61161 (8)	0.37505 (5)	0.35782 (5)	0.06274 (17)	
Cl2	0.21712 (8)	0.25060 (6)	0.33620 (5)	0.06474 (18)	
P1	0.60665 (8)	0.22224 (5)	0.19714 (5)	0.05002 (15)	
C111	0.6740 (4)	0.3266 (2)	0.1167 (2)	0.0707 (8)	
H11A	0.7458	0.3908	0.1583	0.085*	
H11B	0.7396	0.3104	0.0710	0.085*	
C112	0.5351 (4)	0.3444 (3)	0.0563 (3)	0.0854 (10)	
H11C	0.5784	0.4062	0.0208	0.128*	
H11D	0.4636	0.3539	0.1005	0.128*	
H11E	0.4724	0.2848	0.0080	0.128*	
C121	0.7959 (3)	0.2296 (2)	0.2712 (3)	0.0726 (8)	
H12A	0.8658	0.2176	0.2260	0.087*	
H12B	0.8544	0.3002	0.3042	0.087*	
C122	0.7756 (4)	0.1541 (3)	0.3499 (3)	0.0971 (12)	
H12C	0.8832	0.1648	0.3879	0.146*	
H12D	0.7243	0.0836	0.3179	0.146*	
H12E	0.7061	0.1648	0.3950	0.146*	
C1	0.5313 (4)	0.1019 (2)	0.1163 (2)	0.0694 (8)	
H1A	0.5750	0.1157	0.0529	0.083*	
H1B	0.5718	0.0523	0.1492	0.083*	
C2	0.3470 (4)	0.0551 (2)	0.0943 (2)	0.0648 (7)	
H2A	0.3093	-0.0209	0.0890	0.078*	
H2B	0.3096	0.0754	0.0292	0.078*	
P2	0.25418 (8)	0.09540 (5)	0.19029 (5)	0.04841 (15)	
C211	0.0596 (3)	0.0929 (2)	0.1258 (2)	0.0725 (8)	
H21A	-0.0007	0.0250	0.0875	0.087*	
H21B	-0.0064	0.0993	0.1763	0.087*	
C212	0.0732 (5)	0.1751 (3)	0.0564 (3)	0.0990 (13)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H21C	-0.0363	0 1658	0.0225	0 148*	
H21D	0.0305	0.1706	0.0225	0.148*	
H21E	0.1246	0.2428	0.0000	0.148*	
C221	0.1240 0.1806 (4)	-0.0006(2)	0.0743	0.146 0.0762 (0)	
U221	0.1390 (4)	0.0090 (2)	0.2705 (2)	0.0702 (9)	
1122A	0.1245	0.0001	0.3103	0.091*	
П22Б С222	0.1175 0.2291 (5)	-0.0734	0.2203	0.091°	
	0.3281(3)	-0.0294 (3)	0.3308 (3)	0.0991 (12)	
H22C	0.2835	-0.0857	0.3720	0.149*	
H22D	0.4002	0.0331	0.3/32	0.149*	
H22E	0.3906	-0.0483	0.2858	0.149*	0.000 (1)
N12	0.45422 (15)	0.74390 (13)	0.21859 (15)	0.0431 (2)	0.833 (4)
CI3	0.2401 (3)	0.7574 (2)	0.12745 (18)	0.0679 (4)	0.833 (4)
Cl4	0.6425 (3)	0.8765 (2)	0.1648 (3)	0.0672 (6)	0.833 (4)
P3	0.2928 (2)	0.61808 (13)	0.28562 (12)	0.0548 (4)	0.833 (4)
C311	0.2006 (5)	0.6705 (3)	0.3745 (3)	0.0739 (11)	0.833 (4)
H31A	0.2890	0.7151	0.4276	0.089*	0.833 (4)
H31B	0.1508	0.7146	0.3392	0.089*	0.833 (4)
C312	0.0710 (5)	0.5910 (4)	0.4231 (4)	0.1002 (17)	0.833 (4)
H31C	0.0305	0.6262	0.4696	0.150*	0.833 (4)
H31D	0.1188	0.5474	0.4595	0.150*	0.833 (4)
H31E	-0.0200	0.5482	0.3717	0.150*	0.833 (4)
C321	0.1250 (5)	0.5178 (3)	0.2046 (3)	0.0782 (12)	0.833 (4)
H32A	0.0731	0.4606	0.2451	0.094*	0.833 (4)
H32B	0.0419	0.5459	0.1800	0.094*	0.833 (4)
C322	0.1689 (5)	0.4746 (3)	0.1168 (4)	0.1172 (15)	
H32C	0.0698	0.4226	0.0774	0.176*	0.833 (4)
H32D	0.2462	0.4426	0.1399	0.176*	0.833 (4)
H32E	0.2195	0.5301	0.0754	0.176*	0.833 (4)
H32F	0.1409	0.4079	0.0795	0.176*	0.167 (4)
H32G	0.2344	0.5300	0.0800	0.176*	0.167 (4)
Н32Н	0.0682	0.4839	0.1252	0.176*	0.167 (4)
C3	0.4052 (4)	0.5516 (3)	0.3599 (4)	0.0696 (11)	0.833 (4)
НЗА	0.3491	0.5229	0.4165	0.083*	0.833 (4)
H3B	0.4087	0.4941	0.3182	0.083*	0.833(4)
C4	0.5732 (6)	0.6260 (3)	0.3976 (4)	0.0765 (15)	0.833(4)
H4A	0.6470	0.5882	0 4069	0.092*	0.833(4)
H4R	0.5751	0.6579	0.4637	0.092*	0.833(4)
P4	0.6528 (3)	0.72846 (19)	0.31533(19)	0.052 0.0547 (5)	0.033(4)
C411	0.7860 (6)	0.72040(1)) 0.8421(4)	0.3958(3)	0.0947(3)	0.033(4)
H41A	0.7600 (0)	0.8232	0.3758 (3)	0.115*	0.033(4)
	0.8546	0.8232	0.3553	0.115*	0.033(4)
C412	0.6040 (0)	0.8932	0.3333	0.113	0.033(4)
U412	0.0940 (9)	0.0903 (4)	0.4494 (4)	0.122(2)	0.033(4)
H4IC	0.//1/	0.9519	0.4912	0.183*	0.833(4)
	0.0280	0.0411	0.4914	0.103*	0.833(4)
H41E	0.0214	0.9102	0.400/	0.103*	0.833(4)
U421	0.7981 (6)	0.7041 (5)	0.24/8 (4)	0.1023 (17)	0.833(4)
H42A	0.8514	0.7657	0.2128	0.123*	0.833 (4)
H42B	0.8843	0.6961	0.2971	0.123*	0.833 (4)

C422	0.7303 (8)	0.6131 (5)	0.1742 (4)	0.118 (2)	0.833 (4)
H42C	0.8181	0.6081	0.1415	0.178*	0.833 (4)
H42D	0.6458	0.6202	0.1241	0.178*	0.833 (4)
H42E	0.6822	0.5508	0.2081	0.178*	0.833 (4)
Ni2B	0.4425 (9)	0.7305 (7)	0.2314 (8)	0.0565 (19)	0.167 (4)
Cl3B	0.2129 (15)	0.7365 (13)	0.1488 (11)	0.088 (4)	0.167 (4)
Cl4B	0.5889 (14)	0.8687 (11)	0.1619 (14)	0.064 (3)	0.167 (4)
P3B	0.3093 (11)	0.5943 (6)	0.2923 (6)	0.075 (3)	0.167 (4)
C331	0.1133 (13)	0.5851 (12)	0.3207 (12)	0.095 (7)*	0.167 (4)
H33A	0.0535	0.6045	0.2629	0.115*	0.167 (4)
H33B	0.0481	0.5127	0.3311	0.115*	0.167 (4)
C332	0.128 (2)	0.6521 (18)	0.4104 (15)	0.084 (7)*	0.167 (4)
H33C	0.0202	0.6504	0.4180	0.127*	0.167 (4)
H33D	0.2014	0.7229	0.4032	0.127*	0.167 (4)
H33E	0.1738	0.6273	0.4694	0.127*	0.167 (4)
C341	0.262 (2)	0.4773 (8)	0.2135 (8)	0.121 (10)*	0.167 (4)
H34A	0.3656	0.4708	0.2044	0.146*	0.167 (4)
H34B	0.1991	0.4174	0.2477	0.146*	0.167 (4)
C3B	0.4165 (16)	0.5717 (12)	0.4098 (9)	0.18 (2)*	0.167 (4)
H3BA	0.3710	0.5896	0.4665	0.215*	0.167 (4)
H3BB	0.3979	0.4978	0.4095	0.215*	0.167 (4)
C4B	0.5926 (14)	0.6335 (13)	0.4230 (8)	0.043 (5)*	0.167 (4)
H4B1	0.6544	0.5883	0.4343	0.051*	0.167 (4)
H4B2	0.6253	0.6843	0.4818	0.051*	0.167 (4)
P4B	0.6389 (13)	0.7000 (7)	0.3113 (8)	0.049 (2)	0.167 (4)
C431	0.8232 (14)	0.8138 (10)	0.3518 (13)	0.118 (11)*	0.167 (4)
H43A	0.9149	0.7919	0.3729	0.142*	0.167 (4)
H43B	0.8493	0.8552	0.2943	0.142*	0.167 (4)
C432	0.813 (3)	0.8792 (15)	0.4337 (17)	0.092 (8)*	0.167 (4)
H43C	0.9231	0.9275	0.4631	0.138*	0.167 (4)
H43D	0.7616	0.8362	0.4847	0.138*	0.167 (4)
H43E	0.7468	0.9179	0.4083	0.138*	0.167 (4)
C441	0.7098 (15)	0.6201 (9)	0.2393 (9)	0.046 (3)*	0.167 (4)
H44A	0.7836	0.5971	0.2848	0.056*	0.167 (4)
H44B	0.6146	0.5580	0.2085	0.056*	0.167 (4)
C442	0.798 (2)	0.6744 (12)	0.1598 (11)	0.055 (4)*	0.167 (4)
H44C	0.8351	0.6283	0.1241	0.083*	0.167 (4)
H44D	0.8926	0.7358	0.1898	0.083*	0.167 (4)
H44E	0.7240	0.6949	0.1130	0.083*	0.167 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.03773 (15)	0.03539 (15)	0.04404 (16)	0.01446 (11)	0.00512 (11)	0.00025 (11)
Cl1	0.0531 (4)	0.0484 (3)	0.0756 (4)	0.0135 (3)	-0.0035 (3)	-0.0140 (3)
C12	0.0486 (3)	0.0822 (5)	0.0652 (4)	0.0277 (3)	0.0113 (3)	-0.0117 (3)
P1	0.0442 (3)	0.0471 (3)	0.0625 (4)	0.0198 (3)	0.0148 (3)	0.0042 (3)
C111	0.0690 (18)	0.0661 (18)	0.0755 (19)	0.0176 (15)	0.0295 (15)	0.0151 (15)

Acta Cryst. (2005). E61, m1674-m1676

supporting information

C112	0.099 (3)	0.078 (2)	0.078 (2)	0.032 (2)	0.0142 (19)	0.0235 (17)
C121	0.0463 (15)	0.079 (2)	0.100 (2)	0.0314 (15)	0.0149 (15)	0.0117 (17)
C122	0.069 (2)	0.109 (3)	0.122 (3)	0.044 (2)	0.009 (2)	0.041 (2)
C1	0.0761 (19)	0.0619 (17)	0.0802 (19)	0.0347 (15)	0.0240 (16)	-0.0054 (14)
C2	0.0764 (19)	0.0510 (15)	0.0622 (16)	0.0184 (14)	0.0169 (14)	-0.0109 (12)
P2	0.0480 (3)	0.0389 (3)	0.0506 (3)	0.0085 (3)	0.0087 (3)	-0.0017 (2)
C211	0.0493 (15)	0.074 (2)	0.0771 (19)	0.0116 (14)	-0.0052 (14)	-0.0175 (16)
C212	0.094 (3)	0.085 (2)	0.105 (3)	0.040 (2)	-0.036 (2)	-0.005 (2)
C221	0.085 (2)	0.0503 (16)	0.0769 (19)	0.0035 (15)	0.0248 (17)	0.0087 (14)
C222	0.136 (3)	0.066 (2)	0.100 (3)	0.039 (2)	0.029 (3)	0.0286 (19)
Ni2	0.0508 (4)	0.0379 (4)	0.0446 (6)	0.0214 (2)	0.0071 (3)	0.0097 (3)
C13	0.0777 (7)	0.0737 (9)	0.0632 (11)	0.0458 (7)	-0.0028 (7)	0.0145 (8)
Cl4	0.0763 (14)	0.0525 (6)	0.0682 (7)	0.0149 (9)	0.0237 (11)	0.0176 (5)
P3	0.0464 (6)	0.0464 (6)	0.0675 (7)	0.0153 (5)	0.0015 (4)	0.0180 (5)
C311	0.058 (2)	0.086 (3)	0.079 (2)	0.0261 (19)	0.0196 (19)	0.024 (2)
C312	0.062 (2)	0.133 (4)	0.097 (3)	0.022 (3)	0.025 (2)	0.049 (3)
C321	0.059 (2)	0.059 (2)	0.097 (3)	0.0050 (17)	0.000 (2)	0.012 (2)
C322	0.111 (3)	0.075 (3)	0.142 (4)	0.015 (2)	0.014 (3)	-0.023 (3)
C3	0.068 (2)	0.0472 (18)	0.095 (3)	0.0248 (16)	0.0056 (19)	0.0297 (19)
C4	0.095 (3)	0.061 (2)	0.061 (2)	0.030 (2)	-0.026 (2)	0.014 (2)
P4	0.0519 (7)	0.0549 (11)	0.0569 (7)	0.0223 (7)	0.0035 (5)	0.0053 (6)
C411	0.091 (3)	0.091 (3)	0.061 (3)	-0.006 (3)	-0.008 (2)	0.008 (3)
C412	0.206 (7)	0.081 (3)	0.071 (3)	0.057 (4)	-0.006 (3)	-0.006 (2)
C421	0.080 (3)	0.141 (5)	0.109 (4)	0.068 (3)	0.017 (3)	0.008 (3)
C422	0.150 (5)	0.125 (5)	0.115 (4)	0.099 (5)	0.006 (4)	-0.020 (4)
Ni2B	0.097 (4)	0.045 (3)	0.039 (2)	0.039 (2)	0.0112 (18)	0.0162 (16)
Cl3B	0.113 (7)	0.112 (9)	0.063 (5)	0.072 (7)	0.003 (4)	0.037 (4)
Cl4B	0.075 (7)	0.049 (4)	0.079 (4)	0.030 (5)	0.026 (6)	0.014 (3)
P3B	0.086 (5)	0.077 (6)	0.079 (4)	0.043 (4)	0.031 (4)	0.043 (4)
P4B	0.043 (3)	0.051 (5)	0.050 (3)	0.017 (3)	-0.002 (2)	-0.001 (3)

Geometric parameters (Å, °)

Ni1—Cl1	2.2073 (12)	C322—H32F	0.980
Ni1—Cl2	2.2012 (8)	C322—H32G	0.980
Nil—P1	2.1372 (8)	С322—Н32Н	0.980
Nil—P2	2.1376 (12)	C3—C4	1.476 (6)
P1—C1	1.833 (3)	С3—НЗА	0.990
P1—C111	1.823 (3)	С3—Н3В	0.990
P1-C121	1.808 (3)	C4—P4	1.837 (4)
C111—C112	1.497 (4)	C4—H4A	0.990
C111—H11A	0.990	C4—H4B	0.990
C111—H11B	0.990	P4—C411	1.808 (6)
C112—H11C	0.980	P4—C421	1.820 (5)
C112—H11D	0.980	C411—C412	1.499 (8)
C112—H11E	0.980	C411—H41A	0.990
C121—C122	1.510 (4)	C411—H41B	0.990
C121—H12A	0.990	C412—H41C	0.980

C121—H12B	0.990	C412—H41D	0.980
C122—H12C	0.980	C412—H41E	0.980
C122—H12D	0.980	C421—C422	1.477 (7)
C122—H12E	0.980	C421—H42A	0.990
C1—C2	1.507 (4)	C421—H42B	0.990
C1—H1A	0.990	C422—H42C	0.980
C1—H1B	0.990	C422—H42D	0.980
C2—P2	1.829 (3)	C422—H42E	0.980
C2—H2A	0.990	Ni2B—Cl3B	2.230 (9)
C2—H2B	0.990	Ni2B—Cl4B	2.217 (9)
P2—C211	1.822 (3)	Ni2B—P3B	2.102 (8)
P2—C221	1.822 (3)	Ni2B—P4B	2.123 (8)
$C_{211} - C_{212}$	1 494 (5)	P3B-C3B	1 843 (8)
C211—H21A	0.990	P3B-C331	1 806 (8)
C211—H21B	0.990	P3B-C341	1 815 (8)
C212—H21C	0.980	$C_{331} - C_{332}$	1.612(0) 1 481(10)
C212—H21D	0.980	C331—H33A	0.990
C212—H21F	0.980	C331—H33B	0.990
$C_{212} = C_{222}$	1 508 (5)	C332—H33C	0.990
C221 C222	0.990	C332_H33D	0.980
C221 H22R	0.990	C332—H33E	0.980
C222 H22C	0.990	C341—H34A	0.990
C222 H22D	0.980	C341—H34B	0.990
C222 H22B	0.980	C3B_C4B	1.465(11)
Ni2	2 2035 (18)	C3B_H3BA	0.990
Ni2-Cl3	2.2055(10)	C3B_H3BB	0.990
Ni2_P3	2.214(2) 2 139(2)	$C4B_P4B$	1 822 (9)
Ni2—P4	2.139(2) 2 140(2)	C4B—H4B1	0.990
P3C3	1,839(4)	C4B—H4B2	0.990
P3C311	1.840 (5)	P4B-C431	1 812 (8)
P3C321	1.818(4)	P4B - C441	1.012(0) 1.812(8)
$C_{311} - C_{312}$	1.520 (5)	$C_{431} - C_{432}$	1.012(0) 1.463(10)
C311—H31A	0.990	C431 - H43A	0.990
C311_H31B	0.990	C431_H43B	0.990
C312—H31C	0.990	C432 - H43C	0.990
C312_H31D	0.980	C432 H43D	0.980
C312—H31E	0.980	C432—H43E	0.980
$C_{321} - C_{322}$	1 493 (6)	C441 - C442	1.485(10)
C321—C322	0.990	C441 - H444	0.990
C321—H32R	0.990	C441 - H44B	0.990
$C_{322} = C_{341}$	1.445(10)	C442 - H44C	0.990
C322—C341 C322—H32C	0.980	C442 - H44D	0.980
C322_H32D	0.980	C442_H44E	0.980
C322—H32D	0.980		0.980
C322—1132L	0.200		
Cl2—Ni1—Cl1	95 24 (4)	H32FH32G	109 5
P1_Ni1_Cl1	87 71 (4)	C341—C322—H32H	109.5
P2Ni1C11	174 57 (3)	С321—С322—Н32Н	49.4
	1, 1,0, (0)		1211

P1—Ni1—Cl2	174.44 (3)	Н32С—С322—Н32Н	66.3
P2—Ni1—Cl2	89.51 (4)	H32D—C322—H32H	146.9
P1—Ni1—P2	87.78 (4)	Н32Е—С322—Н32Н	102.4
C1—P1—Ni1	111.96 (10)	H32F—C322—H32H	109.5
C111—P1—Ni1	110.18 (11)	H32G—C322—H32H	109.5
C121—P1—Ni1	118.32 (11)	C4—C3—P3	108.9 (2)
C111—P1—C1	106.46 (15)	РЗ—СЗ—НЗА	109.9
C121—P1—C1	105.75 (15)	P3—C3—H3B	109.9
C121—P1—C111	103.24 (14)	С4—С3—Н3А	109.9
C112—C111—P1	113.1.(2)	C4—C3—H3B	109.9
C112—C111—H11A	109.0	H_{3A} C_{3} H_{3B}	108.3
P1H11A	109.0	$C_3 - C_4 - P_4$	114.0(3)
	100.0	PA = CA = HAA	108.8
	109.0	$P_4 = C_4 = H_4 P_4$	108.8
	107.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108.8
HIIA—CIII—HIIB	107.8	$C_3 - C_4 - H_4 A$	108.8
CIII—CII2—HIIC	109.5	C3—C4—H4B	108.8
CIII—CII2—HIID	109.5	H4A—C4—H4B	107.7
H11C—C112—H11D	109.5	C4—P4—N12	109.96 (18)
C111—C112—H11E	109.5	C411—P4—Ni2	115.8 (2)
H11C—C112—H11E	109.5	C421—P4—Ni2	112.8 (2)
H11D—C112—H11E	109.5	C411—P4—C4	106.3 (2)
C122—C121—P1	114.8 (2)	C421—P4—C4	110.4 (3)
C122—C121—H12A	108.6	C411—P4—C421	101.1 (3)
P1-C121-H12A	108.6	C412—C411—P4	112.9 (4)
C122—C121—H12B	108.6	P4—C411—H41A	109.0
P1—C121—H12B	108.6	P4—C411—H41B	109.0
H12A—C121—H12B	107.6	C412—C411—H41A	109.0
C121—C122—H12C	109.5	C412—C411—H41B	109.0
C121—C122—H12D	109.5	H41A—C411—H41B	107.8
H12C—C122—H12D	109.5	C411—C412—H41C	109.5
C121—C122—H12E	109.5	C411—C412—H41D	109.5
H12C-C122-H12E	109.5	H41C—C412—H41D	109 5
H12D—C122—H12E	109.5	C411— $C412$ — $H41F$	109.5
C2_C1_P1	111 48 (19)	H41C - C412 - H41E	109.5
$P_1 = C_1 = H_1 \Delta$	100.3	H41D-C412-H41E	109.5
$P_1 = C_1 = H_1 R$	100.3	$C_{422} = C_{421} = P_4$	109.3
$\Gamma = C = \Pi D$	109.5	$C_{422} - C_{421} - 14$	10.3 (4)
$C_2 = C_1 = HIA$	109.5	P4 = C421 = H42A	108.2
	109.5	$P4 - C421 - \Pi42D$	108.2
HIA—CI—HIB	108.0	C422—C421—H42A	108.2
C1 = C2 = P2	112.39 (19)	C422—C421—H42B	108.2
P2—C2—H2A	109.1	H42A—C421—H42B	107.4
P2—C2—H2B	109.1	C421—C422—H42C	109.5
C1—C2—H2A	109.1	C421—C422—H42D	109.5
C1—C2—H2B	109.1	H42C—C422—H42D	109.5
H2A—C2—H2B	107.9	C421—C422—H42E	109.5
C2—P2—Ni1	111.28 (10)	H42C—C422—H42E	109.5
C211—P2—Ni1	117.82 (11)	H42D—C422—H42E	109.5
C221—P2—Ni1	111.85 (11)	Cl4B—Ni2B—Cl3B	90.0 (5)

C211—P2—C2	105.28 (15)	P3B—Ni2B—Cl4B	176.6 (7)
C221—P2—C2	107.32 (15)	P4B—Ni2B—Cl4B	98.3 (5)
C211—P2—C221	102.42 (16)	P3B—Ni2B—Cl3B	91.3 (4)
C212—C211—P2	114.9 (2)	P4B—Ni2B—Cl3B	171.0 (6)
P2-C211-H21A	108.5	P3B—Ni2B—P4B	80.3 (4)
P2-C211-H21B	108.5	C3B—P3B—Ni2B	114 2 (5)
C212—C211—H21A	108.5	C_{331} P3B N_{12B}	1153(5)
$C_{212} = C_{211} = H_{21B}$	108.5	C_{341} P3B Ni2B	112.5(5)
H_{21A} C_{211} H_{21B}	107.5	C_{331} P_{3B} C_{3B}	1045(5)
C211_C212_H21C	109.5	C_{341} P3B C_{3B}	107.8(6)
$C_{211} = C_{212} = H_{210}$	109.5	$C_{341} = 13D = C_{341}$	102.0(0)
$H_{210} = C_{212} = H_{210}$	109.5	$C_{331} = 1.3D = C_{341}$	104.2(0) 1128(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	$C_{332} - C_{331} - I_{333}$	112.8 (8)
$\begin{array}{c} C_{211} - C_{212} - H_{21E} \\ H_{21C} - C_{212} - H_{21E} \end{array}$	109.5	P3D-C331-H33A	109.0
$H_{21}C = C_{212} = H_{21}E$	109.5	ГЭБ—СЭЭ1—ПЭЭБ	109.0
H_{21D} C_{212} H_{21E}	109.5	C332—C331—H33A	109.0
C222—C221—P2	114.5 (2)	C332—C331—H33B	109.0
P2—C221—H22A	108.6	H33A—C331—H33B	107.8
P2—C221—H22B	108.6	C331—C332—H33C	109.5
C222—C221—H22A	108.6	C331—C332—H33D	109.5
С222—С221—Н22В	108.6	H33C—C332—H33D	109.5
H22A—C221—H22B	107.6	С331—С332—Н33Е	109.5
C221—C222—H22C	109.5	H33C—C332—H33E	109.5
C221—C222—H22D	109.5	H33D—C332—H33E	109.5
H22C—C222—H22D	109.5	C322—C341—P3B	113.3 (7)
C221—C222—H22E	109.5	P3B-C341-H34A	108.9
H22C—C222—H22E	109.5	P3B-C341-H34B	108.9
H22D—C222—H22E	109.5	С322—С341—Н34А	108.9
Cl3—Ni2—Cl4	96.68 (11)	С322—С341—Н34В	108.9
P3—Ni2—Cl3	89.43 (8)	H34A—C341—H34B	107.7
P4—Ni2—Cl3	176.09 (13)	C4B—C3B—P3B	111.2 (6)
P3—Ni2—Cl4	173.37 (12)	РЗВ—СЗВ—НЗВА	109.4
P4—Ni2—Cl4	86.30 (12)	P3B—C3B—H3BB	109.4
P3—Ni2—P4	87.49 (10)	С4В—С3В—Н3ВА	109.4
C3—P3—Ni2	111.43 (14)	C4B—C3B—H3BB	109.4
C311—P3—Ni2	108.22 (15)	H3BA—C3B—H3BB	108.0
C321 - P3 - Ni2	118.19 (16)	C3B—C4B—P4B	108.8 (6)
$C_3 - P_3 - C_{311}$	105.7 (2)	P4B—C4B—H4B1	109.9
$C_{321} = P_{3} = C_{3}$	105.8(2)	P4B - C4B - H4B2	109.9
$C_{321} = P_3 = C_{311}$	106.7(2)	C3B-C4B-H4B1	109.9
C_{312} C_{311} P_{3}	115.6(3)	C3B - C4B - H4B2	109.9
P3H31A	108.4	$H4B1_C4B_H4B2$	109.9
P3H31B	108.4	$C4B_P4B_Ni2B$	114.6 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108.4	$C_{421} = P_{42} = N_{12} = N_{12} = 0$	114.0(0) 114.2(5)
C_{212} C_{211} H_{21P}	108.4	C441 D4D Ni2D	114.2(3)
$U_{21A} = C_{211} = U_{21D}$	100.4	$C_{421} = DAB = CAB$	115.0(5) 105.5(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.3 116.1 (2)	$C_{4J1} = C_{4D} = C_{4D}$	103.3(0) 104.4(6)
$C_{322} - C_{321} - F_{3}$	110.1 (5)	$C_{441} = F_{4D} = C_{4D}$	104.4 (0)
r5—U521—H52A	108.3	C441 - P4B - C431	105.1 (6)
P3—C321—H32B	108.3	C432—C431—P4B	114.6 (8)

C322—C321—H32A	108.3	P4B—C431—H43A	108.6
C322—C321—H32B	108.3	P4B-C431-H43B	108.6
H32A—C321—H32B	107.4	C432—C431—H43A	108.6
C341—C322—C321	62.6 (6)	C432—C431—H43B	108.6
C341—C322—H32C	133.3	H43A—C431—H43B	107.6
$C_{321} - C_{322} - H_{32C}$	109.5	C431 - C432 - H43C	109.5
$C_{341} = C_{322} = H_{32D}$	47.8	$C_{431} - C_{432} - H_{43D}$	109.5
$C_{321} - C_{322} - H_{32D}$	109.5	H43C - C432 - H43D	109.5
$H_{32}C_{-C_{322}}$ $H_{32}D_{-H_{32}}$	109.5	C_{431} C_{432} H_{43F}	109.5
C341_C322_H32E	116.5	$H_{43}C_{}C_{432}-H_{43}E$	109.5
$C_{3+1} - C_{3+2} - H_{3+2} = C_{3+1} - C_{3+2} - C_{3+2} - H_{3+2} = C_{3+1} - C_{3+2} - H_{3+2} = C_{3+2} - H_{3+2} - H_{3$	100.5	$H_{43D} = C_{432} = H_{43E}$	109.5
$H_{22}C = C_{22}^{-11}H_{22}E$	109.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5 112.0 (7)
$H_{22} = C_{222} = H_{22} = H_{22}$	109.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	112.9(7)
H32D - C322 - H32E	109.5	P4D = C441 = H44A	109.0
$C_{341} = C_{322} = H_{32F}$	109.5	P4B—C441—H44B	109.0
C321—C322—H32F	139.2	C442 - C441 - H44A	109.0
H32C—C322—H32F	44.2	C442—C441—H44B	109.0
H32D—C322—H32F	68.3	H44A—C441—H44B	107.8
H32E—C322—H32F	109.3	C441—C442—H44C	109.5
C341—C322—H32G	109.5	C441—C442—H44D	109.5
C321—C322—H32G	110.7	H44C—C442—H44D	109.5
H32C—C322—H32G	115.6	C441—C442—H44E	109.5
H32D—C322—H32G	101.8	H44C—C442—H44E	109.5
H32E—C322—H32G	8.2	H44D—C442—H44E	109.5
P2—Ni1—P1—C121	-127.40 (12)	C3—C4—P4—C411	147.1 (4)
Cl1—Ni1—P1—C121	49.57 (12)	C3—C4—P4—C421	-104.0 (4)
P2—Ni1—P1—C111	114.23 (12)	C3—C4—P4—Ni2	21.1 (4)
Cl1—Ni1—P1—C111	-68.80 (12)	P3—Ni2—P4—C411	-122.6 (2)
P2—Ni1—P1—C1	-4.05 (11)	Cl4—Ni2—P4—C411	55.1 (2)
Cl1—Ni1—P1—C1	172.92 (11)	P3—Ni2—P4—C421	121.6 (2)
C121—P1—C111—C112	-172.8 (2)	Cl4—Ni2—P4—C421	-60.7 (3)
C1—P1—C111—C112	76.0 (3)	P3—Ni2—P4—C4	-2.1(2)
Ni1—P1—C111—C112	-45.6 (3)	Cl4—Ni2—P4—C4	175.6 (2)
C111—P1—C121—C122	176.8 (3)	C421—P4—C411—C412	170.6 (4)
C1—P1—C121—C122	-71.6 (3)	C4—P4—C411—C412	-74.1 (4)
Ni1—P1—C121—C122	54.8 (3)	Ni2—P4—C411—C412	48.3 (4)
$C_{121} - P_{1} - C_{1} - C_{2}$	148.4 (2)	C411—P4—C421—C422	179.2 (4)
$C_{111} = P_1 = C_1 = C_2$	-102.2(2)	C4 - P4 - C421 - C422	66 9 (5)
Nil $-Pl-Cl-C2$	182(3)	Ni2—P4—C421—C422	-565(5)
P1	-245(3)	$P4B_{12}$ $P3B_{23}$ $P3B_{33}$	1480(6)
C1 - C2 - P2 - C211	1505(2)	C13B Ni2B P3B C331	-35.1(9)
C1 - C2 - P2 - C221	-100.9(2)	$P4B_Ni2B_P3B_C341$	-91.2(7)
C1 = C2 = P2 = Ni1	21.8 (3)	C13B = Ni2B = P3B = C341	51.2(7) 857(8)
$P1_Ni1_P2_C211$	-129.98(12)	P4R_Ni2R_P3R_C3R	270(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	129.90(12)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1561(0)
C_{12} —INII— Γ_2 — C_{211} D1 Ni1 D2 C221	+3.13(12) 111 74 (12)	$C_{13}D \longrightarrow M_{12}D \longrightarrow F_{3}D \longrightarrow C_{3}D$	150.1(9)
$\Gamma 1 - INII - \Gamma 2 - C 2 2 I$	111 /41131	-0.041 - 0.00 - 0.001 - 0.002	1.17.0(1.))
C12 NE1 D2 $C221$	72 12 (12)	$C_{2}D$ $D_{2}D$ $C_{2}21$ $C_{2}22$	522(17)
Cl2—Ni1—P2—C221	-73.12 (13)	C3B—P3B—C331—C332	52.2 (17)

Cl2—Ni1—P2—C2	166.84 (11)	C321—C322—C341—P3B	-40.0 (7)
C221—P2—C211—C212	177.5 (3)	C331—P3B—C341—C322	68.3 (12)
C2—P2—C211—C212	-70.4 (3)	C3B—P3B—C341—C322	177.2 (10)
Ni1—P2—C211—C212	54.4 (3)	Ni2B—P3B—C341—C322	-58.4 (11)
C211—P2—C221—C222	177.4 (3)	C331—P3B—C3B—C4B	-145.3 (12)
C2—P2—C221—C222	66.8 (3)	C341—P3B—C3B—C4B	106.1 (13)
Ni1—P2—C221—C222	-55.5 (3)	Ni2B—P3B—C3B—C4B	-18.4 (14)
P4—Ni2—P3—C321	-136.0 (2)	P3B—C3B—C4B—P4B	-5.2 (14)
Cl3—Ni2—P3—C321	46.5 (2)	C3B—C4B—P4B—C441	-97.7 (11)
P4—Ni2—P3—C3	-13.1 (2)	C3B—C4B—P4B—C431	154.0 (11)
Cl3—Ni2—P3—C3	169.3 (2)	C3B—C4B—P4B—Ni2B	27.5 (12)
P4—Ni2—P3—C311	102.75 (17)	P3B—Ni2B—P4B—C441	89.7 (6)
Cl3—Ni2—P3—C311	-74.83 (18)	Cl4B—Ni2B—P4B—C441	-87.1 (8)
C321—P3—C311—C312	46.9 (3)	P3B—Ni2B—P4B—C431	-152.3 (7)
C3—P3—C311—C312	-65.4 (3)	Cl4B—Ni2B—P4B—C431	30.9 (9)
Ni2—P3—C311—C312	175.1 (3)	P3B—Ni2B—P4B—C4B	-30.4 (7)
C3—P3—C321—C322	-76.4 (4)	Cl4B—Ni2B—P4B—C4B	152.7 (9)
C311—P3—C321—C322	171.3 (3)	C441—P4B—C431—C432	-163.8 (17)
Ni2—P3—C321—C322	49.3 (4)	C4B—P4B—C431—C432	-54.5 (18)
P3—C321—C322—C341	51.8 (7)	Ni2B—P4B—C431—C432	72.2 (18)
C321—P3—C3—C4	158.3 (4)	C431—P4B—C441—C442	-53.6 (13)
C311—P3—C3—C4	-88.7 (4)	C4B—P4B—C441—C442	-163.6 (11)
Ni2—P3—C3—C4	28.6 (4)	Ni2B—P4B—C441—C442	70.6 (12)
P3—C3—C4—P4	-30.5 (5)		