metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ritu Bala,^a Alan R. Kennedy,^b Kalpna Saneja^a and Raj Pal Sharma^a*

^aChemistry Department, Panjab University, Chandigarh 160 014, India, and ^bWestCHEM, Department of Pure & Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland

Correspondence e-mail: rpsharmapu@yahoo.co.in

Key indicators

Single-crystal X-ray study T = 123 K Mean σ (C–C) = 0.009 Å Disorder in main residue R factor = 0.041 wR factor = 0.067 Data-to-parameter ratio = 18.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 $\ensuremath{\mathbb{C}}$ 2006 International Union of Crystallography All rights reserved

catena-Poly[benzyltrimethylammonium [cadmium(II)-tri-µ₂-thiocyanato]]

The title compound, $\{(C_{10}H_{16}N)[Cd(SCN)_3]\}_n$, contains $[(C_6H_5CH_2)N(CH_3)_3]^+$ cations lying between one-dimensional chains of stoichiometry $\{[Cd(SCN)_3]^-\}_n$. Each Cd^{II} ion is 3N,3S-hexacoordinated by thiocyanate ligands, in an octahedral *fac* arrangement. The asymmetric unit contains two cations and two anions.

Comment

In recent years, studies of the synthesis and properties of semiconductor materials such as CdS and CdSe have become an area of interest owing to the great scope for fundamental understanding of materials as well as potential technological applications (Zhang et al., 1999), such as light-emitting devices, non-linear optical devices, solar cells and biological labels. As a result, the search for new precursors, such as salts containing $[Cd(SCN)_3]^-$, is receiving much attention. As the d^{10} configuration and softness of Cd^{II} permit a wide variety of geometries and coordination numbers, especially with the ambidentate ligand thiocyanate (SCN⁻), various structural types have been observed. Which structural type occurs depends on the size, shape and symmetry of the countercations and also on the ratio of Cd²⁺ to SCN⁻ ions. Thus, the structures of a number of one-dimensional single chains (Zhang et al., 2001), two-dimensional networks (Zhang et al., 1997) and three-dimensional structures (Thiele & Messer, 1980) have been reported and reviewed (Sun et al., 2001). Of special interest are the low-dimensional structural motifs, since these relate to highly anisotropic physical properties. In continuation of our interest in the supramolecular chemistry of salts of simple metal complexes (Sharma et al., 2005, 2006), the synthesis and characterization of the title compound, (I), was undertaken.

For (I), structure determination revealed the presence of four crystallographically independent components in the solid state: two $[(C_6H_5CH_2)N(CH_3)_3]^+$ cations and two $[Cd(SCN)_3]^-$ anions (Fig. 1). Each Cd^{II} ion is 3N,3S-hexa-coordinated, and adopts a slightly deformed *fac* octahedral geometry. Thus, each S atom is *trans* to an N atom. One of the thiocyanate ions (S6/C6/N6) appears to be rotationally disordered about its central C atom, which modifies the Cd^{II}

Received 1 June 2006 Accepted 14 June 2006

m1630 Sharma et al. • $(C_{10}H_{16}N)[Cd(SCN)_3]$

31141 measured reflections

Flack parameter: -0.04(2)

 $R_{\rm int} = 0.060$

 $\theta_{\rm max} = 27.1^\circ$

7120 independent reflections

5777 reflections with $I > 2\sigma(I)$

Figure 1

The contents of the asymmetric unit of (I), with displacement ellipsoids drawn at the 50% probability level for non-H atoms. The minor disorder component is indicated by dashed bonds.

Figure 2

The polymeric ${[Cd(SCN)_3]}_n$ chains extending along the *b*-axis direction.

coordination geometry at 9% of the Cd2 metal sites. Both the Cd-S and Cd-N bond lengths show considerable variation (Table 1). Similar distances (Cd-S = 2.688-2.743 Å and Cd-N = 2.279 - 2.379 Å) are observed in [(CH₃)₄N][Cd(SCN)₃], which is also 3N,3S-coordinated (Kuniyasu et al., 1987). The average Cd-N-C and Cd-S-C angles in (I) (142.11 and 98.93°, respectively) are also comparable with those in $[(CH_3)_4N][Cd(SCN)_3]$. The $\{[Cd(SCN)_3]^-\}_n$ chains (Fig. 2) propagate along the *b*-axis direction, with [Cd(SCN)₆] octahedra linked in a face-sharing manner via the shared SCN⁻ ligands. The $[(C_6H_5CH_2)N(CH_3)_3]^+$ cations occupy positions between the chains. It is generally believed that the relative arrangement of the anionic $\{ [Cd(SCN)_3]^{-} \}_n$ chains is strongly influenced by the size and shape of the cation. With larger cations, parallel alignment of the $\{[Cd(SCN)_3]^-\}_n$ chains is expected; this is observed in (I).

Experimental

Analytical grade reagents were used without any further purification. Benzyltrimethylammonium chloride (1.0 g, 0.005 mol) was dissolved in 10 ml water, while CdCl₂ (0.98 g, 0.004 mol) and ammonium thiocyanate (1.22 g, 0.016 mol) were dissolved in 20 ml water by mechanical stirring. The solutions were mixed and a curd-like white solid precipitated immediately. This was filtered off and dried in air. Crystals of (I) were obtained after redissolving the white solid in an acetone–water mixture (1:1) at room temperature. The salt decomposes at 393 K and is insoluble in organic solvents (C₂H₅OH, CCl₄ and CH₃Cl), but soluble in DMSO and hot water. IR (KBr, ν , cm⁻¹): 2116 (*s*), 2087 (*s*, SCN), 1660 (*m*), 1553 (*m*), 1081 (*s*), 1028 (*s*), 1002 (*s*). ¹H NMR (*d*₆-DMSO, 298 K): δ 7.2 (*s*, 5H, HAr), 4.2 (*s*, 2H, ArCH₂), 2.6 (*s*, 9H, CH₃). ¹³C NMR (*d*₆-DMSO, 298 K): δ 128–133 (Ar), 126 (SCN), 68 (ArC), 25 (CH₃).

Crystal data

Data collection

Nonius KappaCCD diffractometer φ and ω scans Absorption correction: multi-scan (SORTAV; Blessing, 1997) $T_{\min} = 0.880, T_{\max} = 0.908$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0138P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.041$	+ 2.3495 <i>P</i>]
$vR(F^2) = 0.067$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} = 0.001$
120 reflections	$\Delta \rho_{\rm max} = 0.92 \text{ e } \text{\AA}^{-3}$
94 parameters	$\Delta \rho_{\rm min} = -0.57 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	Absolute structure: Flack (1983),
	3074 Friedel pairs

Table 1Selected geometric parameters (Å, $^{\circ}$).

Cd1-N1 ⁱ	2.293 (5)	Cd2-N4 ⁱⁱⁱ	2.294 (5)
Cd1-N3 ⁱⁱ	2.320 (5)	Cd2-N5 ^{iv}	2.341 (5)
Cd1-N2 ⁱⁱ	2.369 (5)	Cd2-N6 ^{iv}	2.361 (6)
Cd1-S3	2.6749 (15)	Cd2-S5	2.6925 (15)
Cd1-S1	2.7231 (15)	Cd2-S4	2.7097 (15)
Cd1-S2	2.7350 (15)	Cd2-S6	2.762 (2)
C1-S1-Cd1	94.81 (18)	C2-N2-Cd1 ⁱ	144.8 (4)
C2-S2-Cd1	99.67 (17)	C3-N3-Cd1 ⁱ	146.7 (4)
C3-S3-Cd1	99.07 (18)	C4-N4-Cd2 ^{iv}	155.3 (4)
C4-S4-Cd2	95.24 (18)	C5-N5-Cd2 ⁱⁱⁱ	149.3 (4)
C5-S5-Cd2	98.12 (18)	C6-S6-Cd2	102.2 (2)
C1-N1-Cd1 ⁱⁱ	155.1 (4)	C6-N6-Cd2 ⁱⁱⁱ	140.2 (6)
Symmetry codes: (i)	$-r \pm 1$ $v \pm \frac{1}{2}$	r = 1; (ii) $-r + 1$ y =	$\frac{1}{2}$ - 7 - 1: (iii)

Symmetry codes: (1) $-x + 1, y + \frac{1}{2}, -z - 1$; (11) $-x + 1, y - \frac{1}{2}, -z - 1$; (11) $-x + 2, y - \frac{1}{2}, -z$; (iv) $-x + 2, y + \frac{1}{2}, -z$.

One SCN⁻ ligand (S6/C6/N6) was modelled as disordered by a rotation about the C atom, giving two S and two N sites. The site occupancies of the two components were refined to 0.911 (7):0.089 (7). All H atoms were placed in geometrically idea-

lized positions and refined using a riding model: C-H = 0.95 Å for CH, 0.99 Å for CH₂ and 0.98 Å for CH₃; $U_{iso}(H) = 1.2U_{eq}(C)$ for CH and CH₂, and $U_{iso}(H) = 1.5U_{eq}(C)$ for CH₃. We have noted that many crystals from the sample were twinned so that they appeared *C*-centred monoclinic.

Data collection: *COLLECT* (Hooft, 1988) and *DENZO* (Otwinowski & Minor, 1997); cell refinement: *DENZO* and *COLLECT*; data reduction: *DENZO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

RB thanks the CSIR, New Delhi, India, for providing financial support for this work.

References

Blessing, R. H. (1997). J. Appl. Cryst. **30**, 421–426. Flack, H. D. (1983). Acta Cryst. A**39**, 876–881. Hooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.

- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kuniyasu, Y., Suzuli, Y., Taniguchi, M. & Ouchi, A. (1987). Bull. Chem. Soc. Jpn, 60, 179–183.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp 307–326. New York: Academic Press.
- Sharma, R. P., Bala, R., Sharma, R., Vermani, B. K., Gill, D. S. & Venugopalan, P. (2005). *J. Coord. Chem.* 58, 309–316.
- Sharma, R. P., Sharma, R., Bala, R., Vermani, B. K., Gill, D. S., Salas, J. M. & Quiros, M. (2006). J. Mol. Struct. 784, 222–227.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sun, D., Cao, R., Liang, Y., Shi, Q., Su, W. & Hong, M. (2001). J. Chem. Soc. Dalton Trans. pp. 2335–2340.
- Thiele, G. & Messer, D. (1980). Z. Anorg. Allg. Chem. 464, 255-267.
- Zhang, H., Wang, X., Zelmon, D. E. & Teo, B. K. (2001). Inorg. Chem. 40, 1501–1507.
- Zhang, H., Wang, X., Zhang, K. & Teo, B. K. (1999). Coord. Chem. Rev. 183, 157–195.
- Zhang, H., Wang, X., Zhu, H., Xiao, W. & Teo, B. K. (1997). J. Am. Chem. Soc. 119, 5463–5464.

Acta Cryst. (2006). E62, m1630–m1632 [https://doi.org/10.1107/S1600536806022938]

catena-Poly[benzyltrimethylammonium [cadmium(II)-tri-µ₂-thiocyanato]]

Ritu Bala, Alan R. Kennedy, Kalpna Saneja and Raj Pal Sharma

catena-Poly[benzyltrimethylammonium [cadmium(II)-tri-µ2-thiocyanato]]

Crystal data

 $\begin{array}{l} (C_{10}H_{16}N)[Cd(SCN)_{3}]\\ M_{r} = 436.88\\ Monoclinic, P2_{1}\\ Hall symbol: P 2yb\\ a = 9.9668 (3) Å\\ b = 10.8210 (3) Å\\ c = 16.5299 (5) Å\\ \beta = 102.351 (2)^{\circ}\\ V = 1741.50 (9) Å^{3}\\ Z = 4 \end{array}$

Data collection

Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (SORTAV; Blessing, 1997) $T_{\min} = 0.880, T_{\max} = 0.908$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.067$ S = 1.067120 reflections 394 parameters 1 restraint Primary atom site location: structure-invariant direct methods F(000) = 872 $D_x = 1.666 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 23608 reflections $\theta = 1.0-27.1^{\circ}$ $\mu = 1.61 \text{ mm}^{-1}$ T = 123 KNeedle, colourless $0.35 \times 0.08 \times 0.06 \text{ mm}$

31141 measured reflections 7120 independent reflections 5777 reflections with $I > 2\sigma(I)$ $R_{int} = 0.060$ $\theta_{max} = 27.1^{\circ}, \theta_{min} = 1.3^{\circ}$ $h = -12 \rightarrow 12$ $k = -13 \rightarrow 13$ $l = -21 \rightarrow 21$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0138P)^2 + 2.3495P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.92$ e Å⁻³ $\Delta\rho_{min} = -0.57$ e Å⁻³ Absolute structure: Flack (1983) Absolute structure parameter: -0.04 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cd1	0.54939 (4)	1.08483 (3)	-0.48099 (2)	0.02172 (11)	
Cd2	1.04903 (4)	0.95438 (3)	0.00501 (2)	0.02304 (12)	
S 1	0.75935 (15)	0.93665 (14)	-0.40456 (10)	0.0332 (4)	
S2	0.73753 (15)	1.21949 (14)	-0.54232 (10)	0.0324 (4)	
S3	0.58885 (15)	1.21984 (14)	-0.34235 (9)	0.0289 (3)	
S4	1.24706 (14)	1.09470 (15)	-0.03894 (10)	0.0347 (4)	
S5	1.25651 (15)	0.81422 (14)	0.08814 (10)	0.0322 (4)	
N1	0.6246 (5)	0.7116 (5)	-0.4534 (3)	0.0304 (12)	
N2	0.6041 (4)	1.4486 (5)	-0.5656 (3)	0.0301 (11)	
N3	0.4838 (5)	1.4480 (5)	-0.4084 (3)	0.0308 (11)	
N4	1.1085 (5)	1.3203 (4)	-0.0389 (3)	0.0294 (11)	
N5	1.1295 (4)	0.5817 (5)	0.0633 (3)	0.0282 (10)	
N7	0.9758 (5)	1.5170 (4)	-0.3537 (3)	0.0278 (12)	
N8	1.4800 (5)	1.3837 (5)	0.1731 (3)	0.0277 (12)	
C1	0.6774 (5)	0.8053 (5)	-0.4350 (3)	0.0245 (13)	
C2	0.6582 (5)	1.3533 (5)	-0.5551 (3)	0.0205 (12)	
C3	0.5262 (5)	1.3537 (5)	-0.3828 (3)	0.0216 (12)	
C4	1.1641 (6)	1.2271 (5)	-0.0387 (3)	0.0276 (13)	
C5	1.1788 (5)	0.6776 (5)	0.0729 (3)	0.0231 (12)	
C6	0.9806 (6)	0.6968 (6)	-0.1253 (3)	0.0275 (13)	
C7	1.0872 (5)	1.4559 (6)	-0.2890 (3)	0.0269 (12)	
H7A	1.1773	1.4901	-0.2937	0.032*	
H7B	1.0724	1.4774	-0.2333	0.032*	
C8	1.0916 (5)	1.3183 (5)	-0.2964 (3)	0.0246 (12)	
С9	1.1779 (5)	1.2627 (6)	-0.3405 (4)	0.0342 (15)	
Н9	1.2359	1.3122	-0.3660	0.041*	
C10	1.1805 (6)	1.1351 (6)	-0.3480 (4)	0.0431 (18)	
H10	1.2400	1.0974	-0.3786	0.052*	
C11	1.0970 (6)	1.0634 (6)	-0.3112 (4)	0.0429 (19)	
H11	1.0968	0.9761	-0.3176	0.051*	
C12	1.0144 (6)	1.1170 (6)	-0.2653 (4)	0.0394 (16)	
H12	0.9588	1.0668	-0.2386	0.047*	
C13	1.0112 (6)	1.2443 (5)	-0.2575 (4)	0.0334 (15)	
H13	0.9536	1.2810	-0.2253	0.040*	
C14	0.8361 (5)	1.4800 (5)	-0.3441 (4)	0.0417 (17)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H14A	0.7669	1.5279	-0.3826	0.063*	
H14B	0.8272	1.4960	-0.2872	0.063*	
H14C	0.8223	1.3917	-0.3564	0.063*	
C15	0.9914 (7)	1.4849 (6)	-0.4392 (4)	0.0453 (18)	
H15A	0.9195	1.5265	-0.4798	0.068*	
H15B	0.9830	1.3953	-0.4471	0.068*	
H15C	1.0818	1.5120	-0.4466	0.068*	
C16	0.9914 (7)	1.6546 (6)	-0.3426 (4)	0.0325 (16)	
H16A	0.9700	1.6785	-0.2896	0.049*	
H16B	0.9283	1.6966	-0.3879	0.049*	
H16C	1.0861	1.6784	-0.3432	0.049*	
C17	1.6052 (5)	1.3104 (5)	0.2175 (3)	0.0304 (14)	
H17A	1.6892	1.3514	0.2078	0.036*	
H1 7 B	1.6087	1.3125	0.2778	0.036*	
C18	1.6058 (5)	1.1769 (5)	0.1900 (3)	0.0254 (13)	
C19	1.6736 (6)	1.1449 (6)	0.1271 (4)	0.0298 (14)	
H19	1.7156	1.2072	0.1004	0.036*	
C20	1.6796 (6)	1.0236 (6)	0.1038 (4)	0.0283 (14)	
H20	1.7275	1.0022	0.0619	0.034*	
C21	1.6171 (6)	0.9331 (6)	0.1405 (3)	0.0302 (14)	
H21	1.6222	0.8495	0.1239	0.036*	
C22	1.5470 (6)	0.9625 (7)	0.2011 (3)	0.0315 (14)	
H22	1.5010	0.8999	0.2250	0.038*	
C23	1.5441 (5)	1.0826 (6)	0.2268 (3)	0.0307 (13)	
H23	1.4993	1.1021	0.2705	0.037*	
C24	1.3513 (6)	1.3350 (8)	0.1914 (5)	0.062 (2)	
H24A	1.3357	1.2507	0.1698	0.093*	
H24B	1.2743	1.3878	0.1652	0.093*	
H24C	1.3584	1.3342	0.2515	0.093*	
C25	1.4688 (7)	1.3821 (6)	0.0818 (4)	0.0435 (17)	
H25A	1.3919	1.4346	0.0550	0.065*	
H25B	1.4530	1.2973	0.0612	0.065*	
H25C	1.5542	1.4135	0.0690	0.065*	
C26	1.5050 (8)	1.5163 (6)	0.2024 (5)	0.057 (2)	
H26A	1.5179	1.5193	0.2628	0.085*	
H26B	1.4257	1.5672	0.1772	0.085*	
H26C	1.5874	1.5481	0.1861	0.085*	
S 6	1.02410 (17)	0.83781 (15)	-0.14613 (13)	0.0269 (6)	0.911 (7)
N6	0.9539 (8)	0.5939 (6)	-0.1144 (4)	0.0315 (13)	0.911 (7)
S6A	0.890 (2)	0.586 (2)	-0.1443 (11)	0.020 (5)*	0.089 (7)
N6A	1.012 (6)	0.816 (6)	-0.106 (4)	0.026 (15)*	0.089 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.0238 (3)	0.0129 (2)	0.0283 (2)	0.0003 (2)	0.00529 (18)	-0.00081 (19)
Cd2	0.0250 (3)	0.0116 (2)	0.0341 (2)	0.0008 (2)	0.00975 (19)	-0.00035 (19)
S1	0.0286 (8)	0.0151 (8)	0.0492 (10)	-0.0008 (7)	-0.0069 (7)	0.0002 (7)

Acta Cryst. (2006). E62, m1630-m1632

S2	0.0312 (8)	0.0200 (8)	0.0515 (10)	0.0061 (7)	0.0211 (8)	0.0064 (7)
S3	0.0395 (8)	0.0176 (8)	0.0287 (8)	-0.0013 (7)	0.0052 (7)	0.0011 (6)
S4	0.0292 (8)	0.0170 (8)	0.0629 (10)	0.0011 (8)	0.0215 (7)	-0.0004 (8)
S5	0.0293 (8)	0.0170 (8)	0.0449 (10)	-0.0048 (7)	-0.0043 (7)	0.0013 (7)
N1	0.031 (3)	0.015 (3)	0.037 (3)	0.002 (2)	-0.010 (2)	0.004 (2)
N2	0.027 (2)	0.021 (3)	0.046 (3)	0.000 (3)	0.015 (2)	0.010 (3)
N3	0.047 (3)	0.022 (3)	0.024 (3)	0.003 (3)	0.008 (2)	0.003 (3)
N4	0.036 (3)	0.012 (3)	0.045 (3)	-0.002(2)	0.019 (2)	0.002 (2)
N5	0.025 (2)	0.012 (2)	0.048 (3)	-0.007(2)	0.010 (2)	-0.006(3)
N7	0.022 (3)	0.021 (3)	0.040 (3)	-0.002(2)	0.004 (2)	0.002 (2)
N8	0.031 (3)	0.024 (3)	0.028 (3)	0.010 (2)	0.004 (2)	-0.001 (2)
C1	0.022 (3)	0.017 (3)	0.033 (3)	0.010 (3)	0.003 (2)	0.002 (3)
C2	0.019 (3)	0.025 (3)	0.021 (3)	-0.003 (3)	0.010 (2)	0.002 (2)
C3	0.026 (3)	0.022 (3)	0.017 (3)	-0.004 (3)	0.005 (2)	-0.004 (2)
C4	0.036 (3)	0.018 (3)	0.033 (3)	-0.012 (3)	0.016 (3)	0.001 (3)
C5	0.019 (3)	0.026 (3)	0.024 (3)	0.005 (3)	0.002 (2)	-0.002 (3)
C6	0.035 (3)	0.026 (4)	0.024 (3)	0.004 (3)	0.013 (3)	0.001 (3)
C7	0.021 (3)	0.028 (3)	0.029 (3)	-0.003 (3)	0.000 (2)	-0.007 (3)
C8	0.020 (3)	0.021 (3)	0.031 (3)	0.005 (3)	0.003 (2)	-0.005 (3)
C9	0.013 (3)	0.043 (4)	0.045 (4)	0.000 (3)	0.004 (3)	-0.011 (3)
C10	0.025 (4)	0.035 (4)	0.066 (5)	0.006 (3)	0.001 (3)	-0.023 (3)
C11	0.038 (4)	0.021 (4)	0.057 (5)	0.006 (3)	-0.018 (3)	-0.008 (3)
C12	0.042 (4)	0.025 (4)	0.045 (4)	0.001 (3)	-0.004 (3)	0.009 (3)
C13	0.039 (4)	0.029 (4)	0.030 (3)	0.008 (3)	0.001 (3)	0.002 (3)
C14	0.021 (3)	0.018 (4)	0.082 (5)	0.001 (3)	0.003 (3)	0.013 (3)
C15	0.074 (5)	0.029 (4)	0.029 (4)	-0.012 (3)	0.004 (3)	-0.010 (3)
C16	0.034 (4)	0.021 (4)	0.045 (4)	0.002 (3)	0.015 (3)	0.001 (3)
C17	0.025 (3)	0.036 (4)	0.027 (3)	0.007 (3)	0.000 (3)	-0.002 (3)
C18	0.022 (3)	0.026 (3)	0.026 (3)	0.000 (3)	0.000 (3)	-0.004 (3)
C19	0.025 (3)	0.033 (4)	0.032 (4)	-0.006 (3)	0.008 (3)	-0.001 (3)
C20	0.024 (3)	0.035 (4)	0.026 (3)	-0.002 (3)	0.008 (3)	-0.006 (3)
C21	0.037 (4)	0.020 (4)	0.030 (3)	0.001 (3)	-0.002 (3)	-0.004 (3)
C22	0.035 (4)	0.028 (4)	0.030 (3)	-0.007 (3)	0.004 (3)	0.001 (3)
C23	0.028 (3)	0.039 (4)	0.024 (3)	0.007 (3)	0.004 (2)	0.002 (3)
C24	0.032 (4)	0.070 (5)	0.092 (6)	0.015 (4)	0.033 (4)	0.018 (5)
C25	0.057 (4)	0.034 (4)	0.034 (4)	0.004 (3)	-0.002 (3)	0.003 (3)
C26	0.063 (5)	0.035 (4)	0.061 (5)	0.024 (4)	-0.010 (4)	-0.015 (4)
S6	0.0374 (10)	0.0153 (9)	0.0305 (13)	0.0010 (8)	0.0127 (8)	0.0029 (7)
N6	0.035 (4)	0.020 (3)	0.039 (3)	0.001 (3)	0.007 (3)	0.004 (3)

Geometric parameters (Å, °)

Cd1—N1 ⁱ	2.293 (5)	C8—C13	1.385 (8)	
Cd1—N3 ⁱⁱ	2.320 (5)	C9—C10	1.387 (8)	
Cd1—N2 ⁱⁱ	2.369 (5)	С9—Н9	0.950	
Cd1—S3	2.6749 (15)	C10—C11	1.373 (9)	
Cd1—S1	2.7231 (15)	C10—H10	0.950	
Cd1—S2	2.7350 (15)	C11—C12	1.362 (9)	

Cd2—N4 ⁱⁱⁱ	2.294 (5)	C11—H11	0.950
Cd2—N6A	2.34 (6)	C12—C13	1.385 (8)
Cd2—N5 ^{iv}	2.341 (5)	C12—H12	0.950
Cd2—N6 ^{iv}	2.361 (6)	С13—Н13	0.950
Cd2—S6A ^{iv}	2.664 (19)	C14—H14A	0.980
Cd2—S5	2.6925 (15)	C14—H14B	0.980
Cd2—S4	2.7097 (15)	C14—H14C	0.980
Cd2—S6	2.762 (2)	C15—H15A	0.980
S1—C1	1.663 (6)	C15—H15B	0.980
S2—C2	1.642 (6)	С15—Н15С	0.980
S3—C3	1.661 (6)	C16—H16A	0.980
S4—C4	1.654 (6)	С16—Н16В	0.980
S5—C5	1.663 (6)	C16—H16C	0.980
N1—C1	1.152 (7)	C17—C18	1.514 (8)
N1—Cd1 ⁱⁱ	2 293 (5)	C17—H17A	0.990
N2—C2	1 159 (7)	C17—H17B	0.990
N_2 —Cd1 ⁱ	2 369 (5)	C18 - C23	1 396 (8)
N3—C3	1.150(7)	C18 - C19	1.590(0) 1.400(7)
$N_3 - C_3$	1.130(7) 2 320(5)	C19 - C20	1.400(7) 1.373(7)
NA CA	2.320(3) 1 150(7)	$C_{10} = C_{20}$	0.050
$N4 Cd2^{iv}$	1.130(7)	C_{19} C_{20} C_{21}	1 360 (8)
N4—Cu2	2.294(3)	C_{20} H_{20}	1.309 (8)
N5 Cd2iii	1.143(7)	C_{20}	0.930 1 277 (7)
N7 C14	2.341(3)	$C_{21} = C_{22}$	1.377(7)
N/	1.490 (7)	C21—H21	0.950
N/	1.495 (7)	C22—C23	1.370 (9)
N/	1.504 (7)	C22—H22	0.950
N/—C/	1.517 (7)	C23—H23	0.950
N8—C24	1.478 (8)	С24—Н24А	0.980
N8—C25	1.489 (7)	С24—Н24В	0.980
N8—C26	1.518 (8)	C24—H24C	0.980
N8—C17	1.527 (7)	C25—H25A	0.980
C6—N6	1.168 (8)	C25—H25B	0.980
C6—N6A	1.35 (6)	C25—H25C	0.980
C6—S6A	1.50 (2)	C26—H26A	0.980
C6—S6	1.642 (6)	C26—H26B	0.980
C7—C8	1.496 (8)	C26—H26C	0.980
С7—Н7А	0.990	N6—Cd2 ⁱⁱⁱ	2.361 (6)
С7—Н7В	0.990	S6A—Cd2 ⁱⁱⁱ	2.664 (19)
C8—C9	1.379 (7)		
N1 ⁱ —Cd1—N3 ⁱⁱ	92.47 (17)	C13—C8—C7	120.5 (5)
N1 ⁱ —Cd1—N2 ⁱⁱ	92.87 (17)	C8—C9—C10	120.5 (6)
N3 ⁱⁱ —Cd1—N2 ⁱⁱ	82.29 (16)	С8—С9—Н9	119.8
N1 ⁱ —Cd1—S3	92.07 (12)	С10—С9—Н9	119.8
N3 ⁱⁱ —Cd1—S3	173.44 (13)	C11—C10—C9	119.9 (6)
N2 ⁱⁱ —Cd1—S3	92.76 (12)	C11—C10—H10	120.1
N1 ⁱ —Cd1—S1	178.92 (13)	C9—C10—H10	120.1
N3 ⁱⁱ —Cd1—S1	87.47 (13)	C12—C11—C10	120.2 (6)

N2 ⁱⁱ —Cd1—S1	88.19 (12)	C12—C11—H11	119.9
S3—Cd1—S1	88.08 (5)	C10-C11-H11	119.9
N1 ⁱ —Cd1—S2	90.88 (13)	C11—C12—C13	120.3 (6)
N3 ⁱⁱ —Cd1—S2	92.38 (12)	C11—C12—H12	119.9
N2 ⁱⁱ —Cd1—S2	173.60 (12)	C13—C12—H12	119.9
S3—Cd1—S2	92.28 (5)	C12—C13—C8	120.3 (6)
S1—Cd1—S2	88.05 (5)	С12—С13—Н13	119.8
N4 ⁱⁱⁱ —Cd2—N6A	77.7 (18)	C8—C13—H13	119.8
$N4^{iii}$ — $Cd2$ — $N5^{iv}$	90.04 (16)	N7—C14—H14A	109.5
N6A—Cd2—N5 ^{iv}	91.2 (15)	N7—C14—H14B	109.5
$N4^{iii}$ — $Cd2$ — $N6^{iv}$	95.52 (18)	H14A—C14—H14B	109.5
N6A—Cd2—N6 ^{iv}	170.4 (14)	N7—C14—H14C	109.5
$N5^{iv}$ —Cd2—N 6^{iv}	82.0 (2)	H14A—C14—H14C	109.5
$N4^{iii}$ — $Cd2$ — $S6A^{iv}$	99.7 (4)	H14B—C14—H14C	109.5
N6A—Cd2—S6A ^{iv}	171.9 (17)	N7—C15—H15A	109.5
$N5^{iv}$ —Cd2—S6 A^{iv}	96.5 (5)	N7—C15—H15B	109.5
N4 ⁱⁱⁱ —Cd2—S5	90.59 (12)	H15A—C15—H15B	109.5
N6A—Cd2—S5	90.9 (15)	N7—C15—H15C	109.5
N5 ^{iv} —Cd2—S5	177.87 (13)	H15A—C15—H15C	109.5
N6 ^{iv} —Cd2—S5	95.9 (2)	H15B—C15—H15C	109.5
S6A ^{iv} —Cd2—S5	81.4 (5)	N7—C16—H16A	109.5
N4 ⁱⁱⁱ —Cd2—S4	174.82 (12)	N7—C16—H16B	109.5
N6A—Cd2—S4	98.5 (17)	H16A—C16—H16B	109.5
N5 ^{iv} —Cd2—S4	93.60 (12)	N7—C16—H16C	109.5
$N6^{iv}$ —Cd2—S4	88.64 (15)	H16A—C16—H16C	109.5
S6A ^{iv} —Cd2—S4	83.5 (4)	H16B—C16—H16C	109.5
S5—Cd2—S4	85.90 (5)	C18—C17—N8	114.0 (4)
N4 ⁱⁱⁱ —Cd2—S6	89.88 (12)	C18—C17—H17A	108.8
N6A—Cd2—S6	13.5 (18)	N8—C17—H17A	108.8
N5 ^{iv} —Cd2—S6	85.43 (12)	C18—C17—H17B	108.8
N6 ^{iv} —Cd2—S6	166.3 (2)	N8—C17—H17B	108.8
S6A ^{iv} —Cd2—S6	170.2 (4)	H17A—C17—H17B	107.7
S5—Cd2—S6	96.61 (5)	C23—C18—C19	118.1 (5)
S4—Cd2—S6	86.74 (5)	C23—C18—C17	122.4 (5)
C1—S1—Cd1	94.81 (18)	C19—C18—C17	119.5 (5)
C2—S2—Cd1	99.67 (17)	C20-C19-C18	120.1 (5)
C3—S3—Cd1	99.07 (18)	С20—С19—Н19	119.9
C4—S4—Cd2	95.24 (18)	C18—C19—H19	119.9
C5—S5—Cd2	98.12 (18)	C21—C20—C19	120.6 (5)
C1—N1—Cd1 ⁱⁱ	155.1 (4)	C21—C20—H20	119.7
C2—N2—Cd1 ⁱ	144.8 (4)	C19—C20—H20	119.7
C3—N3—Cd1 ⁱ	146.7 (4)	C20—C21—C22	120.5 (6)
C4—N4—Cd 2^{iv}	155.3 (4)	C20—C21—H21	119.8
C5—N5—Cd2 ⁱⁱⁱ	149.3 (4)	C22—C21—H21	119.8
C14—N7—C15	109.0 (5)	C23—C22—C21	119.5 (6)
C14—N7—C16	109.2 (5)	C23—C22—H22	120.2
C15—N7—C16	108.4 (5)	C21—C22—H22	120.2
C14—N7—C7	111.6 (4)	C22—C23—C18	121.2 (5)

C15—N7—C7	110.9 (4)	С22—С23—Н23	119.4
C16—N7—C7	107.7 (5)	C18—C23—H23	119.4
C24—N8—C25	108.9 (5)	N8—C24—H24A	109.5
C24—N8—C26	111.2 (6)	N8—C24—H24B	109.5
C25—N8—C26	107.8 (5)	H24A—C24—H24B	109.5
C24—N8—C17	111.8 (5)	N8—C24—H24C	109.5
$C_{25} N_{8} C_{17}$	111.0 (5)	H24A—C24—H24C	109.5
$C_{26} = N_{8} = C_{17}$	1060(5)	H_24B — C_24 — H_24C	109.5
N1-C1-S1	177.0(5)	N8—C25—H25A	109.5
$N_2 - C_2 - S_2$	178 2 (5)	N8-C25-H25B	109.5
N3_C3_S3	170.2(5) 177.9(5)	$H_{25}A = C_{25} = H_{25}B$	109.5
N4-C4-S4	177.9(5) 178.7(5)	N8-C25-H25C	109.5
N5_C5_\$5	177.7(5)	$H_{25}^{-} = H_{25}^{-} = H_{$	109.5
N6 C6 N6A	177.7 (3)	$H_{25R} = C_{25} = H_{25C}$	109.5
NGA CG SGA	156 (3)	$\frac{1125D}{125C}$	109.5
N6 C6 S6	150(5)	N8 C26 H26P	109.5
10 - 0 - 30	1/3.0(3)	$N_0 - C_{20} - H_{20B}$	109.5
S0A - C0 - S0	131.2(8)	$H_{20}A - C_{20} - H_{20}B$	109.5
$C_8 = C_7 = U_7 A$	114.0 (4)	$N_{0} = C_{20} = H_{20}C_{10}$	109.5
C_{8} C_{7} H_{7}	108.8	$H_{20}A - C_{20} - H_{20}C$	109.5
$N \longrightarrow H A$	108.8	H26B-C26-H26C	109.5
	108.8	C6—S6—Cd2	102.2 (2)
N/—C/—H/B	108.8	$C6-N6-Cd2^{m}$	140.2 (6)
H/A - C/ - H/B	107.7	$C6-S6A-Cd2^{m}$	103.4 (10)
C9—C8—C13	118.8 (5)	C6—N6A—Cd2	142 (5)
C9—C8—C7	120.7 (5)		
	40.4.(2)		170.0 (5)
$N3^{n}$ —CdI—SI—Cl	-40.4(2)	C/=C8=C9=C10	-1/9.2(5)
N2 ⁿ —Cd1—S1—C1	42.0 (2)	C8—C9—C10—C11	-0.1 (10)
S3—Cd1—S1—Cl	134.8 (2)	C9—C10—C11—C12	-1.9 (9)
S2—Cd1—S1—C1	-132.8 (2)	C10—C11—C12—C13	1.8 (9)
N1 ¹ —Cd1—S2—C2	26.0 (2)	C11—C12—C13—C8	0.2 (9)
$N3^n$ —Cd1—S2—C2	118.5 (2)	C9—C8—C13—C12	-2.1 (8)
S3—Cd1—S2—C2	-66.1 (2)	C7—C8—C13—C12	179.2 (5)
S1—Cd1—S2—C2	-154.1 (2)	C24—N8—C17—C18	64.1 (7)
$N1^{1}$ —Cd1—S3—C3	-24.4 (2)	C25—N8—C17—C18	-57.7 (6)
$N2^{n}$ —Cd1—S3—C3	-117.4 (2)	C26—N8—C17—C18	-174.6 (6)
$N5^{iv}$ —Cd2—S4—C4	32.0 (2)	N8—C17—C18—C23	-88.5 (6)
$N6^{iv}$ —Cd2—S4—C4	-49.9 (3)	N8—C17—C18—C19	93.3 (6)
S6A ^{iv} —Cd2—S4—C4	-64.1 (5)	C23—C18—C19—C20	-0.8 (8)
S5—Cd2—S4—C4	-145.9 (2)	C17—C18—C19—C20	177.4 (5)
S6—Cd2—S4—C4	117.2 (2)	C18—C19—C20—C21	1.4 (9)
N4 ⁱⁱⁱ —Cd2—S5—C5	31.1 (2)	C19—C20—C21—C22	0.1 (9)
N6A—Cd2—S5—C5	-46.6 (18)	C20—C21—C22—C23	-2.3 (8)
$N6^{iv}$ —Cd2—S5—C5	126.7 (2)	C21—C22—C23—C18	2.9 (8)
S6A ^{iv} —Cd2—S5—C5	130 8 (4)	C19—C18—C23—C22	-1.4(8)
C14 N7 C7 C8	150.0 (+)		
C14-N/-C/-C0	64.7 (6)	C17—C18—C23—C22	-179.5 (5)
C14—N7—C7—C8	64.7 (6) -57.1 (6)	C17—C18—C23—C22 N4 ⁱⁱⁱ —Cd2—S6—C6	-179.5 (5) -27.9 (2)

N7—C7—C8—C9	94.0 (6)	N6 ^{iv} —Cd2—S6—C6	-141.3 (7)
N7—C7—C8—C13	-87.4 (6)	S5—Cd2—S6—C6	62.6 (2)
C13—C8—C9—C10	2.1 (8)	S4—Cd2—S6—C6	148.1 (2)

Symmetry codes: (i) -x+1, y+1/2, -z-1; (ii) -x+1, y-1/2, -z-1; (iii) -x+2, y-1/2, -z; (iv) -x+2, y+1/2, -z.