Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Gaël Labat^a* and Joan Halfpenny^b

^aDepartment of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, England, and ^bDepartment of Chemistry and Physics, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, England

Correspondence e-mail: gael.labat@liv.ac.uk

Key indicators

Single-crystal X-ray study T = 153 K Mean σ (C–C) = 0.004 Å R factor = 0.043 wR factor = 0.108 Data-to-parameter ratio = 15.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Section E A thioph

A thiophene-based azacryptand Mannich base: 18,24-bis(p-tolylsulfonamido)-2,5,8,11,21-pentaoxa-15,27-dithia-18,24-diazatricyclo[24.3.0.0]nonacosa-1(26),12(16),13,28-tetraene

The title compound, $C_{34}H_{42}N_2O_9S_4$, is composed of two thiophene rings bridged by an $-O-(CH_2)_2-O-(CH_2)_2-O-(CH_2)_2-O-(CH_2)_2$ o – chain and a trisubstitued diamine with pendent tosyl rings. In the crystal structure, the molecules are stabilized by several intra- and intermolecular $C-H\cdots O$ interactions, forming a two-dimensional network arranged in the *ac* plane.

Comment

The title compound, (I), is similar to the macrocycle reported by Halfpenny & Sloman (2000), in that the bulky tosyl substituents may have a major effect on the macrocyclic ring geometry. Considering the important steric restrictions imposed in (I) by the thiophene and the tosyl rings, the flexibility must be even lower and the selectivity of this macrocycle higher than the benzyl analogue reported by Halfpenny & Sloman (2000) and Barker *et al.* (1993).

The molecule (I) can be divided into two similar parts through a local approximate C_2 axis passing through atom O5 and the mid-point of the C7-C8 bond (Fig. 1). The macrocyclic ring shows a non-planar conformation; the longest intramolecular distance between the two thiophene rings is 13.479 (4) Å for C4···C14 and the longest between the two tosyl rings is 9.983 (3) Å for $C25 \cdots C29$. The large separation of the two tosyl rings influences the geometry of the macrocyclic cavity by ensuring that the thiophene rings and therefore the O and N atoms do not lie in the same plane. The largest cross-cavity distances are $N1 \cdots O1 = 7.472$ (3) Å, $N2 \cdot \cdot \cdot O4 = 7.458$ (3) Å and $O1 \cdot \cdot \cdot O4 = 7.798$ (3) Å. The macrocyclic cavity can be divided in two smaller distorted tetrahedral cavities, defined by the potential donor atoms O5/ N1/O4/O3 and O5/N2/O1/O2. Their largest cross-cavity distances are N1···O3 = 5.085 (3) Å, O4···O5 = 4.619 (3) Å,

© 2006 International Union of Crystallography All rights reserved Received 7 June 2006 Accepted 24 June 2006

Figure 1

A view of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

The molecular packing of (I), viewed down the b axis. H atoms have been omitted unless these are involved in C-H···O interactions (dashed lines). [Symmetry codes: (i) x, 1 + y, z; (ii) -x, $y - \frac{1}{2}, \frac{3}{2} - z$; (iii) 1 - x, -y, 2 - z.]

 $N2 \cdots O2 = 5.304$ (3) Å and $O1 \cdots O5 = 4.597$ (2) Å. The macrocycle conformation of (I) is stabilized by intramolecular C-H···O interactions (Table 2). The molecules are linked by C-H···O interactions, forming a two-dimensional network in the ac plane (Fig. 2).

Experimental

Compound (I) was synthesized according to the procedure described by Chaffin et al. (2002). Crystals suitable for X-ray analysis were grown from a cyclohexane/methanol solution (1:1 v/v) by slow evaporation at 278 K.

> 7077 independent reflections 4692 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.0522P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

 $R_{\rm int}=0.116$

 $\theta_{\rm max} = 26.0^{\circ}$

 $(\Delta/\sigma)_{\rm max} = 0.001$

 $\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$

Crystal data

C34H42N2O9S4 Z = 4 $M_r = 750.94$ $D_x = 1.373 \text{ Mg m}^{-3}$ Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation a = 18.2875 (13) Å $\mu = 0.32 \text{ mm}^{-1}$ b = 9.0910(5) Å T = 153 (2) K c = 22.6813 (17) Å Block, colourless $\beta = 105.619 \ (9)^{\circ}$ $0.50 \times 0.50 \times 0.30 \ \mathrm{mm}$ V = 3631.6 (4) Å³

Data collection

Stoe IPDS diffractometer φ scans Absorption correction: none 27910 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.108$ S = 0.88 $\Delta \rho_{\rm max} = 0.44 \text{ e } \text{\AA}^{-3}$ 7077 reflections 444 parameters

Table 1

Selected geometric parameters (Å, °).

S1-C4	1.708 (3)	\$3-N1	1.620 (2)
S1-C1	1.722 (2)	\$3-C21	1.762 (2)
S2-C11	1.712 (3)	\$4-N2	1.6200 (19)
S2-C14	1.719 (3)	S4-C28	1.768 (2)
C4-S1-C1	92.06 (12)	C20-C1-S1	123.41 (17)
C11-S2-C14	92.06 (14)	C12-C11-C15	125.9 (2)
C2-C1-C20	126.3 (2)	C15-C11-S2	123.7 (2)
O1-C5-C6-O2	71.3 (3)	N1-C16-C17-O5	-168.6(2)
02-C7-C8-O3	-84.8(3)	O5-C18-C19-N2	68.5 (2)
O3-C9-C10-O4	-72.1(3)	S1-C1-C20-N2	92.0 (2)
S2-C11-C15-N1	-72.0 (3)		

Table 2 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C15-H15A····O4	0.99	2.54	2.941 (3)	104
C15−H15B···O6	0.99	2.45	2.914 (4)	108
C16-H16A···O7	0.99	2.36	2.828 (4)	108
C19−H19B···O8	0.99	2.34	2.859 (3)	112
C26-H26A···O6	0.95	2.56	2.923 (3)	103
C29-H29A···O9	0.95	2.50	2.885 (3)	104
C32-H32A···O7	0.95	2.57	3.386 (3)	145
C33-H33A···O5	0.95	2.59	3.450 (3)	151
$C13-H13A\cdots O6^{i}$	0.95	2.53	3.245 (4)	132
$C27 - H27B \cdots O8^{ii}$	0.98	2.58	3.463 (3)	149
$C29-H29A\cdots O9^{iii}$	0.95	2.48	3.221 (3)	135

Symmetry codes: (i) x, y + 1, z; (ii) $-x, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) -x + 1, -y, -z + 2.

H atoms were included in calculated positions and treated as riding atoms, with C-H = 0.95–0.99 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$, or $1.5U_{eq}(C)$ for methyl groups.

Data collection: *IPDS-I* (Stoe & Cie, 2000); cell refinement: *IPDS-I*; data reduction: *IPDS-I*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXL97*.

We thank Professor Helen Stoeckli-Evans (Neuchâtel) for making available the Stoe IPDS diffractometer for data collection.

References

- Barker, J. M., Chaffin, J. D. E., Halfpenny, J., Huddeston, P. R. & Tseki, P. F. (1993). J. Chem. Soc. Chem. Commun. pp. 1733–1734.
- Chaffin, J. D. E., Barker, J. M. & Huddleston, P. R. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 717–724.
- Halfpenny, J. & Sloman, Z. S. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 1877– 1879.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Stoe & Cie (2000). IPDS-I. Stoe & Cie, Darmstadt, Germany.

Acta Cryst. (2006). E62, o3087–o3089 [https://doi.org/10.1107/S1600536806024317]

A thiophene-based azacryptand Mannich base: 18,24-bis(*p*-tolyl-sulfonamido)-2,5,8,11,21-pentaoxa-15,27-dithia-18,24-diazatricyclo-[24.3.0.0]nonacosa-1(26),12(16),13,28-tetraene

Gaël Labat and Joan Halfpenny

18,24-bis(p-tolylsulfonamide)-2,5,8,11,21-pentaoxa-15,27-dithia-18,24diazatricyclo[24.3.0.0]nonacosa-1(26),12 (16),13,28-tetraene

Crystal data

C₃₄H₄₂N₂O₉S₄ $M_r = 750.94$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 18.2875 (13) Å b = 9.0910 (5) Å c = 22.6813 (17) Å $\beta = 105.619 (9)^{\circ}$ $V = 3631.6 (4) \text{ Å}^3$ Z = 4

Data collection

Stoe IPDS

diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 0.81Å pixels mm⁻¹ φ oscillation scans 27910 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.108$ S = 0.887077 reflections 444 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 1584 $D_x = 1.373 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8001 reflections $\theta = 1.7-26.1^{\circ}$ $\mu = 0.32 \text{ mm}^{-1}$ T = 153 KBlock, colorless $0.50 \times 0.50 \times 0.30 \text{ mm}$

7077 independent reflections 4692 reflections with $I > 2\sigma(I)$ $R_{int} = 0.116$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -22 \rightarrow 22$ $k = -11 \rightarrow 11$ $l = -27 \rightarrow 27$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0522P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.44$ e Å⁻³ $\Delta\rho_{min} = -0.43$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ х Zv **S**1 0.03915 (18) 0.87786 (3) 0.63246 (4) 0.10947 (9) S2 -0.04945(4)0.0465(2)0.11148(9)0.59600 (4) S3 0.09481(3)-0.23262(7)0.66381(3)0.03410 (16) S4 0.40997 (3) 0.15930(6) 0.88159 (2) 0.02415 (14) 0.53364 (9) 0.0928 (2) 01 0.70555(7) 0.0335(4)O2 0.44238(10)0.18169 (19) 0.58657(7)0.0329(4)03 0.27322(9)0.2796 (2) 0.54703 (8) 0.0336(4)04 0.11196 (11) 0.2617(2)0.53383(9)0.0426(5)O5 0.28638 (8) 0.1333(2)0.71479(7) 0.0303(4)06 0.07829(11) -0.3366(2)0.61450 (10) 0.0474(5)07 0.15329 (10) -0.2638(2)0.71908 (9) 0.0456 (5) 08 0.35785 (10) 0.28003 (19) 0.87440(8)0.0323(4)09 0.47933 (10) 0.92982(7)0.1675(2)0.0342(4)N1 -0.0815(2)0.63687 (9) 0.11995 (11) 0.0328 (5) 0.1321 (2) 0.0237 (4) N2 0.42678 (10) 0.81587 (8) C1 0.55972 (13) 0.0801(3)0.81273 (11) 0.0269(5)C2 0.1095 (3) 0.0281 (5) 0.58368 (13) 0.76200(11) C3 0.66082 (14) 0.1556(3)0.77493 (13) 0.0351 (6) 0.042* H3A 0.6858 0.1818 0.7447 C4 0.0414(7)0.69394(15)0.1571(3)0.83619(13) H4A 0.7457 0.1818 0.8539 0.050* C5 0.56219 (14) 0.1112(3)0.65329(11) 0.0315(5)H5B 0.6067 0.0466 0.6566 0.038* H5A 0.038* 0.5781 0.2145 0.6504 0.49965 (15) C6 0.0714(3)0.59777 (12) 0.0344(6)0.041* H6B 0.5203 0.0623 0.5618 0.6043 0.041* H6A 0.4775 -0.0247C7 0.38147 (15) 0.1422(3)0.53506(11) 0.0362 (6) 0.043* H7A 0.3530 0.0589 0.5462 H7B 0.1096 0.5012 0.043* 0.4023 C8 0.32842(15)0.2690(3)0.51376(11) 0.0347 (6) H8A 0.3580 0.3615 0.5187 0.042* H8B 0.3025 0.2567 0.4697 0.042* C9 0.21918 (14) 0.3906 (3) 0.52223 (12) 0.0346 (6) 0.041* H9B 0.1972 0.3729 0.4779

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H9A	0.2445	0.4879	0.5272	0.041*
C10	0.15743 (14)	0.3907 (3)	0.55385 (12)	0.0355 (6)
H10B	0.1793	0.3883	0.5988	0.043*
H10A	0.1260	0.4805	0.5431	0.043*
C11	0.03290 (14)	0.1058 (3)	0.57380 (11)	0.0356 (6)
C12	0.05090 (14)	0.2431 (3)	0.55734 (11)	0.0359 (6)
C13	-0.00160 (15)	0.3533 (3)	0.56282 (12)	0.0417 (7)
H13A	0.0030	0.4542	0.5534	0.050*
C14	-0.05897 (16)	0.2977 (3)	0.58306 (14)	0.0458 (7)
H14A	-0.0997	0.3547	0.5894	0.055*
C15	0.07899 (14)	-0.0320(3)	0.57464 (11)	0.0358 (6)
H15B	0.0447	-0.1118	0.5540	0.043*
H15A	0.1163	-0.0142	0.5509	0.043*
C16	0.16578 (13)	0.0277 (3)	0.67937 (12)	0.0337 (6)
H16A	0.1746	-0.0074	0.7220	0.040*
H16B	0.1378	0.1220	0.6755	0.040*
C17	0.24085 (13)	0.0515 (3)	0.66539(11)	0.0320(6)
H17A	0.2651	-0.0441	0.6615	0.038*
H17B	0.2336	0.1064	0.6266	0.038*
C18	0.35816(12)	0.1711 (3)	0.70649 (10)	0.0284 (5)
H18A	0.3518	0.2420	0.6724	0.034*
H18B	0.3837	0.0822	0.6965	0.034*
C19	0.40534 (12)	0.2390 (3)	0.76533 (10)	0.0243 (5)
H19A	0.4520	0.2816	0.7581	0.029*
H19B	0.3762	0.3200	0.7774	0.029*
C20	0.48397 (12)	0.0195 (3)	0.81353 (11)	0.0261 (5)
H20B	0.4644	-0.0413	0.7764	0.031*
H20A	0.4908	-0.0459	0.8495	0.031*
C21	0.01010 (13)	-0.2021(3)	0.68490 (11)	0.0292 (5)
C22	0.01297 (14)	-0.1313 (3)	0.73938 (11)	0.0356 (6)
H22A	0.0605	-0.1029	0.7660	0.043*
C23	-0.05321(14)	-0.1021(3)	0.75498 (12)	0.0371 (6)
H23A	-0.0507	-0.0540	0.7926	0.045*
C24	-0.12381(14)	-0.1414(3)	0.71681 (12)	0.0321 (6)
C25	-0.12502(14)	-0.2143(3)	0.66265 (13)	0.0372 (6)
H25A	-0.1724	-0.2443	0.6364	0.045*
C26	-0.05956(14)	-0.2442(3)	0.64603 (12)	0.0359 (6)
H26A	-0.0618	-0.2930	0.6085	0.043*
C27	-0.19559(15)	-0.1047(3)	0.73362 (14)	0.0429 (7)
H27C	-0.1871	-0.1147	0.7780	0.064*
H27B	-0.2360	-0.1722	0.7125	0.064*
H27A	-0.2105	-0.0034	0.7213	0.064*
C28	0.36361(12)	-0.0038(3)	0.89398(10)	0.0232 (5)
C29	0.39360(12)	-0.0892(3)	0.94540 (10)	0.0252(5)
H29A	0.4395	-0.0610	0.9742	0.031*
C30	0.35604 (13)	-0.2159(3)	0.95433 (11)	0.0276 (5)
H30A	0 3762	-0 2736	0.9899	0.033*
C31	0.28951(13)	-0.2605(3)	0.91229 (11)	0.0279 (5)
~~ .		··-··· (·)	~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	······································

C32	0.26032 (13)	-0.1730 (3)	0.86087 (11)	0.0323 (6)
H32A	0.2145	-0.2016	0.8320	0.039*
C33	0.29661 (13)	-0.0453 (3)	0.85100 (11)	0.0298 (5)
H33A	0.2763	0.0130	0.8156	0.036*
C34	0.25128 (16)	-0.4027 (3)	0.92084 (14)	0.0429 (7)
H34C	0.2421	-0.4039	0.9614	0.064*
H34B	0.2841	-0.4856	0.9173	0.064*
H34A	0.2028	-0.4111	0.8894	0.064*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
S1	0.0286 (3)	0.0524 (5)	0.0337 (3)	-0.0024 (3)	0.0038 (3)	0.0044 (3)
S2	0.0328 (3)	0.0528 (5)	0.0558 (5)	0.0022 (3)	0.0152 (3)	0.0148 (4)
S3	0.0279 (3)	0.0323 (4)	0.0419 (4)	0.0020 (3)	0.0092 (3)	-0.0024 (3)
S4	0.0272 (3)	0.0234 (3)	0.0215 (3)	-0.0020 (2)	0.0062 (2)	-0.0005 (2)
01	0.0303 (9)	0.0433 (11)	0.0295 (9)	-0.0016 (8)	0.0127 (7)	0.0032 (8)
O2	0.0397 (10)	0.0302 (10)	0.0290 (9)	0.0060 (7)	0.0099 (7)	-0.0031 (8)
03	0.0358 (9)	0.0366 (11)	0.0298 (9)	0.0036 (8)	0.0113 (7)	0.0059 (8)
O4	0.0433 (10)	0.0415 (12)	0.0466 (11)	-0.0146 (8)	0.0184 (9)	-0.0138 (9)
05	0.0227 (8)	0.0421 (11)	0.0252 (8)	-0.0060 (7)	0.0047 (6)	-0.0054 (7)
O6	0.0498 (11)	0.0368 (11)	0.0597 (13)	-0.0017 (9)	0.0222 (10)	-0.0179 (10)
07	0.0286 (9)	0.0518 (13)	0.0529 (12)	0.0109 (8)	0.0048 (8)	0.0113 (10)
08	0.0421 (10)	0.0248 (9)	0.0341 (9)	0.0052 (7)	0.0173 (8)	0.0001 (7)
O9	0.0373 (10)	0.0334 (10)	0.0266 (9)	-0.0105 (8)	-0.0006 (7)	0.0019 (8)
N1	0.0298 (10)	0.0367 (13)	0.0286 (11)	-0.0085 (9)	0.0024 (8)	-0.0053 (9)
N2	0.0259 (9)	0.0220 (11)	0.0241 (9)	0.0040 (8)	0.0083 (7)	0.0043 (8)
C1	0.0268 (12)	0.0245 (13)	0.0300 (12)	0.0019 (9)	0.0088 (10)	0.0019 (10)
C2	0.0256 (11)	0.0218 (13)	0.0372 (13)	0.0016 (9)	0.0091 (10)	0.0020 (11)
C3	0.0282 (12)	0.0324 (15)	0.0479 (16)	-0.0007 (11)	0.0159 (11)	0.0063 (13)
C4	0.0253 (13)	0.0496 (18)	0.0482 (16)	-0.0038 (12)	0.0079 (11)	0.0022 (14)
C5	0.0342 (13)	0.0286 (14)	0.0365 (13)	0.0043 (10)	0.0179 (11)	0.0022 (11)
C6	0.0423 (14)	0.0297 (15)	0.0360 (14)	0.0077 (11)	0.0185 (12)	-0.0010 (11)
C7	0.0415 (14)	0.0412 (17)	0.0260 (12)	0.0033 (12)	0.0088 (11)	-0.0032 (11)
C8	0.0420 (14)	0.0390 (16)	0.0254 (12)	0.0004 (12)	0.0130 (11)	0.0058 (11)
C9	0.0342 (13)	0.0304 (15)	0.0353 (14)	-0.0016 (11)	0.0027 (11)	0.0035 (11)
C10	0.0318 (13)	0.0318 (15)	0.0396 (14)	-0.0060 (11)	0.0039 (11)	-0.0059 (12)
C11	0.0292 (12)	0.0454 (17)	0.0296 (13)	-0.0040 (11)	0.0037 (10)	-0.0007 (12)
C12	0.0324 (13)	0.0455 (18)	0.0274 (12)	-0.0064 (11)	0.0042 (10)	-0.0052 (12)
C13	0.0411 (15)	0.0424 (18)	0.0393 (15)	-0.0028 (12)	0.0071 (12)	0.0017 (13)
C14	0.0375 (15)	0.0486 (19)	0.0514 (17)	0.0078 (13)	0.0122 (13)	0.0115 (14)
C15	0.0352 (13)	0.0421 (16)	0.0271 (13)	-0.0035 (11)	0.0033 (11)	-0.0038 (11)
C16	0.0277 (12)	0.0408 (16)	0.0302 (13)	-0.0071 (11)	0.0033 (10)	-0.0090 (12)
C17	0.0290 (13)	0.0350 (15)	0.0292 (13)	-0.0039 (10)	0.0032 (10)	-0.0059 (11)
C18	0.0227 (11)	0.0359 (14)	0.0261 (12)	-0.0018 (10)	0.0056 (9)	0.0011 (11)
C19	0.0245 (11)	0.0229 (13)	0.0249 (11)	-0.0010 (9)	0.0055 (9)	0.0046 (10)
C20	0.0276 (12)	0.0223 (13)	0.0295 (12)	0.0023 (9)	0.0096 (10)	0.0026 (10)
C21	0.0294 (12)	0.0234 (14)	0.0341 (13)	-0.0007 (9)	0.0072 (10)	0.0016 (10)

C22	0.0323 (13)	0.0397 (16)	0.0312 (13)	-0.0022 (11)	0.0026 (10)	-0.0010 (12)
C23	0.0361 (14)	0.0428 (17)	0.0325 (13)	-0.0006 (12)	0.0094 (11)	-0.0051 (12)
C24	0.0326 (13)	0.0248 (14)	0.0395 (14)	-0.0030 (10)	0.0110 (11)	0.0045 (11)
C25	0.0275 (13)	0.0343 (15)	0.0453 (15)	-0.0079 (11)	0.0019 (11)	-0.0056 (12)
C26	0.0330 (13)	0.0337 (16)	0.0394 (14)	-0.0040 (11)	0.0070 (11)	-0.0088 (12)
C27	0.0336 (14)	0.0433 (17)	0.0548 (17)	-0.0035 (12)	0.0171 (13)	0.0008 (14)
C28	0.0231 (11)	0.0255 (13)	0.0218 (11)	-0.0018 (9)	0.0077 (9)	-0.0017 (9)
C29	0.0282 (12)	0.0268 (13)	0.0215 (11)	-0.0009 (9)	0.0046 (9)	-0.0013 (10)
C30	0.0315 (12)	0.0266 (13)	0.0252 (12)	0.0021 (10)	0.0085 (10)	0.0046 (10)
C31	0.0278 (12)	0.0281 (14)	0.0309 (12)	-0.0002 (10)	0.0134 (10)	0.0007 (10)
C32	0.0255 (12)	0.0387 (15)	0.0304 (13)	-0.0063 (10)	0.0037 (10)	0.0008 (11)
C33	0.0276 (12)	0.0359 (15)	0.0252 (12)	-0.0006 (10)	0.0059 (10)	0.0066 (11)
C34	0.0395 (15)	0.0365 (17)	0.0542 (17)	-0.0084 (12)	0.0151 (13)	0.0038 (14)

Geometric parameters (Å, °)

S1—C4	1.708 (3)	C11—C15	1.507 (4)
S1—C1	1.722 (2)	C12—C13	1.416 (4)
S2—C11	1.712 (3)	C13—C14	1.352 (4)
S2—C14	1.719 (3)	C13—H13A	0.9500
S3—O6	1.433 (2)	C14—H14A	0.9500
S3—O7	1.4399 (19)	C15—H15B	0.9900
S3—N1	1.620 (2)	C15—H15A	0.9900
S3—C21	1.762 (2)	C16—C17	1.506 (3)
S4—O8	1.4339 (17)	C16—H16A	0.9900
S4—O9	1.4365 (17)	C16—H16B	0.9900
S4—N2	1.6200 (19)	C17—H17A	0.9900
S4—C28	1.768 (2)	C17—H17B	0.9900
O1—C2	1.367 (3)	C18—C19	1.512 (3)
O1—C5	1.428 (3)	C18—H18A	0.9900
O2—C6	1.423 (3)	C18—H18B	0.9900
O2—C7	1.426 (3)	C19—H19A	0.9900
O3—C8	1.417 (3)	C19—H19B	0.9900
O3—C9	1.419 (3)	C20—H20B	0.9900
O4—C12	1.371 (3)	C20—H20A	0.9900
O4—C10	1.439 (3)	C21—C22	1.382 (4)
O5—C17	1.414 (3)	C21—C26	1.394 (3)
O5—C18	1.418 (3)	C22—C23	1.375 (4)
N1—C16	1.477 (3)	C22—H22A	0.9500
N1—C15	1.479 (3)	C23—C24	1.394 (4)
N2—C19	1.473 (3)	C23—H23A	0.9500
N2—C20	1.475 (3)	C24—C25	1.391 (4)
C1—C2	1.363 (3)	C24—C27	1.500 (4)
C1—C20	1.496 (3)	C25—C26	1.375 (4)
C2—C3	1.424 (3)	C25—H25A	0.9500
C3—C4	1.358 (4)	C26—H26A	0.9500
С3—НЗА	0.9500	С27—Н27С	0.9800
C4—H4A	0.9500	C27—H27B	0.9800

C5—C6	1.500 (4)	C27—H27A	0.9800
C5—H5B	0.9900	C28—C29	1.385 (3)
C5—H5A	0.9900	C28—C33	1 397 (3)
C6—H6B	0.9900	C_{29} C_{30}	1.384(3)
C6—H6A	0.9900	C29—H29A	0.9500
C7-C8	1.500(4)	C_{2} C_{2} C_{3}	1 389 (3)
C7 H7A	0.0000	C_{30} H30A	0.9500
C7 H7P	0.0000	C_{31} C_{32}	1.304(3)
	0.9900	$C_{31} = C_{32}$	1.394(3) 1.507(4)
	0.9900	C_{22} C_{23}	1.307(4)
	1 402 (4)	C32_U32A	1.385 (4)
C_{9}	0.0000	C_{32} H22A	0.9300
	0.9900	C35—H35A	0.9300
C10 H10D	0.9900	C34—H34C	0.9800
C10—HI0B	0.9900	C34—H34B	0.9800
CI0—HI0A	0.9900	C34—H34A	0.9800
C11—C12	1.368 (4)		
C4 S1 C1	02.0((12))	NI C15 C11	112.9 (2)
C4 = S1 = C1	92.06(12)	NI-CI5-UI5D	113.8 (2)
0(52 07	92.06 (14)	NI-CIS-HISB	108.8
06 - 33 - 07	120.03(13)		108.8
06—83—N1	106.67 (12)	NI-CIS-HISA	108.8
0/—\$3—N1	106.00 (12)		108.8
06—\$3—C21	107.44 (12)	H15B—C15—H15A	107.7
O7—S3—C21	107.21 (12)	N1—C16—C17	110.4 (2)
N1—S3—C21	109.18 (12)	N1—C16—H16A	109.6
08—S4—O9	118.07 (11)	C17—C16—H16A	109.6
O8—S4—N2	107.29 (10)	N1—C16—H16B	109.6
O9—S4—N2	111.17 (10)	C17—C16—H16B	109.6
O8—S4—C28	109.12 (11)	H16A—C16—H16B	108.1
O9—S4—C28	106.58 (10)	O5—C17—C16	106.51 (19)
N2—S4—C28	103.66 (10)	O5—C17—H17A	110.4
C2—O1—C5	117.53 (18)	C16—C17—H17A	110.4
C6—O2—C7	110.12 (19)	O5—C17—H17B	110.4
C8—O3—C9	110.92 (19)	C16—C17—H17B	110.4
C12—O4—C10	116.1 (2)	H17A—C17—H17B	108.6
C17—O5—C18	113.02 (17)	O5-C18-C19	108.10 (18)
C16—N1—C15	118.1 (2)	O5-C18-H18A	110.1
C16—N1—S3	119.51 (17)	C19—C18—H18A	110.1
C15—N1—S3	119.73 (17)	O5-C18-H18B	110.1
C19—N2—C20	118.20 (17)	C19—C18—H18B	110.1
C19—N2—S4	122.60 (15)	H18A—C18—H18B	108.4
C20—N2—S4	116.82 (15)	N2—C19—C18	112.76 (19)
C2-C1-C20	126.3 (2)	N2-C19-H19A	109.0
C2-C1-S1	110.14 (17)	C18—C19—H19A	109.0
C20—C1—S1	123.41 (17)	N2-C19-H19B	109.0
C1-C2-O1	118.8 (2)	C18—C19—H19B	109.0
C1 - C2 - C3	114.2 (2)	H19A—C19—H19B	107.8
01-C2-C3	127.0 (2)	N2—C20—C1	114.4 (2)
			·· (-)

C4—C3—C2	111.0 (2)	N2—C20—H20B	108.7
С4—С3—НЗА	124.5	C1—C20—H20B	108.7
С2—С3—НЗА	124.5	N2—C20—H20A	108.7
C3—C4—S1	112.64 (19)	C1—C20—H20A	108.7
C3—C4—H4A	123.7	H20B—C20—H20A	107.6
S1—C4—H4A	123.7	C22—C21—C26	120.1 (2)
O1—C5—C6	107.58 (19)	C22—C21—S3	119.44 (18)
O1—C5—H5B	110.2	C26—C21—S3	120.4 (2)
С6—С5—Н5В	110.2	C23—C22—C21	119.7 (2)
01—C5—H5A	110.2	C23—C22—H22A	120.1
С6—С5—Н5А	110.2	C21—C22—H22A	120.1
H5B—C5—H5A	108.5	C22—C23—C24	121.5 (2)
02	109.7 (2)	C22—C23—H23A	119.2
02—C6—H6B	109.7	C24—C23—H23A	119.2
C5—C6—H6B	109.7	C_{25} C_{24} C_{23}	117.6 (2)
02—C6—H6A	109.7	C_{25} C_{24} C_{27}	121.6(2)
C5—C6—H6A	109.7	C_{23} C_{24} C_{27}	1209(2)
H6B—C6—H6A	108.2	$C_{26} - C_{25} - C_{24}$	120.9(2) 121.9(2)
02-C7-C8	111 4 (2)	$C_{26} = C_{25} = H_{25A}$	119 1
02—C7—H7A	109 3	C_{24} C_{25} H_{25A}	119.1
C8—C7—H7A	109.3	$C_{25} = C_{26} = C_{21}$	119.1 (2)
02—C7—H7B	109.3	C25—C26—H26A	120.4
C8—C7—H7B	109.3	C_{21} C_{26} H_{26A}	120.1
H7A - C7 - H7B	108.0	C_{24} C_{27} H_{27}	109 5
03-C8-C7	111.8 (2)	C24—C27—H27B	109.5
03—C8—H8A	109.2	H27C-C27-H27B	109.5
C7—C8—H8A	109.2	C_{24} C_{27} H_{27A}	109.5
03—C8—H8B	109.2	$H_{27C} - C_{27} - H_{27A}$	109.5
C7—C8—H8B	109.2	H27B $C27$ $H27A$	109.5
H8A—C8—H8B	107.9	C_{29} C_{28} C_{33}	120.7(2)
O3-C9-C10	110.3 (2)	$C_{29} C_{28} S_{4}$	120.37(17)
03—C9—H9B	109.6	C_{33} C_{28} S_{4}	118 95 (18)
C10—C9—H9B	109.6	C_{30} C_{29} C_{28}	119 3 (2)
03—C9—H9A	109.6	C30—C29—H29A	120.3
C10—C9—H9A	109.6	C28—C29—H29A	120.3
H9B-C9-H9A	108.1	C_{29} C_{30} C_{31}	121.3 (2)
04	107.2 (2)	C29—C30—H30A	119.3
04—C10—H10B	110.3	C31—C30—H30A	119.3
C9-C10-H10B	110.3	C_{30} C_{31} C_{32}	118.4 (2)
O4-C10-H10A	110.3	C_{30} C_{31} C_{34}	120.9(2)
C9-C10-H10A	110.3	C_{32} C_{31} C_{34}	120.7(2)
H10B— $C10$ — $H10A$	108 5	C_{33} C_{32} C_{31} C_{31} C_{31} C_{32} C_{31}	120.7(2) 1214(2)
C12-C11-C15	125.9 (2)	C33—C32—H32A	119 3
C12 - C11 - S2	120.9(2) 110.4(2)	C31—C32—H32A	119.3
C15-C11-\$2	123 7 (2)	C_{32} C_{33} C_{28}	118.8 (2)
C11—C12—O4	120.0 (2)	C32—C33—H33A	120.6
$C_{11} - C_{12} - C_{13}$	113 8 (2)	C28—C33—H33A	120.6
04-C12-C13	126.1 (3)	C_{31} C_{34} H_{34} H_{34} C_{34} H_{34} H	109.5
01 012 013	120.1 (5)	051 057 11570	107.5

C14—C13—C12	111.8 (3)	C31—C34—H34B	109.5
C14—C13—H13A	124.1	H34C—C34—H34B	109.5
C12—C13—H13A	124.1	C31—C34—H34A	109.5
C13—C14—S2	112.0 (2)	H34C—C34—H34A	109.5
C13—C14—H14A	124.0	H34B—C34—H34A	109.5
S2—C14—H14A	124.0		
O6—S3—N1—C16	-158.31 (18)	C12—C11—C15—N1	106.0 (3)
O7—S3—N1—C16	-29.3 (2)	S2—C11—C15—N1	-72.0(3)
C21—S3—N1—C16	85.9 (2)	C15—N1—C16—C17	-79.4 (3)
O6—S3—N1—C15	40.5 (2)	S3—N1—C16—C17	119.1 (2)
O7—S3—N1—C15	169.51 (19)	C18—O5—C17—C16	-176.9(2)
C21—S3—N1—C15	-75.3 (2)	N1-C16-C17-O5	-168.6(2)
O8—S4—N2—C19	13.3 (2)	C17—O5—C18—C19	-172.3(2)
O9—S4—N2—C19	-117.22 (18)	C20—N2—C19—C18	71.6 (2)
C28—S4—N2—C19	128.63 (18)	S4—N2—C19—C18	-126.44 (18)
O8—S4—N2—C20	175.43 (16)	O5-C18-C19-N2	68.5 (2)
09—S4—N2—C20	44.96 (19)	C19—N2—C20—C1	60.6 (3)
C_{28} S4 N2 C20	-69.19(18)	S4—N2—C20—C1	-102.4(2)
C4-S1-C1-C2	-1.1(2)	C_{2} C_{1} C_{20} N_{2}	-93.3(3)
C4-S1-C1-C20	174.4 (2)	S1-C1-C20-N2	92.0 (2)
$C_{20} - C_{1} - C_{2} - O_{1}$	48(4)	06-83-C21-C22	1663(2)
S1-C1-C2-O1	-179.89(17)	07 - 83 - C21 - C22	36.0(2)
C_{20} C_{1} C_{2} C_{3}	-175.2(2)	N1 - S3 - C21 - C22	-784(2)
$S_1 - C_1 - C_2 - C_3$	01(3)	06 = 83 = C21 = C26	-160(2)
$C_{2} = C_{1}$	-1744(2)	07 - 83 - C21 - C26	-1463(2)
$C_{5} = 01 = C_{2} = C_{3}$	56(4)	N1 - S3 - C21 - C26	99 3 (2)
C1 - C2 - C3 - C4	12(3)	$C_{26} - C_{21} - C_{22} - C_{23}$	-0.2(4)
$01 - C^2 - C^3 - C^4$	-1788(2)	S3-C21-C22-C23	1775(2)
$C_2 - C_3 - C_4 - S_1$	-20(3)	$C_{21} = C_{22} = C_{23} = C_{24}$	-0.4(4)
$C_1 = S_1 = C_4 = C_3$	1.8(2)	C^{22} C^{23} C^{24} C^{25}	13(4)
$C_{2} = 0_{1} = C_{2} = C_{6}$	1.0(2) 173 8 (2)	$C_{22} = C_{23} = C_{24} = C_{27}$	-1782(3)
C_{7}^{-0}	-178.0(2)	$C_{22} = C_{23} = C_{24} = C_{25} = C_{26}$	-1.5(4)
01 - C5 - C6 - 02	713(3)	C_{27} C_{24} C_{25} C_{26}	1.5(1) 1779(3)
C6-02-C7-C8	-167.9(2)	C_{24} C_{25} C_{26} C_{21} C_{25} C_{20}	0.9(4)
C9 - 03 - C8 - C7	-1741(2)	C^{22} C^{23} C^{26} C^{25} C^{25}	0.9(1)
$0^{2}-0^{7}-0^{8}-0^{3}$	-848(3)	$S_{22}^{2} = C_{21}^{2} = C_{20}^{2} = C_{25}^{2}$	-1777(2)
$C_{8} = C_{3} = C_{9} = C_{10}$	174.6(2)	08 - 54 - C28 - C29	-12430(19)
$C_{12} - O_{4} - C_{10} - C_{9}$	-1790(2)	09 - 54 - C28 - C29	4 2 (2)
03 - 09 - 010 - 04	-721(3)	$N_2 = S_4 = C_2 S_2 = C_2 S_2$	$\frac{12}{121} \frac{(2)}{62} \frac{(19)}{121}$
$C_{14} = S_2 = C_{11} = C_{12}$	(2.1(3))	$08 \ S4 \ C28 \ C33$	560(2)
$C_{14} = S_2 = C_{11} = C_{12}$	1783(2)	08 - 54 - C28 - C33	-175.48(10)
$C_{14} = 52 = C_{11} = C_{12} = 0.04$	1/0.3(2)	$N_2 = S_4 = C_2 S_2 = C_3 S_3$	-581(2)
$S_{2} = C_{11} = C_{12} = O_{4}$	-175 32 (18)	$N_2 - 34 - C_{20} - C_{33}$	-0.7(3)
52 - 011 - 012 - 04	-1780(2)	53 - 520 - 520 - 500	0.7 (3)
C_{13} $-C_{11}$ $-C_{12}$ $-C_{13}$	1/0.0(2)	$C_{28} C_{20} C_{20} C_{21}$	1/7.30(10) 10(4)
52 - 011 - 012 - 013	-140.3(2)	$C_{20} = C_{27} = C_{30} = C_{31}$	-10(4)
$C_{10} = 04 = C_{12} = C_{13}$	-140.3(2)	$C_{29} = C_{30} = C_{31} = C_{32}$	-1.0(4)
U10-04-U12-U13	44.7 (3)	C29—C30—C31—C34	1/0.8(2)

C11—C12—C13—C14	-0.4 (3)	C30—C31—C32—C33	0.7 (4)
O4—C12—C13—C14	174.9 (3)	C34—C31—C32—C33	-177.1 (2)
C12—C13—C14—S2	0.3 (3)	C31—C32—C33—C28	-0.4 (4)
C11—S2—C14—C13	-0.2 (2)	C29—C28—C33—C32	0.4 (4)
C16—N1—C15—C11	-49.6 (3)	S4—C28—C33—C32	-179.87 (19)
S3—N1—C15—C11	111.8 (2)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H····A	D····A	<i>D</i> —H··· <i>A</i>
C15—H15A····O4	0.99	2.54	2.941 (3)	104
C15—H15 <i>B</i> ···O6	0.99	2.45	2.914 (4)	108
C16—H16A···O7	0.99	2.36	2.828 (4)	108
C19—H19B····O8	0.99	2.34	2.859 (3)	112
C26—H26A···O6	0.95	2.56	2.923 (3)	103
C29—H29A····O9	0.95	2.50	2.885 (3)	104
C32—H32A···O7	0.95	2.57	3.386 (3)	145
C33—H33A····O5	0.95	2.59	3.450 (3)	151
C13—H13 <i>A</i> ···O6 ⁱ	0.95	2.53	3.245 (4)	132
C27—H27 <i>B</i> ···O8 ⁱⁱ	0.98	2.58	3.463 (3)	149
C29—H29 <i>A</i> ···O9 ⁱⁱⁱ	0.95	2.48	3.221 (3)	135

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) –*x*, *y*-1/2, –*z*+3/2; (iii) –*x*+1, –*y*, –*z*+2.