Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Craig Williamson, John M. D. Storey and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail:
w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.042$
$w R$ factor $=0.127$
Data-to-parameter ratio $=13.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

\{ N-[(S)-1-Phenylethyl]carbamoyl\}methylaminium chloride

In the title compound, $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}^{+} \cdot \mathrm{Cl}^{-}$, the crystal packing is influenced by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, resulting in a layered structure.

Comment

The known title compound, (I) (Fig. 1), was prepared as an intermediate in the syntheses of new asymmetric catalysts, following the literature procedure of Ho et al. (2001).

(I)

All the geometrical parameters for (I) lie within their expected ranges (Allen et al., 1995). The absolute configuration of (I) is well defined and atom C 7 has S configuration, as expected from the configuration of the equivalent C atom in the (S)-1-phenylethylamine starting material. The dihedral angle between the mean planes of the benzene ring (atoms $\mathrm{C} 1-\mathrm{C} 6)$ and the $\mathrm{C} 7 / \mathrm{C} 9 / \mathrm{C} 10 / \mathrm{N} 1 / \mathrm{O} 1$ grouping is $66.14(13)^{\circ}$.

The crystal packing in (I) is influenced by hydrogen bonds (Table 1). An $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bond arising from the N 1 group links the cations into chains propagating in the a direction. The $-\mathrm{NH}_{3}$ group participates in three $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ bonds [mean $\mathrm{H} \cdots \mathrm{Cl}=2.32 \AA$, mean $\mathrm{N} \cdots \mathrm{Cl}=3.183$ (3) \AA, mean $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{Cl}=159^{\circ}$], which crosslink the [100] stacks in the b direction. The only intermolecular interactions in the c

Figure 1
View of (I) (50% probability displacement ellipsoids; H atoms are drawn as small spheres of arbitrary radii). The $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond and possible $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction are indicated by dashed lines.

Received 24 August 2005 Accepted 26 August 2005 Online 7 September 2005

Figure 2
The packing of (I), viewed down [010], with all C-bound H atoms omitted for clarity and hydrogen bonds indicated by dashed lines.
direction are van der Waals forces (Fig. 2). A PLATON (Spek, 2003) analysis of (I) flagged a short intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ distance (Fig. 1 and Table 1), although its structural significance - an attractive interaction or a repulsive steric contact is not clear.

Experimental

N-Boc glycine ($10 \mathrm{mmol}, 1.75 \mathrm{~g}$) was dissolved in dry THF (30 ml) in a dry flask under nitrogen. The solution was cooled to 195 K , and N methyl morpholine ($10 \mathrm{mmol}, 1.01 \mathrm{~g}, 1.09 \mathrm{ml}$) was added with stirring. ${ }^{i}$ Bu-chloroformate ($10 \mathrm{mmol}, 1.36 \mathrm{~g}, 1.30 \mathrm{ml}$) was added, and the solution stirred for 30 min . (S)-1-Phenylethylamine ($10 \mathrm{mmol}, 1.21 \mathrm{~g}$, 1.29 ml) was added in one portion and the reaction mixture stirred at room temperature for 18 h . The solvent was removed in vacuo. The residue was taken up in EtOAc (30 ml), washed with 10% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(20 \mathrm{ml}), 0.1 \mathrm{M}$ aqueous $\mathrm{HCl}(20 \mathrm{ml})$ and saturated brine $(20 \mathrm{ml})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered, and the solvent was removed in vacuo. The resulting oil ($1.37 \mathrm{~g}, 4.95 \mathrm{mmol}$) was dissolved in dry dichloromethane ($\mathrm{DCM}, 15 \mathrm{ml}$) and cooled to 273 K . Bubbling excess dry HCl through the reaction medium with stirring for 2 h allowed the collection of the desired product as a white precipitate, which was recrystallized from $\mathrm{EtOH} / \mathrm{Et}_{2} \mathrm{O}(1.09 \mathrm{~g}, 89 \%)$. Slow evaporation of a DCM solution of the purified material produced colourless needles of (I) suitable for diffraction; m.p. $446-449 \mathrm{~K}$. $[\alpha]_{D}=-97.0^{\circ}, C=0.6(\mathrm{MeOH})$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): v_{\max } 3289(\mathrm{C}=\mathrm{O})$, 2967 (CH), 1660 ($\mathrm{C}=\mathrm{O}$), 1561 ($\mathrm{C}=\mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta_{\mathrm{H}} 9.2(1 \mathrm{H}, d, J=8.0 \mathrm{~Hz}, \mathrm{NH}), 8.2\left(3 \mathrm{H}, s, \mathrm{~N}^{+} \mathrm{H}_{3}\right), 7.3(5 \mathrm{H}, m$, $\mathrm{Ph}), 4.9(1 \mathrm{H}, q, J=7.0 \mathrm{~Hz}, \mathrm{CH}), 3.6\left(2 \mathrm{H}, s, \mathrm{CH}_{2}\right), 1.3(3 \mathrm{H}, d, J=$ $7.0 \mathrm{~Hz}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($250 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta_{\mathrm{C}} 164.9(\mathrm{C}=\mathrm{O}), 144.1$, 128.3, 126.8, 126.1, $48.5(\mathrm{CH}), 40.1\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{3}\right) ; \mathrm{MS}\left(\mathrm{ESI}^{+}\right)$:
calcualted m / z 179.1179; found $179.1180[\mathrm{M}-\mathrm{Cl}]^{+}$; $\left(\mathrm{ESI}^{-}\right) 35.4$ and $37.4[\mathrm{Cl}]^{-}$.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=214.69$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=4.6309(3) \AA \AA$
$b=5.8963(4) \AA$
$c=39.939(3) \AA$
$V=1090.54(13) \AA^{3}$
$Z=4$
$D_{x}=1.308 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation

Cell parameters from 856 reflections
$\theta=2.9-27.5^{\circ}$
$\mu=0.32 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Block cut from needle, colourless $0.30 \times 0.24 \times 0.16 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer
ω and φ scans
Absorption correction: multi-scan (SADABS; Bruker, 2003)
$T_{\text {min }}=0.910, T_{\text {max }}=0.951$
3682 measured reflections
1768 independent reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0431 P)^{2}\right. \\
& +1.5926 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.41 \mathrm{e}^{-3} \\
& \begin{array}{l}
\Delta \rho_{\text {max }}=0.41 \text { e } \AA \AA^{-3} \\
\Delta \rho_{\text {min }}=-0.39 \mathrm{e}^{-3}
\end{array} \\
& \text { Absolute structure: Flack (1983), } \\
& 439 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.08 \text { (13) }
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.88	2.01	$2.839(4)$	156
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{Cl} 1$	0.91	2.32	$3.181(3)$	157
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{C} 11^{\text {ii }}$	0.91	2.27	$3.146(3)$	162
$\mathrm{~N} 2-\mathrm{H} 2 C \cdots \mathrm{Cl} 1^{\text {ii }}$	0.91	2.36	$3.222(3)$	158
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 1$	1.00	2.45	$2.809(5)$	101

Symmetry codes: (i) $x+1, y, z$; (ii) $-x, y-\frac{1}{2},-z+\frac{3}{2}$; (iii) $-x, y+\frac{1}{2},-z+\frac{3}{2}$.
All H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.95-$ $0.99 \AA$ and $\mathrm{N}-\mathrm{H}=0.88-0.91 \AA$) and refined as riding on their carrier atoms, allowing for rotation of the rigid terminal $-X \mathrm{H}_{3}$ groups. The constraint $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ carrier $)$ or $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}($ methyl carrier) was applied as applicable.

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO (Otwinowski \& Minor 1997), SCALEPACK and SORTAV (Blessing 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the EPSRC National Mass Spectrometry Service (University of Swansea) and the EPSRC National Crystallography Service (University of Southampton) for data collections.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1995). International Tables for Crystallography, Vol. C, edited by A. J. C. Wilson, pp. 685-706. Dordrecht: Kluwer.

organic papers

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Ho, B., Crider, M. \& Stables, J. P. (2001). Eur. J. Med. Chem. 36, 265-286.
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supporting information

Acta Cryst. (2005). E61, o3133-o3135 [doi:10.1107/S1600536805027182]

\{N-[(S)-1-Phenylethyl]carbamoyl\}methylaminium chloride

Craig Williamson, John M. D. Storey and William T. A. Harrison

S1. Comment

The known title compound, (I) (Fig. 1), was prepared as an intermediate in the syntheses of new asymmetric catalysts, following the literature procedure of Ho et al. (2001).
All the geometrical parameters for (I) lie within their expected ranges (Allen et al., 1995). The absolute structure of (I) is well defined and atom C 7 has S conformation, as expected from the conformation of the equivalent C atom in the (S)-1-phenylethylamine starting material. The dihedral angle between the best planes of the benzene ring (atoms C1-C6) and the $\mathrm{C} 7 / \mathrm{C} 9 / \mathrm{C} 10 / \mathrm{N} 1 / \mathrm{O} 1$ grouping is $66.14(13)^{\circ}$.

The crystal packing in (I) is influenced by hydrogen bonds (Table 1). An $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bond arising from the N 1 group links the molecules into chains propagating in the a direction. The $-\mathrm{NH}_{3}$ group participates in three $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ bonds [mean $\mathrm{H} \cdots \mathrm{Cl}=2.32 \AA$, mean $\mathrm{N} \cdots \mathrm{Cl}=3.183$ (3) \AA, mean $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}=159^{\circ}$], which crosslink the [100] stacks in the b direction. The only intermolecular interactions in the c direction are van der Waals forces (Fig. 2). A PLATON (Spek, 2003) analysis of (I) flagged a short intramolecular C-H $\cdots \mathrm{O}$ distance (Fig. 1 and Table 1), although its structural significance - an attractive interaction or a repulsive steric contact - is not clear.

S2. Experimental

N-Boc glycine ($10 \mathrm{mmol}, 1.75 \mathrm{~g}$) was dissolved in dry THF (30 ml) in a dry flask under nitrogen. The solution was cooled to 195 K , and N-methyl morpholine ($10 \mathrm{mmol}, 1.01 \mathrm{~g}, 1.09 \mathrm{ml}$) was added with stirring. iBu-chloroformate (10 $\mathrm{mmol}, 1.36 \mathrm{~g}, 1.30 \mathrm{ml}$) was added, and the solution stirred for 30 min . (S)-1-Phenylethylamine ($10 \mathrm{mmol}, 1.21 \mathrm{~g}, 1.29$ ml) was added in one portion and the reaction stirred at room temperature for 18 h . The solvent was removed in vacuo. The residue was taken up in EtOAc (30 ml), washed with 10% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(20 \mathrm{ml}), 0.1 \mathrm{M}$ aqueous $\mathrm{HCl}(20 \mathrm{ml})$ and saturated brine $(20 \mathrm{ml})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered, and the solvent was removed in vacuo. The resulting oil $(1.37 \mathrm{~g}, 4.95 \mathrm{mmol})$ was dissolved in dry DCM $(15 \mathrm{ml})$ and cooled to 273 K . Bubbling excess dry HCl through the reaction medium with stirring for 2 h allowed the collection of the desired product as a white precipitate, which was recrystallized from $\mathrm{EtOH} / \mathrm{Et}_{2} \mathrm{O}(1.09 \mathrm{~g}, 89 \%)$. Slow evaporation of a DCM solution of the purified material produced colourless needles of (I) suitable for diffraction; m.p. 446-449 K. $[\alpha]_{\mathrm{D}}=-97.0^{\circ}, C=0.6(\mathrm{MeOH})$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: $v_{\max }$ $3289(\mathrm{C}=\mathrm{O}), 2967(\mathrm{CH}), 1660(\mathrm{C}=\mathrm{O}), 1561(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta_{\mathrm{H}} 9.2(1 H, d, J=8.0 \mathrm{~Hz}, \mathrm{NH}), 8.2$ $\left(3 H, s, \mathrm{~N}^{+} \mathrm{H}_{3}\right), 7.3(5 H, m, \mathrm{Ph}), 4.9(1 H, q, J=7.0 \mathrm{~Hz}, \mathrm{CH}), 3.6\left(2 H, s, \mathrm{CH}_{2}\right), 1.3\left(3 H, d, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (250 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta_{\mathrm{C}} 164.9(\mathrm{C}=\mathrm{O}), 144.1,128.3,126.8,126.1,48.5(\mathrm{CH}), 40.1\left(\mathrm{CH}_{2}\right), 22.6\left(\mathrm{CH}_{3}\right) ; \mathrm{MS}\left(\mathrm{ESI}^{+}\right)$: calcualted $\mathrm{m} / \mathrm{z} 179.1179$; found $179.1180\left[\mathrm{M}-\mathrm{Cl}^{+}\right] ;\left(\mathrm{ESI}^{-}\right) 35.4$ and $37.4\left[\mathrm{Cl}^{-}\right]$.

S3. Refinement

All H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$ and $\mathrm{N}-\mathrm{H}=0.88-0.91 \AA$) and refined as riding on their carrier atoms, allowing for rotation of the rigid terminal $-X \mathrm{H}_{3}$ groups. The constraint $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (carrier) or
$U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}$ (methyl carrier) was applied as applicable.

Figure 1
View of (I) (50% probability displacement ellipsoids; H atoms are drawn as small spheres of arbitrary radii). The N $\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond and possible $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction are indicated by dashed lines.

Figure 2

Unit-cell packing in (I), viewed down [010], with all C-bound H atoms omitted for clarity and hydrogen bonds indicated by dashed lines.

\{N-[(S)-1-Phenylethyl] carbamoyl\}methylaminium chloride

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=214.69$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2ac 2ab
$a=4.6309$ (3) A
$b=5.8963$ (4) \AA
$c=39.939$ (3) \AA
$V=1090.54(13) \AA^{3}$
$Z=4$
$F(000)=456$
$D_{\mathrm{x}}=1.308 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 856 reflections
$\theta=2.9-27.5^{\circ}$
$\mu=0.32 \mathrm{~mm}^{-1}$
$T=120 \mathrm{~K}$
Block cut from needle, colourless
$0.30 \times 0.24 \times 0.16 \mathrm{~mm}$

Data collection

Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
$T_{\min }=0.910, T_{\text {max }}=0.951$

$$
\begin{aligned}
& 3682 \text { measured reflections } \\
& 1768 \text { independent reflections } \\
& 1578 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.030 \\
& \theta_{\max }=26.0^{\circ}, \theta_{\min }=4.0^{\circ} \\
& h=-5 \rightarrow 5 \\
& k=-6 \rightarrow 7 \\
& l=-48 \rightarrow 48
\end{aligned}
$$

> Hydrogen site location: inferred from neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0431 P)^{2}+1.5926 P\right]$
> \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.41$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.39 \mathrm{e}^{-3}$

Absolute structure: Flack (1983), 439 Friedel pairs
Absolute structure parameter: 0.08 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.3476(8)$	$0.2857(6)$	$0.57786(9)$	$0.0241(8)$
H1	0.3220	0.1673	0.5937	0.029^{*}
C2	$0.5263(9)$	$0.2492(7)$	$0.55044(10)$	$0.0282(9)$
H2	0.6220	0.1079	0.5477	0.034^{*}
C3	$0.5636(9)$	$0.4212(7)$	$0.52715(10)$	$0.0286(9)$
H3	0.6860	0.3984	0.5084	0.034^{*}
C4	$0.4228(9)$	$0.6256(7)$	$0.53132(10)$	$0.0303(10)$
H4	0.4475	0.7432	0.5153	0.036^{*}
C5	$0.2449(8)$	$0.6596(7)$	$0.55885(9)$	$0.0263(9)$
H5	0.1485	0.8007	0.5614	0.032^{*}
C6	$0.2054(8)$	$0.4904(7)$	$0.58274(9)$	$0.0222(8)$
C7	$0.0020(9)$	$0.5204(7)$	$0.61243(10)$	$0.0247(9)$
H7	-0.1827	0.4417	0.6067	0.030^{*}
C8	$-0.0733(10)$	$0.7653(7)$	$0.62115(11)$	$0.0368(11)$
H8A	-0.2023	0.7676	0.6406	0.055^{*}

H8B	-0.1699	0.8368	0.6020	0.055^{*}
H8C	0.1039	0.8489	0.6264	0.055^{*}
C9	$-0.0481(7)$	$0.3063(6)$	$0.66460(8)$	$0.0167(7)$
C10	$0.1047(7)$	$0.2278(6)$	$0.69611(8)$	$0.0192(7)$
H10A	0.2041	0.0819	0.6919	0.023^{*}
H10B	0.2515	0.3410	0.7028	0.023^{*}
N1	$0.1207(7)$	$0.4076(5)$	$0.64230(7)$	$0.0219(7)$
H1A	0.3087	0.4073	0.6454	0.026^{*}
N2	$-0.1105(6)$	$0.1991(5)$	$0.72335(7)$	$0.0174(6)$
H2A	-0.0173	0.1859	0.7433	0.021^{*}
H2B	-0.2168	0.0720	0.7195	0.021^{*}
H2C	-0.2293	0.3220	0.7239	0.021^{*}
O1	$-0.3109(5)$	$0.2796(5)$	$0.66108(6)$	$0.0206(6)$
C11	$0.36806(18)$	$0.20605(14)$	$0.78047(2)$	$0.0210(2)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.032(2)$	$0.0212(17)$	$0.0196(16)$	$-0.001(2)$	$-0.0033(16)$	$0.0040(15)$
C2	$0.031(2)$	$0.024(2)$	$0.030(2)$	$-0.0001(17)$	$0.0023(17)$	$-0.0045(17)$
C3	$0.030(2)$	$0.035(2)$	$0.0206(17)$	$-0.0040(19)$	$0.0050(17)$	$0.0005(18)$
C4	$0.033(2)$	$0.033(2)$	$0.0248(19)$	$-0.0061(19)$	$0.0027(18)$	$0.0046(18)$
C5	$0.030(2)$	$0.025(2)$	$0.0239(18)$	$0.0029(17)$	$-0.0003(16)$	$0.0030(16)$
C6	$0.0155(18)$	$0.028(2)$	$0.0230(17)$	$-0.0033(16)$	$-0.0024(15)$	$0.0032(17)$
C7	$0.021(2)$	$0.028(2)$	$0.0247(18)$	$-0.0027(17)$	$-0.0014(16)$	$0.0001(18)$
C8	$0.040(2)$	$0.036(3)$	$0.035(2)$	$0.012(2)$	$0.010(2)$	$0.011(2)$
C9	$0.0138(16)$	$0.0141(16)$	$0.0220(17)$	$0.0002(15)$	$0.0023(14)$	$-0.0001(17)$
C10	$0.0163(16)$	$0.0221(18)$	$0.0193(16)$	$-0.0005(16)$	$0.0026(14)$	$0.0041(15)$
N1	$0.0154(15)$	$0.0284(16)$	$0.0219(14)$	$-0.0011(15)$	$-0.0013(13)$	$0.0044(13)$
N2	$0.0175(13)$	$0.0143(13)$	$0.0202(13)$	$-0.0001(15)$	$-0.0020(12)$	$0.0020(13)$
O1	$0.0152(12)$	$0.0262(13)$	$0.0204(12)$	$0.0005(11)$	$0.0010(10)$	$0.0003(12)$
C11	$0.0212(4)$	$0.0177(4)$	$0.0241(4)$	$0.0013(4)$	$-0.0005(4)$	$0.0003(4)$

Geometric parameters ($\AA,{ }^{\circ}$)

C1-C6	1.389 (5)	C7-H7	1.0000
C1-C2	1.390 (5)	C8-H8A	0.9800
C1-H1	0.9500	C8-H8B	0.9800
C2-C3	1.387 (6)	C8-H8C	0.9800
C2-H2	0.9500	C9-O1	1.235 (4)
C3-C4	1.380 (6)	C9-N1	1.327 (4)
C3-H3	0.9500	C9-C10	1.516 (5)
$\mathrm{C} 4-\mathrm{C} 5$	1.389 (5)	C10-N2	1.485 (4)
C4-H4	0.9500	C10-H10A	0.9900
C5-C6	1.393 (5)	C10-H10B	0.9900
C5-H5	0.9500	N1-H1A	0.8800
C6-C7	1.524 (5)	N2-H2A	0.9100
C7-N1	1.472 (5)	N2-H2B	0.9100

supporting information

C7-C8	1.526 (6)	N2-H2C	0.9100
C6- $\mathrm{C} 1-\mathrm{C} 2$	121.9 (4)	C7-C8-H8A	109.5
C6- $\mathrm{C}_{1}-\mathrm{H} 1$	119.1	C7-C8-H8B	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	119.1	H8A-C8-H8B	109.5
C3-C2-C1	119.3 (4)	C7-C8-H8C	109.5
C3-C2-H2	120.3	H8A-C8-H8C	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.3	H8B-C8-H8C	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	119.9 (4)	O1-C9-N1	124.1 (3)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.0	O1-C9-C10	121.0 (3)
C2-C3-H3	120.0	N1-C9-C10	114.8 (3)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	120.1 (4)	N2-C10-C9	109.2 (3)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.9	N2-C10-H10A	109.8
C5-C4-H4	119.9	C9-C10-H10A	109.8
C4-C5-C6	121.1 (4)	N2-C10-H10B	109.8
C4-C5-H5	119.4	C9-C10-H10B	109.8
C6-C5-H5	119.4	H10A-C10-H10B	108.3
C1-C6-C5	117.7 (3)	C9-N1-C7	121.8 (3)
C1-C6-C7	120.2 (4)	C9-N1-H1A	119.1
C5-C6-C7	122.1 (4)	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	119.1
N1-C7-C6	110.3 (3)	$\mathrm{C} 10-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	109.5
N1-C7-C8	109.1 (3)	C10-N2-H2B	109.5
C6-C7-C8	115.4 (3)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
N1-C7-H7	107.2	$\mathrm{C} 10-\mathrm{N} 2-\mathrm{H} 2 \mathrm{C}$	109.5
C6-C7-H7	107.2	$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{C}$	109.5
C8-C7-H7	107.2	$\mathrm{H} 2 \mathrm{~B}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{C}$	109.5

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.88	2.01	$2.839(4)$	156
$\mathrm{~N} 2 — \mathrm{H} 2 A \cdots \mathrm{Cl1}$	0.91	2.32	$3.181(3)$	157
$\mathrm{~N} 2 — \mathrm{H} 2 B \cdots \mathrm{Cl1} 1^{\mathrm{ii}}$	0.91	2.27	$3.146(3)$	162
$\mathrm{~N} 2 — \mathrm{H} 2 C \cdots \mathrm{Cl1} 1^{\mathrm{iii}}$	0.91	2.36	$3.222(3)$	158
$\mathrm{C} 7 — \mathrm{H} 7 \cdots \mathrm{O} 1$	1.00	2.45	$2.809(5)$	101

Symmetry codes: (i) $x+1, y, z$; (ii) $-x, y-1 / 2,-z+3 / 2$; (iii) $-x, y+1 / 2,-z+3 / 2$.

