Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

D. R. Allan

School of Chemistry, The University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JJ, Scotland

Correspondence e-mail: d.r.allan@ed.ac.uk

Key indicators

Single-crystal synchrotron study T = 205 KMean σ (C–C) = 0.003 Å R factor = 0.063 wR factor = 0.072 Data-to-parameter ratio = 12.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Cyclobutylamine hemihydrate

The asymmetric unit of cyclobutylamine hemihydrate, $C_4H_9N\cdot 0.5H_2O$, consists of two cyclobutylamine molecules bridged by a water molecule *via* $N\cdot\cdot\cdot H-O$ hydrogen bonds. This molecular arrangement is further connected by significantly weaker $N-H\cdot\cdot\cdot O$ contacts to form columns parallel to the *b* axis.

Received 10 January 2006 Accepted 18 January 2006 Online 25 January 2006

Comment

The crystal structure of cyclobutylamine hemihydrate (C₄H₇NH₂·0.5H₂O), (I), was determined at 205 K (just below the \sim 210 K melting point) as part of our low-temperature and high-pressure structural studies of prototypical hydrogenbonded molecular systems. It crystallizes in the monoclinic space group $P2_1/n$ with two cyclobutylamine molecules and one water molecule in the asymmetric unit (Fig. 1). Pairs of cyclobutylamine molecules are bridged by a single water molecule through N···H-O hydrogen bonds, which have N···O distances of 2.880 (3) and 2.895 (2) Å (Fig. 2 and Table 1). Significantly weaker N-H···O contacts link this molecular assembly to form columns parallel to the b axis, with $N \cdots O$ distances ranging in length from 3.176 (3) and 3.281 (3) Å to a more marginal distance of 3.604 (3) Å. As the $N{\cdots}O$ distances increase, there is a concomitant decrease in the N-H···O angles from 173.0 (19) to 160.1 (19)° as the interaction weakens. The remaining N-H···O interaction (N11-H111····O1) would appear to link the columns into slabs parallel to $(\overline{101})$. However, as this interaction has a very long N···O contact distance of 3.833 (3) Å, and the N-H···O angle is 134.3 (15)°, it is unlikely to offer any significant contribution to the intermolecular bonding.

Experimental

The sample of cyclobutylamine hemihydrate was prepared from anhydrous starting material (of 99% purity, as received from Aldrich) and placed in a sealed glass capillary tube with an internal diameter of ca 0.2 mm. The sample was cooled using an Oxford Cryosystems low-temperature device (Cosier & Glazer, 1986) until crystallization was observed. The temperature was then cycled, by successive translations of the capillary through the gas stream, so that the sample was

 $\ensuremath{\mathbb{C}}$ 2006 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

partially remelted and the number of crystallites reduced, until a single crystal was obtained at 205 K.

Crystal data

C₄H₉N·0.5H₂O $M_{\rm r} = 80.13$ Monoclinic, $P2_1/n$ a = 14.048 (6) Å b = 5.209 (2) Å c = 14.489 (6) Å $\beta = 97.369 \ (4)^{\circ}$ V = 1051.5 (7) Å³ Z = 8 $D_x = 1.012 \text{ Mg m}^-$ Data collection Bruker SMART diffractometer (i) scans Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{\min} = 0.55, T_{\max} = 0.99$

8565 measured reflections 2525 independent reflections

Refinement

Refinement on F $R[F^2 > 2\sigma(F^2)] = 0.063$ wR(F²) = 0.072 S = 1.141411 reflections 118 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O1-H1\cdots N11$	0.82(1)	2.08 (1)	2.895 (2)	174 (3)
$O1-H2\cdots N21$	0.82(1)	2.07 (1)	2.880 (3)	174 (3)

H atoms attached to C atoms were placed in idealized positions (C-H = 0.94-1.00 Å) and allowed to ride on their parent atoms. H atoms attached to N and O atoms were located in a difference map and restrained to idealized distances and angles [N-H = 0.90 (1) Å,O-H = 0.82 (1) Å and $O-H-O = 104 (1)^{\circ}$]. All H atoms were constrained so that $U_{iso}(H)$ was equal to $1.2U_{eq}$ of their respective parent atoms.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT; data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS and PLATON (Spek, 2003).

We thank Dr T. Prior of Daresbury Laboratory for his help during the experiment on station 9.8 at SRS. We also thank the EPSRC for funding both this project and DRA's Advanced Research Fellowship.

References

Altomare, A., Burla, M. C., Camalli, G., Cascarano, G., Giacovazzo, C., Guagliardi, A. & Polidori, G. (1994). J. Appl. Cryst. 27, 435-436.

Synchrotron radiation $\lambda = 0.6813 \text{ Å}$ Cell parameters from 2051 reflections $\theta = 8-46^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 205 KCylinder, colourless 0.20×0.20 (radius) mm

1411 reflections with $I > 2\sigma(I)$ $R_{int} = 0.071$ $\theta_{\rm max} = 27.5^{\circ}$ $h = -18 \rightarrow 19$ $k = -6 \rightarrow 6$ $l = -19 \rightarrow 18$

 $w = [1 - (F_{\rm o} - F_{\rm c})^2/36\sigma^2(F)]^2/$ $[2.28T_{o}(x) + 0.243T_{1}(x) +$ 1.74 $T_2(x)$] where T_i are Chebychev polynomials and $x = F_c/F_{max}$ (Prince, 1982; Watkin, 1994) $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.17 \text{ e Å}$ $\Delta \rho_{\rm min} = -0.18~{\rm e}~{\rm \AA}^{-3}$

Figure 1

The asymmetric unit of (I), showing 30% probability displacement ellipsoids. The dashed lines indicate the $O-H \cdots N$ hydrogen bonds.

Figure 2

The packing of (I), viewed along the b axis. The $O-H \cdots N$ hydrogen bonds are shown as dashed lines.

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.
- Sheldrick, G. M. (2004). SADABS. University of Gottingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Watkin, D. J. (1994). Acta Cryst. A50, 411-437
- Watkin, D. J., Prout, C. K. & Pearce, L. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

supporting information

Acta Cryst. (2006). E62, o751-o752 [https://doi.org/10.1107/S1600536806002327]

Cyclobutylamine hemihydrate

D. R. Allan

cyclobutylamine hemihydrate

Crystal data

C₄H₉N·0.5H₂O $M_r = 80.13$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 14.048 (6) Å b = 5.209 (2) Å c = 14.489 (6) Å $\beta = 97.369$ (4)° V = 1051.5 (7) Å³ Z = 8

Data collection

Bruker SMART diffractometer Curved silicon monochromator $\omega/2\theta$ scans Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{\min} = 0.55, T_{\max} = 0.99$ 8565 measured reflections

Refinement

Refinement on *F* Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.063$ $wR(F^2) = 0.072$ S = 1.141411 reflections 118 parameters 7 restraints Primary atom site location: structure-invariant direct methods F(000) = 360 $D_x = 1.012 \text{ Mg m}^{-3}$ Synchrotron radiation, $\lambda = 0.68130 \text{ Å}$ Cell parameters from 2051 reflections $\theta = 8-46^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 205 KCylinder, colourless $0.20 \times 0.20 \times 0.20 \times 0.20$ (radius) mm

2525 independent reflections 1411 reflections with $I > 2\sigma(I)$ $R_{int} = 0.071$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 4.0^{\circ}$ $h = -18 \rightarrow 19$ $k = -6 \rightarrow 6$ $l = -19 \rightarrow 18$

Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = [1-(F_o-F_c)^2/36\sigma^2(F)]^2/[2.28T_o(x) + 0.243T_1(x) + 1.74T_2(x)]$ where T_i are the Chebychev polynomials and $x = F_c/F_{max}$ (*P*rince, 1982; Watkin, 1994) $(\Delta/\sigma)_{max} = 0.000218$ $\Delta\rho_{max} = 0.17$ e Å⁻³ $\Delta\rho_{min} = -0.18$ e Å⁻³

Special details

Refinement. ABSTM02_ALERT_3_B The ratio of expected to reported Tmax/Tmin(RR') is < 0.75 T min and Tmax reported: 0.550 0.990 T min(prime) and Tmax expected: 0.987 0.987 RR(prime) = 0.556

SADABS was also used to correct for the decay of the synchrotron X-ray beam. The overall sample absorption, especially at the relatively short wavelength, is extremely low.

PLAT241_ALERT_2_C Check High U_{eq} as Compared to Neighbors for C23 PLAT242_ALERT_2_C Check Low U_{eq} as Compared to Neighbors for C12 PLAT242_ALERT_2_C Check Low U_{eq} as Compared to Neighbors for C22 The data were collected very close to the sample melting temperature and, consequently, the temperature factors are relatively large.

PLAT420_ALERT_2_C D—H Without Acceptor N11 - H111 ··· ? PLAT420_ALERT_2_C D—H Without Acceptor N21 - H211 ··· ?

Although the relevant N—H···O angles suggest that the oxygen atom acts as an acceptor for both N11—H111 and N21—H211, the H···A distances are relatively long and suggest that these interactions are at best extremely weak. Details of the various distances are mentioned in the comments section.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N11	0.66281 (12)	0.6261 (3)	0.22065 (10)	0.0590
C12	0.63480 (12)	0.6188 (3)	0.31320 (12)	0.0524
C13	0.52996 (14)	0.5731 (4)	0.32271 (17)	0.0742
C14	0.54031 (19)	0.7577 (5)	0.40528 (19)	0.0882
C15	0.62917 (17)	0.8626 (4)	0.37068 (15)	0.0751
01	0.60087 (11)	0.1702 (3)	0.11547 (10)	0.0705
N21	0.40677 (12)	0.2763 (3)	0.03446 (11)	0.0623
C22	0.33839 (13)	0.2419 (4)	0.09937 (11)	0.0534
C25	0.34180 (17)	-0.0039 (5)	0.15398 (16)	0.0773
C24	0.23267 (16)	0.0020 (5)	0.14836 (15)	0.0752
C23	0.23237 (15)	0.1925 (6)	0.06886 (15)	0.0846
H121	0.6732	0.4839	0.3504	0.0625*
H131	0.5138	0.3963	0.3372	0.0889*
H132	0.4884	0.6336	0.2675	0.0894*
H141	0.5514	0.6690	0.4633	0.1089*
H142	0.4882	0.8755	0.4054	0.1088*
H151	0.6820	0.8860	0.4183	0.0917*
H152	0.6191	1.0139	0.3349	0.0923*
H221	0.3435	0.3886	0.1421	0.0646*
H251	0.3778	0.0052	0.2178	0.0935*
H252	0.3650	-0.1418	0.1190	0.0938*
H241	0.2105	0.0777	0.2026	0.0910*
H242	0.1995	-0.1578	0.1341	0.0915*
H231	0.1894	0.3458	0.0706	0.1014*
H232	0.2216	0.1046	0.0084	0.1013*
H211	0.4070 (17)	0.435 (2)	0.0116 (15)	0.0744*
H1	0.6198 (15)	0.303 (3)	0.1417 (16)	0.1011*
H2	0.5447 (9)	0.202 (5)	0.0966 (18)	0.1017*
H212	0.4029 (16)	0.142 (3)	-0.0039 (13)	0.0737*
H111	0.7268 (7)	0.634 (4)	0.2227 (14)	0.0715*
H112	0.6347 (14)	0.767 (3)	0.1950 (14)	0.0719*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N11	0.0650 (9)	0.0589 (9)	0.0525 (8)	-0.0002 (7)	0.0051 (7)	-0.0081 (7)
C12	0.0524 (9)	0.0517 (9)	0.0517 (9)	0.0010 (7)	0.0018 (7)	-0.0005 (7)
C13	0.0556 (11)	0.0703 (13)	0.0975 (15)	-0.0014 (9)	0.0131 (10)	-0.0004 (12)
C14	0.0908 (16)	0.0859 (16)	0.0964 (16)	0.0068 (13)	0.0448 (13)	-0.0057 (14)
C15	0.0918 (15)	0.0652 (12)	0.0728 (13)	-0.0111 (10)	0.0278 (11)	-0.0215 (10)
01	0.0712 (9)	0.0643 (9)	0.0741 (9)	0.0055 (7)	0.0025 (7)	-0.0171 (7)
N21	0.0700 (10)	0.0620 (10)	0.0558 (8)	-0.0048 (8)	0.0120 (7)	0.0000 (8)
C22	0.0667 (10)	0.0482 (9)	0.0447 (8)	0.0021 (8)	0.0054 (7)	-0.0016 (7)
C25	0.0811 (14)	0.0738 (14)	0.0764 (13)	0.0088 (11)	0.0073 (10)	0.0255 (11)
C24	0.0802 (14)	0.0782 (15)	0.0694 (13)	-0.0122 (11)	0.0181 (10)	0.0092 (11)
C23	0.0596 (11)	0.122 (2)	0.0709 (12)	0.0029(12)	0.0025 (9)	0.0293 (13)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

N11—C12	1.446 (2)	O1—H2	0.819 (10)	
N11—H111	0.896 (9)	N21—C22	1.439 (2)	
N11—H112	0.892 (9)	N21—H211	0.892 (9)	
C12—C13	1.516 (3)	N21—H212	0.892 (9)	
C12—C15	1.526 (3)	C22—C25	1.502 (3)	
C12—H121	1.001	C22—C23	1.520 (3)	
C13—C14	1.527 (4)	C22—H221	0.980	
С13—Н131	0.977	C25—C24	1.525 (3)	
С13—Н132	0.980	C25—H251	0.996	
C14—C15	1.506 (3)	C25—H252	0.960	
C14—H141	0.955	C24—C23	1.520 (3)	
C14—H142	0.955	C24—H241	0.966	
C15—H151	0.954	C24—H242	0.963	
C15—H152	0.944	C23—H231	1.004	
01—H1	0.817 (10)	C23—H232	0.983	
C12—N11—H111	111.2 (14)	C22—N21—H211	113.2 (15)	
C12—N11—H112	104.5 (14)	C22—N21—H212	108.5 (14)	
H111—N11—H112	111.5 (19)	H211—N21—H212	120 (2)	
N11—C12—C13	118.15 (16)	N21—C22—C25	118.13 (17)	
N11—C12—C15	121.58 (16)	N21—C22—C23	122.83 (15)	
C13—C12—C15	87.84 (15)	C25—C22—C23	88.44 (17)	
N11-C12-H121	109.1	N21—C22—H221	108.3	
C13—C12—H121	107.7	C25—C22—H221	109.7	
C15—C12—H121	110.6	C23—C22—H221	107.8	
C12—C13—C14	88.64 (17)	C22—C25—C24	89.49 (16)	
C12-C13-H131	115.0	C22—C25—H251	115.2	
C14—C13—H131	115.2	C24—C25—H251	115.9	
С12—С13—Н132	111.1	C22—C25—H252	110.5	
C14—C13—H132	115.1	C24—C25—H252	113.2	
H131—C13—H132	110.4	H251—C25—H252	111.0	

C13—C14—C15 C13—C14—H141 C15—C14—H141 C13—C14—H142 C15—C14—H142 H141—C14—H142 C12—C15—C14 C12—C15—C14 C12—C15—H151 C14—C15—H151 C12—C15—H152	88.14 (16) 111.9 114.9 114.2 115.8 110.3 89.01 (17) 114.3 114.0 114.2	C25—C24—C23 C25—C24—H241 C23—C24—H241 C25—C24—H242 C23—C24—H242 H241—C24—H242 C22—C23—C24 C22—C23—C24 C22—C23—H231 C24—C23—H231 C22—C23—H232	87.61 (15) 113.1 112.4 116.7 116.6 109.2 89.02 (15) 115.4 116.3 111.8
C14—C15—H151 C12—C15—H152 C14—C15—H152 H151—C15—H152 H1—O1—H2	114.0 114.2 114.5 109.8 103 (2)	C24—C23—H231 C22—C23—H232 C24—C23—H232 H231—C23—H232	116.3 111.8 110.9 111.6

Hydrogen-bond geometry (Å, °)

	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
01—H1…N11	0.82 (1)	2.08 (1)	2.895 (2)	174 (3)
O1—H2···N21	0.82 (1)	2.07 (1)	2.880 (3)	174 (3)