## metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## [*µ*-*N*,*N*'-Bis(3-methoxy-2-oxidobenzylidene)propane-1,3-diamine]trinitratocopper(II)terbium(III) acetone solvate

### Liu Fei\* and Zhang Fang

The College of Chemical Engineering & Materials, Eastern Liaoning University, 325 Wenhua Road, Yuanbao District, Dandong City, Liaoning Province 118003, People's Republic of China

Correspondence e-mail: berylliu8090@sina.com

Received 19 December 2007; accepted 21 January 2008

Key indicators: single-crystal X-ray study; T = 291 K; mean  $\sigma$ (C–C) = 0.006 Å; R factor = 0.025; wR factor = 0.083; data-to-parameter ratio = 16.0.

In the title complex,  $[CuTb(C_{19}H_{20}N_2O_4)(NO_3)_3]$ -CH<sub>3</sub>COCH<sub>3</sub>, the Cu<sup>II</sup> atom is four-coordinated by two O atoms and two N atoms from the deprotonated Schiff base in a square-planar geometry, while the Tb<sup>III</sup> atom is ten-coordinated by four O atoms from the deprotonated Schiff base and six O atoms from three bidentate nitrate anions. The compound is isostructural with the previously reported Gd<sup>III</sup> analogue [Elmali & Elerman (2004). *Z. Naturforsch. Teil B*, **59**, 535–540], which was described in the space group *P*1 with two formula units in the asymmetric unit. The crystal stucture is, in fact, centrosymmetric and is described here in the space group  $P\overline{1}$  with one formula unit in the asymmetric unit.

### **Related literature**

For the isostructural Gd<sup>III</sup> complex, see: Elmali & Elerman (2004). For a similar copper–cerium complex, see: Elmali & Elerman (2003).



### **Experimental**

### Crystal data

[CuTb(C19H20N2O4)(NO3)3]-- $\beta = 86.67 \ (2)^{\circ}$ C<sub>3</sub>H<sub>6</sub>O  $\gamma = 72.33 \ (2)^{\circ}$  $M_r = 806.94$  $V = 1408.8 (12) \text{ Å}^3$ Triclinic, P1 Z = 2a = 9.388 (5) Å Mo  $K\alpha$  radiation b = 12.108 (6) Å  $\mu = 3.32 \text{ mm}^$ c = 13.604 (6) Å T = 291 (2) K  $\alpha = 73.079 \ (16)^{\circ}$  $0.19 \times 0.16 \times 0.14 \text{ mm}$ 

#### Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995)  $T_{min} = 0.569, T_{max} = 0.659$ 

### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.025$ | 392 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.083$               | H-atom parameters constrained                              |
| S = 1.11                        | $\Delta \rho_{\rm max} = 0.74 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 6275 reflections                | $\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$ |

12171 measured reflections

 $R_{\rm int} = 0.025$ 

6275 independent reflections

5621 reflections with  $I > 2\sigma(I)$ 

## Table 1 Selected bond lengths (

Selected bond lengths (Å).

| Cu2-O1 | 1.939 (3) | O4-Tb1  | 2.492 (2) |
|--------|-----------|---------|-----------|
| Cu2-O3 | 1.947 (2) | O5-Tb1  | 2.470 (3) |
| Cu2-N2 | 1.957 (3) | O7-Tb1  | 2.501 (3) |
| Cu2-N1 | 1.989 (3) | O8-Tb1  | 2.455 (3) |
| O1-Tb1 | 2.352 (2) | O10-Tb1 | 2.494 (3) |
| O2-Tb1 | 2.506 (3) | O11-Tb1 | 2.491 (3) |
| O3-Tb1 | 2.344 (3) | O13-Tb1 | 2.564 (3) |

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The authors gratefully acknowledge financial support from the Education Department of Liaoning Province (2006 B 112) and Liaoning University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2275).

### References

Elmali, A. & Elerman, Y. (2003). Z. Naturforsch. Teil B, 58, 639–643.
Elmali, A. & Elerman, Y. (2004). Z. Naturforsch. Teil B, 59, 535–540.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

## supporting information

Acta Cryst. (2008). E64, m406 [doi:10.1107/S1600536808002080]

## [*µ*-*N*,*N*'-Bis(3-methoxy-2-oxidobenzylidene)propane-1,3-diamine]trinitratocopper(II)terbium(III) acetone solvate

### Liu Fei and Zhang Fang

### S1. Comment

As shown in Fig. 1, the hexadentate Schiff base ligand links the  $Cu^{II}$  and  $Tb^{II}$  atoms into a dinuclear complex through two phenolate O atoms. The  $Tb^{III}$  atom is ten-coordinated by four O atoms from the ligand and six O atoms from three nitrate anions. The  $Cu^{II}$  atom is four-coordinated by two N atoms and two O atoms from the ligand. The acetone molecule is not associated with the complex. The complex is isostructural with its  $Gd^{III}$  analogue (Elmali & Elerman, 2004), although that was refined in space group *P*1 with two independent complexes in the asymmetric unit. A similar compound with Ce<sup>III</sup> has also been reported (Elmali & Elerman, 2003).

### **S2. Experimental**

The title complex was obtained by reaction of copper(II) acetate monohydrate (0.05 g, 0.25 mmol) with the Schiff base (0.0855 g, 0.25 mmol) in methanol/acetone (20 ml:5 ml). Terbium (III) nitrate hexahydrate (0.1126 g, 0.25 mmol) was added and the mixture was refluxed for 3 h. The mixture was then cooled and filtered, and diethyl ether was allowed to diffuse slowly into the filtrate. Single crystals were obtained after several days. Elemental analysis calculated: C 32.65, H 3.29, N 8.67; found: C 32.75, H 3.25, N 8.68.

### S3. Refinement

H atoms bound to C atoms were placed in calculated positions and allowed to ride on their parent atoms, with C—H = 0.93 Å (C *sp*<sup>2</sup>), C—H = 0.97Å (methylene C), C—H = 0.96 Å (methyl C), and with  $U_{iso}(H) = 1.2$  or  $1.5U_{eq}(C)$ .



### Figure 1

The molecular structure, showing 40% probability displacement ellipsoids for non-H atoms. The acetone solvent molecule is not shown.

# $[\mu$ -N,N'-Bis(3-methoxy-2-oxidobenzylidene)propane-1,3- diamine]trinitratocopper(II)terbium(III) acetone solvate

### Crystal data

| [CuTb(C <sub>19</sub> H <sub>20</sub> N <sub>2</sub> O <sub>4</sub> )(NO <sub>3</sub> ) <sub>3</sub> ]·C <sub>3</sub> H <sub>6</sub> O<br>$M_r = 806.94$<br>Triclinic, $P\overline{1}$<br>Hall symbol: -P 1<br>a = 9.388 (5) Å<br>b = 12.108 (6) Å<br>c = 13.604 (6) Å<br>a = 73.079 (16)°<br>$\beta = 86.67$ (2)°<br>$\gamma = 72.33$ (2)°<br>V = 1408.8 (12) Å <sup>3</sup> | Z = 2<br>F(000) = 798<br>$D_x = 1.902 \text{ Mg m}^{-3}$<br>Mo K $\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 11368 reflections<br>$\theta = 3.2-27.5^{\circ}$<br>$\mu = 3.32 \text{ mm}^{-1}$<br>T = 291  K<br>Block, green<br>$0.19 \times 0.16 \times 0.14 \text{ mm}$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data collection                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |
| Rigaku R-AXIS RAPID<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>$\omega$ scans                                                                                                                                                                                                                                                 | Absorption correction: multi-scan<br>( <i>ABSCOR</i> ; Higashi, 1995)<br>$T_{min} = 0.569$ , $T_{max} = 0.659$<br>12171 measured reflections<br>6275 independent reflections<br>5621 reflections with $I > 2\sigma(I)$                                                                                 |

| $R_{\rm int} = 0.025$                                                    | $k = -15 \rightarrow 14$ |
|--------------------------------------------------------------------------|--------------------------|
| $\theta_{\text{max}} = 27.5^{\circ},  \theta_{\text{min}} = 3.1^{\circ}$ | $l = -17 \rightarrow 17$ |
| $h = -12 \rightarrow 12$                                                 |                          |

| Refinement |
|------------|
|------------|

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier          |
|-------------------------------------------------|-----------------------------------------------------------|
| Least-squares matrix: full                      | map                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.025$                 | Hydrogen site location: inferred from                     |
| $wR(F^2) = 0.083$                               | neighbouring sites                                        |
| <i>S</i> = 1.11                                 | H-atom parameters constrained                             |
| 6275 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0525P)^2]$                   |
| 392 parameters                                  | where $P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3$                |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} = 0.049$                       |
| Primary atom site location: structure-invariant | $\Delta \rho_{\rm max} = 0.74 \text{ e } \text{\AA}^{-3}$ |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.50 \ { m e} \ { m \AA}^{-3}$  |
|                                                 |                                                           |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|     | x           | У          | Ζ          | $U_{ m iso}*/U_{ m eq}$ |
|-----|-------------|------------|------------|-------------------------|
| C1  | 0.5484 (3)  | 0.7337 (3) | 0.4160 (3) | 0.0363 (7)              |
| C2  | 0.6382 (4)  | 0.7732 (3) | 0.3361 (3) | 0.0355 (7)              |
| C3  | 0.7913 (4)  | 0.7362 (3) | 0.3494 (3) | 0.0442 (8)              |
| H1  | 0.8502      | 0.7633     | 0.2961     | 0.053*                  |
| C4  | 0.8589 (4)  | 0.6565 (4) | 0.4446 (4) | 0.0527 (10)             |
| H2  | 0.9624      | 0.6320     | 0.4537     | 0.063*                  |
| C5  | 0.7741 (4)  | 0.6157 (3) | 0.5227 (3) | 0.0508 (10)             |
| Н3  | 0.8202      | 0.5619     | 0.5842     | 0.061*                  |
| C6  | 0.6164 (4)  | 0.6543 (3) | 0.5113 (3) | 0.0421 (8)              |
| C7  | 0.5320 (4)  | 0.6050 (3) | 0.5939 (3) | 0.0482 (9)              |
| H4  | 0.5879      | 0.5473     | 0.6503     | 0.058*                  |
| C8  | 0.3378 (6)  | 0.5605 (5) | 0.6968 (3) | 0.0765 (15)             |
| Н5  | 0.3421      | 0.5970     | 0.7508     | 0.092*                  |
| Н6  | 0.4050      | 0.4785     | 0.7172     | 0.092*                  |
| С9  | 0.1832 (6)  | 0.5563 (4) | 0.6869 (4) | 0.0644 (12)             |
| H8  | 0.1638      | 0.4954     | 0.7459     | 0.077*                  |
| H7  | 0.1742      | 0.5325     | 0.6259     | 0.077*                  |
| C10 | 0.0688 (5)  | 0.6752 (4) | 0.6798 (3) | 0.0515 (9)              |
| Н9  | -0.0289     | 0.6632     | 0.6933     | 0.062*                  |
| H10 | 0.0918      | 0.7081     | 0.7318     | 0.062*                  |
| C11 | -0.0654 (4) | 0.8417 (3) | 0.5466 (3) | 0.0411 (7)              |
| H11 | -0.1404     | 0.8382     | 0.5941     | 0.049*                  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| C12 | -0.1088 (4)   | 0.9332 (3)    | 0.4497 (3)    | 0.0381 (7)   |
|-----|---------------|---------------|---------------|--------------|
| C13 | -0.2582 (4)   | 1.0089 (4)    | 0.4359 (3)    | 0.0467 (8)   |
| H12 | -0.3229       | 1.0025        | 0.4903        | 0.056*       |
| C14 | -0.3085 (4)   | 1.0922 (4)    | 0.3422 (3)    | 0.0517 (9)   |
| H13 | -0.4075       | 1.1409        | 0.3338        | 0.062*       |
| C15 | -0.2132 (4)   | 1.1044 (3)    | 0.2598 (3)    | 0.0445 (8)   |
| H14 | -0.2484       | 1.1608        | 0.1968        | 0.053*       |
| C16 | -0.0665 (4)   | 1.0325 (3)    | 0.2724 (2)    | 0.0350 (6)   |
| C17 | -0.0123 (3)   | 0.9448 (3)    | 0.3682 (2)    | 0.0325 (6)   |
| C18 | -0.0137 (5)   | 1.1106 (4)    | 0.0937 (3)    | 0.0528 (9)   |
| H15 | -0.0872       | 1.0826        | 0.0705        | 0.079*       |
| H16 | 0.0692        | 1.1047        | 0.0487        | 0.079*       |
| H17 | -0.0574       | 1.1934        | 0.0934        | 0.079*       |
| C19 | 0.6458 (5)    | 0.8876 (4)    | 0.1589 (3)    | 0.0559 (10)  |
| H18 | 0.7078        | 0.9296        | 0.1766        | 0.084*       |
| H19 | 0.5788        | 0.9410        | 0.1026        | 0.084*       |
| H20 | 0.7076        | 0.8187        | 0.1393        | 0.084*       |
| C20 | 0.1948 (9)    | 0.3899 (6)    | -0.0076 (6)   | 0.105 (2)    |
| H24 | 0.1539        | 0.4022        | -0.0743       | 0.158*       |
| H25 | 0.1212        | 0.3778        | 0.0431        | 0.158*       |
| H26 | 0.2814        | 0.3199        | 0.0078        | 0.158*       |
| C21 | 0.2373 (7)    | 0.4967 (4)    | -0.0065 (4)   | 0.0723 (14)  |
| C22 | 0.3355 (8)    | 0.4820 (5)    | 0.0826 (5)    | 0.0892 (17)  |
| H21 | 0.3467        | 0.5590        | 0.0801        | 0.134*       |
| H22 | 0.4319        | 0.4262        | 0.0789        | 0.134*       |
| H23 | 0.2906        | 0.4515        | 0.1459        | 0.134*       |
| Cu2 | 0.24442 (4)   | 0.75725 (3)   | 0.49586(3)    | 0.03510 (10) |
| N1  | 0.3899 (4)    | 0.6295 (3)    | 0.6009(2)     | 0.0473 (7)   |
| N2  | 0.0640 (3)    | 0.7635 (3)    | 0.5764 (2)    | 0.0388 (6)   |
| N3  | 0.3245 (4)    | 1.1092 (3)    | 0.2292 (3)    | 0.0481 (7)   |
| N4  | 0.3809 (3)    | 0.8115 (3)    | 0.0469 (3)    | 0.0479 (7)   |
| N5  | 0.1404 (4)    | 0.6928 (3)    | 0.2358 (3)    | 0.0500(7)    |
| 01  | 0.4010 (3)    | 0.7715 (2)    | 0.39786 (18)  | 0.0432 (5)   |
| O2  | 0.5608 (3)    | 0.8481 (2)    | 0.24596 (19)  | 0.0437 (5)   |
| 03  | 0.1291 (2)    | 0.8745 (2)    | 0.37547 (17)  | 0.0392 (5)   |
| O4  | 0.0382 (3)    | 1.0369 (2)    | 0.19704 (18)  | 0.0426 (5)   |
| 05  | 0.3132 (3)    | 1.0309 (3)    | 0.3128 (2)    | 0.0533 (6)   |
| 06  | 0.3324 (4)    | 1.2069 (3)    | 0.2294 (3)    | 0.0737 (10)  |
| O7  | 0.3240 (3)    | 1.0788 (2)    | 0.1473 (2)    | 0.0492 (6)   |
| 08  | 0.3023 (3)    | 0.9175 (2)    | 0.0474 (2)    | 0.0493 (6)   |
| O9  | 0.4110 (4)    | 0.7857 (3)    | -0.0338 (3)   | 0.0720 (9)   |
| O10 | 0.4244 (3)    | 0.7372 (2)    | 0.1352 (2)    | 0.0505 (6)   |
| O11 | 0.0991 (3)    | 0.7990 (2)    | 0.1769 (2)    | 0.0533 (6)   |
| O12 | 0.0819 (4)    | 0.6173 (3)    | 0.2310 (3)    | 0.0802 (11)  |
| O13 | 0.2473 (4)    | 0.6682 (2)    | 0.3006 (2)    | 0.0574 (7)   |
| O14 | 0.2026 (6)    | 0.5872 (4)    | -0.0747 (3)   | 0.1106 (16)  |
| Tb1 | 0.285531 (15) | 0.877969 (12) | 0.234617 (10) | 0.03350 (7)  |
|     |               |               |               |              |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$     | $U^{33}$     | $U^{12}$      | $U^{13}$     | $U^{23}$      |
|-----|-------------|--------------|--------------|---------------|--------------|---------------|
| C1  | 0.0339 (15) | 0.0339 (15)  | 0.0403 (17)  | -0.0059 (12)  | -0.0049 (13) | -0.0129 (13)  |
| C2  | 0.0362 (15) | 0.0292 (14)  | 0.0398 (17)  | -0.0085 (12)  | -0.0044 (13) | -0.0084 (13)  |
| C3  | 0.0336 (16) | 0.0386 (17)  | 0.063 (2)    | -0.0112 (13)  | -0.0018 (15) | -0.0174 (17)  |
| C4  | 0.0353 (17) | 0.051 (2)    | 0.072 (3)    | -0.0046 (15)  | -0.0165 (18) | -0.024 (2)    |
| C5  | 0.046 (2)   | 0.0437 (19)  | 0.055 (2)    | 0.0031 (15)   | -0.0219 (18) | -0.0149 (17)  |
| C6  | 0.0411 (18) | 0.0354 (16)  | 0.0444 (19)  | 0.0003 (13)   | -0.0121 (15) | -0.0131 (15)  |
| C7  | 0.056 (2)   | 0.0387 (18)  | 0.0319 (17)  | 0.0081 (15)   | -0.0086 (16) | -0.0043 (14)  |
| C8  | 0.077 (3)   | 0.066 (3)    | 0.040 (2)    | 0.009 (2)     | 0.010 (2)    | 0.022 (2)     |
| C9  | 0.105 (4)   | 0.0377 (19)  | 0.048 (2)    | -0.027 (2)    | 0.012 (2)    | -0.0054 (17)  |
| C10 | 0.057 (2)   | 0.060 (2)    | 0.0343 (18)  | -0.0255 (19)  | 0.0065 (16)  | -0.0008 (17)  |
| C11 | 0.0421 (17) | 0.0494 (19)  | 0.0397 (18)  | -0.0193 (15)  | 0.0100 (14)  | -0.0205 (16)  |
| C12 | 0.0357 (16) | 0.0404 (16)  | 0.0441 (18)  | -0.0139 (13)  | 0.0031 (13)  | -0.0187 (15)  |
| C13 | 0.0377 (17) | 0.057 (2)    | 0.053 (2)    | -0.0160 (16)  | 0.0086 (15)  | -0.0263 (18)  |
| C14 | 0.0327 (17) | 0.057 (2)    | 0.065 (2)    | 0.0007 (15)   | -0.0070 (17) | -0.029 (2)    |
| C15 | 0.0382 (17) | 0.0423 (18)  | 0.051 (2)    | -0.0019 (14)  | -0.0113 (15) | -0.0180 (16)  |
| C16 | 0.0363 (15) | 0.0312 (14)  | 0.0363 (16)  | -0.0056 (12)  | -0.0046 (13) | -0.0118 (13)  |
| C17 | 0.0304 (14) | 0.0309 (14)  | 0.0371 (16)  | -0.0090 (11)  | -0.0020 (12) | -0.0107 (13)  |
| C18 | 0.056 (2)   | 0.047 (2)    | 0.0378 (19)  | 0.0001 (17)   | -0.0110 (17) | 0.0009 (16)   |
| C19 | 0.047 (2)   | 0.065 (2)    | 0.052 (2)    | -0.0237 (19)  | 0.0100 (17)  | -0.006 (2)    |
| C20 | 0.127 (6)   | 0.070 (4)    | 0.099 (5)    | -0.021 (4)    | -0.041 (4)   | 0.004 (3)     |
| C21 | 0.093 (4)   | 0.049 (2)    | 0.056 (3)    | -0.006 (2)    | 0.018 (3)    | -0.008(2)     |
| C22 | 0.124 (5)   | 0.057 (3)    | 0.080 (4)    | -0.021 (3)    | 0.001 (4)    | -0.017 (3)    |
| Cu2 | 0.0369 (2)  | 0.03297 (19) | 0.02827 (19) | -0.00746 (16) | 0.00002 (15) | -0.00112 (16) |
| N1  | 0.0553 (18) | 0.0390 (15)  | 0.0307 (14)  | 0.0011 (13)   | 0.0008 (13)  | -0.0005 (12)  |
| N2  | 0.0462 (15) | 0.0427 (15)  | 0.0307 (14)  | -0.0200 (13)  | 0.0034 (12)  | -0.0085 (12)  |
| N3  | 0.0469 (17) | 0.0448 (17)  | 0.0512 (19)  | -0.0138 (14)  | -0.0015 (14) | -0.0113 (15)  |
| N4  | 0.0419 (16) | 0.0621 (19)  | 0.0450 (17)  | -0.0191 (15)  | 0.0063 (13)  | -0.0205 (16)  |
| N5  | 0.0483 (17) | 0.0406 (16)  | 0.060 (2)    | -0.0183 (14)  | 0.0202 (15)  | -0.0117 (15)  |
| 01  | 0.0304 (11) | 0.0507 (14)  | 0.0324 (11)  | -0.0035 (10)  | -0.0023 (9)  | 0.0036 (10)   |
| O2  | 0.0343 (12) | 0.0521 (14)  | 0.0374 (13)  | -0.0126 (11)  | 0.0025 (10)  | -0.0025 (11)  |
| O3  | 0.0319 (11) | 0.0414 (12)  | 0.0307 (11)  | -0.0015 (9)   | 0.0007 (9)   | 0.0001 (10)   |
| O4  | 0.0387 (12) | 0.0368 (12)  | 0.0369 (12)  | 0.0031 (10)   | -0.0076 (10) | -0.0011 (10)  |
| O5  | 0.0615 (17) | 0.0517 (15)  | 0.0443 (14)  | -0.0160 (13)  | 0.0051 (12)  | -0.0118 (13)  |
| 06  | 0.095 (3)   | 0.0440 (16)  | 0.084 (2)    | -0.0250 (16)  | -0.011 (2)   | -0.0140 (16)  |
| O7  | 0.0602 (16) | 0.0467 (14)  | 0.0375 (13)  | -0.0200 (12)  | 0.0008 (12)  | -0.0030 (11)  |
| 08  | 0.0596 (16) | 0.0458 (14)  | 0.0369 (13)  | -0.0136 (12)  | 0.0043 (11)  | -0.0065 (11)  |
| 09  | 0.075 (2)   | 0.093 (2)    | 0.0543 (18)  | -0.0167 (18)  | 0.0059 (16)  | -0.0401 (18)  |
| O10 | 0.0519 (15) | 0.0448 (14)  | 0.0441 (14)  | -0.0038 (11)  | -0.0027 (12) | -0.0073 (12)  |
| O11 | 0.0455 (14) | 0.0491 (15)  | 0.0627 (17)  | -0.0158 (12)  | 0.0011 (13)  | -0.0104 (13)  |
| O12 | 0.079 (2)   | 0.070 (2)    | 0.115 (3)    | -0.0458 (19)  | 0.034 (2)    | -0.042 (2)    |
| O13 | 0.0661 (18) | 0.0377 (13)  | 0.0569 (17)  | -0.0112 (13)  | 0.0044 (14)  | -0.0016 (12)  |
| 014 | 0.157 (5)   | 0.065 (2)    | 0.077 (3)    | -0.011 (3)    | 0.008 (3)    | 0.004 (2)     |
| 01. |             |              |              |               |              |               |

Geometric parameters (Å, °)

| C101     | 1.332 (4) | C18—H16    | 0.960       |
|----------|-----------|------------|-------------|
| C1—C2    | 1.399 (5) | C18—H17    | 0.960       |
| C1—C6    | 1.418 (5) | C19—O2     | 1.435 (5)   |
| C2—C3    | 1.375 (4) | C19—H18    | 0.960       |
| C2—O2    | 1.382 (4) | C19—H19    | 0.960       |
| C3—C4    | 1.417 (6) | C19—H20    | 0.960       |
| C3—H1    | 0.930     | C20—C21    | 1.469 (8)   |
| C4—C5    | 1.357 (6) | C20—H24    | 0.960       |
| C4—H2    | 0.930     | C20—H25    | 0.960       |
| C5—C6    | 1.414 (5) | C20—H26    | 0.960       |
| С5—Н3    | 0.930     | C21—O14    | 1.181 (6)   |
| С6—С7    | 1.428 (6) | C21—C22    | 1.502 (8)   |
| C7—N1    | 1.279 (5) | C22—H21    | 0.960       |
| С7—Н4    | 0.930     | C22—H22    | 0.960       |
| C8—N1    | 1.476 (5) | C22—H23    | 0.960       |
| С8—С9    | 1.483 (8) | Cu2—O1     | 1.939 (3)   |
| С8—Н5    | 0.970     | Cu2—O3     | 1.947 (2)   |
| С8—Н6    | 0.970     | Cu2—N2     | 1.957 (3)   |
| C9—C10   | 1.493 (6) | Cu2—N1     | 1.989 (3)   |
| С9—Н8    | 0.970     | Cu2—Tb1    | 3.4749 (16) |
| С9—Н7    | 0.970     | N3—O6      | 1.208 (4)   |
| C10—N2   | 1.492 (5) | N3—O7      | 1.271 (4)   |
| С10—Н9   | 0.970     | N3—O5      | 1.274 (4)   |
| C10—H10  | 0.970     | N4—O9      | 1.222 (4)   |
| C11—N2   | 1.293 (5) | N4—O8      | 1.274 (4)   |
| C11—C12  | 1.439 (5) | N4—O10     | 1.275 (4)   |
| C11—H11  | 0.930     | N5—O12     | 1.219 (4)   |
| C12—C17  | 1.394 (5) | N5—O11     | 1.257 (4)   |
| C12—C13  | 1.411 (5) | N5—O13     | 1.280 (5)   |
| C13—C14  | 1.377 (6) | O1—Tb1     | 2.352 (2)   |
| C13—H12  | 0.930     | O2—Tb1     | 2.506 (3)   |
| C14—C15  | 1.396 (6) | O3—Tb1     | 2.344 (3)   |
| C14—H13  | 0.930     | O4—Tb1     | 2.492 (2)   |
| C15—C16  | 1.377 (5) | O5—Tb1     | 2.470 (3)   |
| C15—H14  | 0.930     | O7—Tb1     | 2.501 (3)   |
| C16—O4   | 1.379 (4) | O8—Tb1     | 2.455 (3)   |
| C16—C17  | 1.424 (4) | O10—Tb1    | 2.494 (3)   |
| C17—O3   | 1.333 (4) | O11—Tb1    | 2.491 (3)   |
| C18—O4   | 1.448 (4) | O13—Tb1    | 2.564 (3)   |
| C18—H15  | 0.960     |            |             |
| O1—C1—C2 | 117.8 (3) | O1—Cu2—Tb1 | 40.14 (7)   |
| O1—C1—C6 | 122.7 (3) | O3—Cu2—Tb1 | 39.95 (7)   |
| C2—C1—C6 | 119.5 (3) | N2—Cu2—Tb1 | 130.52 (9)  |
| C3—C2—O2 | 124.7 (3) | N1—Cu2—Tb1 | 129.85 (10) |
| C3—C2—C1 | 120.6 (3) | C7—N1—C8   | 115.4 (3)   |

| O2—C2—C1                   | 114.7 (3)            | C7—N1—Cu2               | 123.8 (3)            |
|----------------------------|----------------------|-------------------------|----------------------|
| C2—C3—C4                   | 119.8 (4)            | C8—N1—Cu2               | 120.7 (3)            |
| С2—С3—Н1                   | 120.1                | C11—N2—C10              | 115.0 (3)            |
| C4—C3—H1                   | 120.1                | C11—N2—Cu2              | 124.3 (2)            |
| C5—C4—C3                   | 120.7 (3)            | C10—N2—Cu2              | 120.7 (2)            |
| C5—C4—H2                   | 119.7                | 06—N3—07                | 123.1 (4)            |
| C3—C4—H2                   | 119.7                | 06—N3—05                | 120.12(1)            |
| C4-C5-C6                   | 120 5 (3)            | 07—N3—05                | 1161(3)              |
| C4—C5—H3                   | 119.7                | 09—N4—08                | 1210(4)              |
| C6-C5-H3                   | 119.7                | 09 N4 010               | 121.0(4)<br>123.8(4) |
| $C_{5}$ $C_{6}$ $C_{1}$    | 119.7<br>118.9(A)    | 08 N/4 010              | 125.0(4)<br>115.2(3) |
| $C_{5} = C_{6} = C_{7}$    | 118.5 (4)            | 0.12 N5 011             | 113.2(3)             |
| $C_{3} = C_{0} = C_{7}$    | 110.0(3)<br>122.2(2) | 012 - 103 - 011         | 121.3(4)             |
| CI = CO = C/               | 122.3(3)             | 012 - N5 - 013          | 122.0(4)             |
| NI = C7 = U4               | 128.9 (3)            | 011 - N5 - 013          | 110.5(3)             |
| N1 - C / - H4              | 115.6                | C1 = O1 = Cu2           | 128.2 (2)            |
| C6—C/—H4                   | 115.6                |                         | 124.0 (2)            |
| N1-C8-C9                   | 113.1 (4)            | Cu2—O1—Tb1              | 107.76 (10)          |
| N1—C8—H5                   | 109.0                | C2—O2—C19               | 118.0 (3)            |
| С9—С8—Н5                   | 109.0                | C2—O2—Tb1               | 118.0 (2)            |
| N1—C8—H6                   | 109.0                | C19—O2—Tb1              | 123.2 (2)            |
| С9—С8—Н6                   | 109.0                | C17—O3—Cu2              | 129.3 (2)            |
| H5—C8—H6                   | 107.8                | C17—O3—Tb1              | 122.90 (19)          |
| C8—C9—C10                  | 112.3 (4)            | Cu2—O3—Tb1              | 107.83 (10)          |
| С8—С9—Н8                   | 109.1                | C16—O4—C18              | 117.7 (3)            |
| С10—С9—Н8                  | 109.1                | C16—O4—Tb1              | 117.60 (18)          |
| С8—С9—Н7                   | 109.1                | C18—O4—Tb1              | 122.5 (2)            |
| С10—С9—Н7                  | 109.1                | N3—O5—Tb1               | 96.8 (2)             |
| Н8—С9—Н7                   | 107.9                | N3—O7—Tb1               | 95.4 (2)             |
| N2—C10—C9                  | 111.7 (3)            | N4—O8—Tb1               | 97.5 (2)             |
| N2—C10—H9                  | 109.3                | N4—O10—Tb1              | 95.6 (2)             |
| С9—С10—Н9                  | 109.3                | N5—O11—Tb1              | 98.5 (2)             |
| N2-C10-H10                 | 109.3                | N5-013-Tb1              | 94.4 (2)             |
| C9-C10-H10                 | 109.3                | 03—Tb1—01               | 63 45 (9)            |
| H9-C10-H10                 | 107.9                | 03-Tb1-08               | 14677(9)             |
| $N_2 - C_{11} - C_{12}$    | 128 6 (3)            | 01 - Tb1 - 08           | 147.69(9)            |
| N2H11                      | 115.7                | $03_{Tb1}$              | 72 83 (9)            |
| $C_{12}$ $C_{11}$ $H_{11}$ | 115.7                | 01  Tb1 05              | 72.03(0)             |
| $C_{12} = C_{11} = C_{12}$ | 110.7                | $0^{\circ}$ Tb1 05      | 11867(0)             |
| C17 - C12 - C13            | 119.4(3)             | $0_{0} - 1_{0} - 0_{0}$ | 110.07(9)            |
| C17 - C12 - C11            | 122.0(3)             | 03-101-011              | 81.12(10)            |
|                            | 117.9 (3)            |                         | 116.73 (9)           |
| C14—C13—C12                | 120.2 (4)            | 08—161—011              | /2./1 (10)           |
| C14—C13—H12                | 119.9                | U5—1b1—011              | 143.71 (10)          |
| C12—C13—H12                | 119.9                | O3—Tb1—O4               | 65.89 (8)            |
| C13—C14—C15                | 121.0 (3)            | O1—Tb1—O4               | 126.51 (9)           |
| C13—C14—H13                | 119.5                | O8—Tb1—O4               | 85.75 (9)            |
| C15—C14—H13                | 119.5                | O5—Tb1—O4               | 76.54 (9)            |
| C16—C15—C14                | 119.5 (3)            | O11—Tb1—O4              | 69.87 (9)            |
| C16—C15—H14                | 120.2                | O3—Tb1—O10              | 138.29 (9)           |

| C14—C15—H14 | 120.2       | O1—Tb1—O10  | 99.56 (9)   |
|-------------|-------------|-------------|-------------|
| C15—C16—O4  | 124.8 (3)   | O8—Tb1—O10  | 51.53 (9)   |
| C15—C16—C17 | 120.5 (3)   | O5—Tb1—O10  | 142.00 (10) |
| O4—C16—C17  | 114.6 (3)   | O11—Tb1—O10 | 73.34 (10)  |
| O3—C17—C12  | 122.4 (3)   | O4—Tb1—O10  | 130.23 (8)  |
| O3—C17—C16  | 118.3 (3)   | O3—Tb1—O7   | 115.07 (9)  |
| C12—C17—C16 | 119.3 (3)   | O1—Tb1—O7   | 117.69 (9)  |
| O4—C18—H15  | 109.5       | O8—Tb1—O7   | 67.18 (9)   |
| O4—C18—H16  | 109.5       | O5—Tb1—O7   | 51.50 (9)   |
| H15—C18—H16 | 109.5       | O11—Tb1—O7  | 124.64 (9)  |
| O4—C18—H17  | 109.5       | O4—Tb1—O7   | 70.61 (10)  |
| H15—C18—H17 | 109.5       | O10—Tb1—O7  | 106.57 (10) |
| H16—C18—H17 | 109.5       | O3—Tb1—O2   | 124.00 (8)  |
| O2—C19—H18  | 109.5       | O1—Tb1—O2   | 64.58 (8)   |
| O2—C19—H19  | 109.5       | O8—Tb1—O2   | 89.00 (9)   |
| H18—C19—H19 | 109.5       | O5—Tb1—O2   | 73.82 (9)   |
| O2—C19—H20  | 109.5       | O11—Tb1—O2  | 142.46 (9)  |
| H18—C19—H20 | 109.5       | O4—Tb1—O2   | 142.70 (9)  |
| H19—C19—H20 | 109.5       | O10—Tb1—O2  | 69.68 (9)   |
| C21—C20—H24 | 109.5       | O7—Tb1—O2   | 73.33 (9)   |
| С21—С20—Н25 | 109.5       | O3—Tb1—O13  | 71.12 (10)  |
| H24—C20—H25 | 109.5       | O1—Tb1—O13  | 68.46 (10)  |
| С21—С20—Н26 | 109.5       | O8—Tb1—O13  | 105.29 (10) |
| H24—C20—H26 | 109.5       | O5—Tb1—O13  | 136.01 (10) |
| H25—C20—H26 | 109.5       | O11—Tb1—O13 | 50.51 (10)  |
| O14—C21—C20 | 121.7 (6)   | O4—Tb1—O13  | 109.79 (10) |
| O14—C21—C22 | 121.8 (5)   | O10—Tb1—O13 | 67.18 (10)  |
| C20—C21—C22 | 116.4 (5)   | O7—Tb1—O13  | 172.48 (9)  |
| C21—C22—H21 | 109.5       | O2—Tb1—O13  | 107.22 (10) |
| C21—C22—H22 | 109.5       | O3—Tb1—Cu2  | 32.23 (5)   |
| H21—C22—H22 | 109.5       | O1—Tb1—Cu2  | 32.10 (6)   |
| С21—С22—Н23 | 109.5       | O8—Tb1—Cu2  | 165.72 (6)  |
| H21—C22—H23 | 109.5       | O5—Tb1—Cu2  | 75.60 (7)   |
| H22—C22—H23 | 109.5       | O11—Tb1—Cu2 | 95.49 (8)   |
| O1—Cu2—O3   | 78.92 (10)  | O4—Tb1—Cu2  | 97.89 (6)   |
| O1—Cu2—N2   | 170.42 (11) | O10—Tb1—Cu2 | 118.11 (7)  |
| O3—Cu2—N2   | 91.51 (12)  | O7—Tb1—Cu2  | 127.06 (6)  |
| O1—Cu2—N1   | 91.40 (12)  | O2—Tb1—Cu2  | 96.16 (6)   |
| O3—Cu2—N1   | 169.69 (12) | O13—Tb1—Cu2 | 60.46 (7)   |
| N2—Cu2—N1   | 98.17 (13)  |             |             |
|             |             |             |             |