

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-3-(2-Chloro-3,3,3-trifluoroprop-1-envl)-2,2-dimethyl-N-p-tolylcyclopropanecarboxamide

Fan-Yong Yan* and Dong-Qing Liu

School of Materials Science and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China Correspondence e-mail: yfytju@yahoo.com

Received 28 October 2007; accepted 21 December 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.067; wR factor = 0.207; data-to-parameter ratio = 13.0.

There are two molecules in the asymmetric unit of the title compound, C₁₆H₁₇ClF₃NO. The benzene ring in each molecule makes a dihedral angle of 66.6 (3) $^{\circ}$ [116.3 (4) $^{\circ}$ in the second molecule] with the plane of the cyclopropane ring. The F atoms of the CF₃ groups are disordered equally over two positions. The amide hydrogen is linked with the amide oxygen in another molecule by an intermolecular N-H···O hydrogen bond. The packing can be described as a dimeric arrangement of molecules linked through N-H···O hydrogen bonds.

Related literature

For related literature, see: Liu et al. (2006); Punja (1981); Zhang (2005).

Experimental

Crystal data

nm

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS: Sheldrick.1996) $T_{\min} = 0.945, T_{\max} = 0.967$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.067$	
$vR(F^2) = 0.207$	
S = 1.09	
945 reflections	
57 parameters	

3077 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.023$

8849 measured reflections 5945 independent reflections

137	restraints	
H-a	tom parameters	constrained
$\Delta \rho_n$	$hax = 0.60 \text{ e} \text{ Å}^{-3}$	5
$\Delta \rho_{\rm n}$	$_{\rm nin} = -0.45 \ e \ {\rm \AA}^2$	-3

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O2^{i}$	0.86	2.15	2.978 (4)	161
$N2-H2\cdots O1$	0.86	2.14	2.959 (4)	158

Symmetry code: (i) x - 1, y, z.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation (No. 20376059)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2081).

References

- Bruker (1997). SADABS, SMART, and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2001). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Liu, D.-Q., Feng, Y.-Q., Liu, D.-W. & Zhang, S.-S. (2006). Acta Cryst. E62, o1747-o1748.

Punja, N. (1981). European Patent EP 0 031 199.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Zhang, M. H. (2005). Fine Spec. Chem. 13, 1-4.

supporting information

Acta Cryst. (2008). E64, o451 [doi:10.1107/S160053680706816X]

(*E*)-3-(2-Chloro-3,3,3-trifluoroprop-1-enyl)-2,2-dimethyl-*N-p*-tolylcyclopropane-carboxamide

Fan-Yong Yan and Dong-Qing Liu

S1. Comment

3-[(E)-2-chloro-3,3,3-trifluoroprop-1-enyl]-2,2-dimethylcyclopropanecarboxylic acid is a very important intermediate for tefluthrin, a important insecticide controlling a wide range of soil insect pests in maize, sugar beet, and other crops (Punja 1981). *p*-Toluidine containing pesticides have the advantage of low toxicity, high activity and low residues (Zhang 2005). The structure in this article containing both of two active parts is expected to show some insecticide activity. The present X-ray crystal structure analysis was undertaken in order to study the stereochemistry and crystal packing of the title compound, (I). In this paper, the title compound, (*E*)-3-(2-chloro-3,3,3-trifluoroprop-1-enyl)-2,2-dimethyl-*N-p*-tolyl-cyclopropane-carboxamide, (I), was synthesized and the structure of (I) is illustrated in Fig. 1. The dihedral angles between the benzene moiety and the cyclopropane group is 66.6 (3)°. The amide hydrogen is linked with the amide oxygen in an adjoining molecule by an intermolecular N—H…O hydrogen bond. The packing can be described as a dimeric arrangement of molecules linked through N—H…O hydrogen bonds (Table 1).

S2. Experimental

The title compound was prepared according to the method of Liu *et al.* (2006). 3-((E)-2-chloro-3,3,3-trifluoroprop-1enyl)-2,2- dimethylcyclopropanecarboxylic acid (0.97 g, 4.0 mmol) was dispersed in SOCl₂ (15 ml), and a drop ofanhydrous DMF was added in. The mixture was heated to reflux for 1 h. SOCl₂ was removed by a rotoevaporator. Thecrude the product could be directly disolved in anhydrous toluene, already mixed with*p*-toluidine(0.44 g, 4.1 mmol). Triethylamine was dropped into the system, preventing the release of white fumes. After 5 h stirring at room temperature,the reaction mixture was treated with hexane. Recrystallization of the off-white product from methanol and a smallamount of water (80:1) overnight at ambient temperature gave colorless single crystals of (*E*)-3-(2-chloro-3,3,3-trifluoroprop-1-enyl)-2,2-dimethyl -*N-p*-tolylcyclopropanecarboxamide, suitable for X-ray analysis.

S3. Refinement

H atoms were positioned geometrically with C—H = 0.92-0.98 Å and refined using riding model with $U_{iso}(H) = 1.2Ueq(carrier)$. The amine H atom was located from difference map and refined isotropically. The disordered CF₃ was allowed to rotate about its C—C axis.

Figure 1

The molecular structure of (I), drawn with 30% probability ellipsoids. H atoms are drawn as spheres of arbitrary radius.

(E)-3-(2-Chloro-3,3,3-trifluoroprop-1-enyl)-2,2-dimethyl- N-p-tolylcyclopropanecarboxamide

Z = 4

F(000) = 688

 $\theta = 2.6 - 22.9^{\circ}$

 $\mu = 0.25 \text{ mm}^{-1}$

Prism, colorless

 $0.22 \times 0.18 \times 0.14 \text{ mm}$

8849 measured reflections 5945 independent reflections 3077 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$

T = 294 K

 $R_{\rm int} = 0.023$

 $h = -11 \rightarrow 9$ $k = -14 \rightarrow 14$ $l = -19 \rightarrow 16$

 $D_{\rm x} = 1.291 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2183 reflections

Crystal data

C₁₆H₁₇ClF₃NO $M_r = 331.76$ Triclinic, *P*1 Hall symbol: -P 1 a = 9.400 (2) Å b = 12.482 (3) Å c = 16.201 (4) Å a = 70.910 (4)° $\beta = 88.921$ (5)° $\gamma = 72.517$ (4)° V = 1706.7 (7) Å³

Data collection

Bruker SMART CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.945, \ T_{\max} = 0.967$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.067$	Hydrogen site location: inferred from
$wR(F^2) = 0.207$	neighbouring sites
S = 1.09	H-atom parameters constrained
5945 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0879P)^2 + 0.5066P]$
457 parameters	where $P = (F_o^2 + 2F_c^2)/3$
137 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.60 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.45 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C11	0.63184 (16)	0.55693 (11)	1.02621 (11)	0.1052 (5)	
C12	1.13400 (19)	0.54200 (14)	0.72738 (18)	0.1836 (12)	
F1	0.9100 (9)	0.6078 (8)	1.0169 (8)	0.133 (3)	0.50

F2	0.7921 (10)	0.6990 (8)	1.0952 (5)	0.116 (3)	0.50
F3	0.8242 (11)	0.7991 (7)	0.9530 (5)	0.089 (3)	0.50
F1′	0.9073 (7)	0.6378 (7)	0.9589 (6)	0.113 (2)	0.50
F2′	0.8042 (12)	0.8127 (7)	0.9874 (6)	0.095 (3)	0.50
F3′	0.8598 (11)	0.6504 (9)	1.0803 (6)	0.127 (3)	0.50
F4	1.3243 (9)	0.7790 (8)	0.6310 (6)	0.096 (2)	0.50
F5	1.3304 (11)	0.6367 (10)	0.5804 (6)	0.146 (3)	0.50
F6	1.4122 (11)	0.5960 (9)	0.7020 (7)	0.147 (4)	0.50
F4′	1.3120 (12)	0.7716 (9)	0.5891 (6)	0.118 (3)	0.50
F5′	1.3672 (10)	0.5822 (7)	0.6257 (7)	0.127 (3)	0.50
F6′	1.4006 (8)	0.6447 (7)	0.7274 (5)	0.109 (2)	0.50
01	0.4629 (3)	1.0115 (3)	0.78523 (18)	0.0712 (8)	
O2	0.9714 (3)	0.9971 (3)	0.70315 (19)	0.0708 (8)	
N1	0.2560 (3)	1.0571 (3)	0.6969 (2)	0.0580 (8)	
H1	0.1829	1.0320	0.6898	0.070*	
N2	0.7591 (3)	1.0502 (3)	0.7686 (2)	0.0586 (9)	
H2	0.6831	1.0277	0.7877	0.070*	
C1	0.7972 (6)	0.7010 (5)	1.0040 (4)	0.106 (2)	
C2	0.6514 (4)	0.6955 (4)	0.9814 (3)	0.0653 (11)	
C3	0.5468 (4)	0.7882 (4)	0.9324 (3)	0.0692 (12)	
H3	0.5683	0.8601	0.9133	0.083*	
C4	0.3983 (4)	0.7911 (4)	0.9041 (3)	0.0726 (13)	
H4	0.3870	0.7123	0.9147	0.087*	
C5	0.3031 (4)	0.8882 (4)	0.8247 (3)	0.0665 (12)	
H5	0.2412	0.8608	0.7933	0.080*	
C6	0.2592 (5)	0.8832 (5)	0.9160 (3)	0.0831 (15)	
C7	0.2734 (6)	0.9764 (6)	0.9514 (4)	0.112 (2)	
H7A	0.1832	1.0430	0.9346	0.168*	
H7B	0.3566	1.0025	0.9281	0.168*	
H7C	0.2895	0.9436	1.0142	0.168*	
C8	0.1253 (5)	0.8399 (6)	0.9429 (4)	0.136 (3)	
H8A	0.1212	0.8201	1.0052	0.203*	
H8B	0.1348	0.7706	0.9271	0.203*	
H8C	0.0352	0.9018	0.9136	0.203*	
C9	0.3514 (4)	0.9896 (3)	0.7677 (3)	0.0540 (10)	
C10	0.2592 (4)	1.1642 (4)	0.6323 (3)	0.0581 (10)	
C11	0.3843 (5)	1.2017 (4)	0.6188 (3)	0.0752 (13)	
H11	0.4731	1.1556	0.6538	0.090*	
C12	0.3780 (6)	1.3067 (5)	0.5542 (3)	0.0825 (14)	
H12	0.4633	1.3308	0.5469	0.099*	
C13	0.2518 (6)	1.3772 (4)	0.5000 (3)	0.0809 (14)	
C14	0.1285 (6)	1.3385 (5)	0.5130 (3)	0.0926 (16)	
H14	0.0407	1.3846	0.4771	0.111*	
C15	0.1306 (5)	1.2333 (4)	0.5776 (3)	0.0738 (12)	
H15	0.0455	1.2090	0.5842	0.089*	
C16	0.2484 (7)	1.4916 (5)	0.4283 (4)	0.126 (2)	
H16A	0.2562	1.5491	0.4540	0.190*	
H16B	0.1560	1.5224	0.3919	0.190*	

H16C	0.3309	1.4762	0.3935	0.190*
C17	1.3029 (6)	0.6758 (5)	0.6514 (4)	0.1067 (19)
C18	1.1515 (5)	0.6795 (4)	0.6771 (3)	0.0761 (13)
C19	1.0418 (4)	0.7782 (4)	0.6611 (3)	0.0705 (12)
H19	1.0622	0.8486	0.6311	0.085*
C20	0.8898 (4)	0.7886 (4)	0.6857 (3)	0.0694 (12)
H20	0.8712	0.7119	0.7122	0.083*
C21	0.7992 (4)	0.8857 (4)	0.7199 (3)	0.0606 (11)
H21	0.7331	0.8598	0.7643	0.073*
C22	0.7560 (4)	0.8877 (4)	0.6299 (3)	0.0690 (12)
C23	0.7770 (5)	0.9826 (4)	0.5517 (3)	0.0881 (15)
H23A	0.8666	0.9997	0.5623	0.132*
H23B	0.6926	1.0533	0.5404	0.132*
H23C	0.7854	0.9562	0.5019	0.132*
C24	0.6168 (5)	0.8525 (5)	0.6222 (4)	0.1013 (18)
H24A	0.5301	0.9220	0.6081	0.152*
H24B	0.6078	0.7954	0.6769	0.152*
H24C	0.6247	0.8180	0.5767	0.152*
C25	0.8538 (4)	0.9809 (4)	0.7301 (3)	0.0549 (10)
C26	0.7657 (4)	1.1539 (4)	0.7823 (2)	0.0551 (10)
C27	0.8957 (4)	1.1829 (4)	0.7839 (3)	0.0685 (12)
H27	0.9858	1.1327	0.7751	0.082*
C28	0.8923 (5)	1.2861 (4)	0.7986 (3)	0.0714 (12)
H28	0.9812	1.3041	0.7995	0.086*
C29	0.7633 (5)	1.3630 (4)	0.8118 (3)	0.0742 (12)
C30	0.6350 (5)	1.3321 (4)	0.8109 (3)	0.0843 (14)
H30	0.5453	1.3822	0.8202	0.101*
C31	0.6353 (5)	1.2295 (4)	0.7966 (3)	0.0751 (13)
H31	0.5465	1.2111	0.7966	0.090*
C32	0.7605 (6)	1.4761 (5)	0.8269 (4)	0.1064 (18)
H32A	0.8376	1.4586	0.8718	0.160*
H32B	0.6647	1.5105	0.8450	0.160*
H32C	0.7776	1.5316	0.7736	0.160*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.1007 (10)	0.0663 (8)	0.1359 (13)	-0.0321 (7)	-0.0128 (8)	-0.0109 (8)
C12	0.0972 (12)	0.0787 (10)	0.283 (3)	-0.0084 (9)	0.0387 (14)	0.0387 (13)
F1	0.095 (4)	0.144 (5)	0.139 (5)	-0.027 (4)	-0.006 (4)	-0.025 (4)
F2	0.107 (5)	0.117 (5)	0.119 (4)	-0.040 (4)	-0.039 (3)	-0.025 (3)
F3	0.067 (4)	0.104 (4)	0.099 (5)	-0.049 (3)	-0.002 (3)	-0.019 (3)
F1′	0.067 (3)	0.124 (4)	0.131 (5)	-0.021 (3)	0.011 (3)	-0.030 (4)
F2′	0.084 (4)	0.106 (4)	0.109 (5)	-0.053 (3)	-0.003 (4)	-0.032 (3)
F3′	0.108 (5)	0.136 (5)	0.128 (5)	-0.040 (4)	-0.033 (4)	-0.028 (4)
F4	0.064 (3)	0.113 (4)	0.111 (5)	-0.043 (3)	0.025 (4)	-0.023 (4)
F5	0.124 (5)	0.161 (5)	0.146 (5)	-0.039 (4)	0.049 (4)	-0.048 (4)
F6	0.113 (5)	0.147 (5)	0.159 (5)	-0.014 (4)	0.007 (4)	-0.046 (4)

F4′	0.091 (4)	0.126 (5)	0.117 (5)	-0.038 (3)	0.034 (4)	-0.013 (4)
F5′	0.104 (4)	0.125 (5)	0.133 (5)	-0.018 (3)	0.033 (4)	-0.038 (4)
F6′	0.058 (3)	0.120 (4)	0.139 (5)	-0.014 (3)	-0.016 (3)	-0.042 (4)
O1	0.0452 (15)	0.090 (2)	0.0752 (19)	-0.0406 (14)	-0.0030 (13)	-0.0050 (16)
O2	0.0466 (15)	0.095 (2)	0.091 (2)	-0.0404 (15)	0.0181 (14)	-0.0415 (18)
N1	0.0428 (17)	0.073 (2)	0.059 (2)	-0.0291 (16)	0.0015 (15)	-0.0140 (18)
N2	0.0421 (18)	0.072 (2)	0.068 (2)	-0.0311 (16)	0.0106 (15)	-0.0206 (18)
C1	0.071 (4)	0.086 (4)	0.134 (6)	-0.019 (3)	-0.020 (4)	-0.004 (4)
C2	0.051 (2)	0.069 (3)	0.074 (3)	-0.028 (2)	-0.001 (2)	-0.013 (2)
C3	0.049 (2)	0.069 (3)	0.082 (3)	-0.031 (2)	-0.004 (2)	-0.004 (2)
C4	0.052 (2)	0.069 (3)	0.088 (3)	-0.034 (2)	-0.007 (2)	-0.001 (2)
C5	0.047 (2)	0.082 (3)	0.069 (3)	-0.036 (2)	-0.0034 (19)	-0.008(2)
C6	0.047 (2)	0.108 (4)	0.068 (3)	-0.029 (2)	0.008 (2)	0.009 (3)
C7	0.097 (4)	0.136 (5)	0.077 (4)	-0.008 (4)	0.016 (3)	-0.028 (4)
C8	0.055 (3)	0.173 (6)	0.116 (5)	-0.047 (3)	0.009 (3)	0.043 (4)
C9	0.038 (2)	0.071 (3)	0.054 (2)	-0.0223 (19)	0.0057 (17)	-0.017 (2)
C10	0.050(2)	0.075 (3)	0.053 (2)	-0.023 (2)	0.0093 (18)	-0.022 (2)
C11	0.063 (3)	0.090 (3)	0.068 (3)	-0.039 (2)	0.004 (2)	-0.008 (3)
C12	0.084 (3)	0.096 (4)	0.066 (3)	-0.047 (3)	0.015 (3)	-0.009 (3)
C13	0.085 (3)	0.078 (3)	0.066 (3)	-0.021 (3)	0.025 (3)	-0.011 (3)
C14	0.068 (3)	0.093 (4)	0.079 (4)	0.003 (3)	0.008 (3)	-0.007 (3)
C15	0.050(2)	0.084 (3)	0.073 (3)	-0.016 (2)	0.004 (2)	-0.013 (3)
C16	0.124 (5)	0.099 (4)	0.103 (5)	-0.014 (4)	0.032 (4)	0.015 (4)
C17	0.066 (4)	0.095 (5)	0.127 (6)	-0.004 (3)	0.002 (3)	-0.015 (4)
C18	0.049 (3)	0.071 (3)	0.087 (3)	-0.015 (2)	0.002 (2)	-0.002 (2)
C19	0.047 (2)	0.066 (3)	0.094 (3)	-0.022 (2)	0.007 (2)	-0.017 (2)
C20	0.051 (2)	0.060 (3)	0.098 (3)	-0.026 (2)	0.011 (2)	-0.021 (2)
C21	0.042 (2)	0.069 (3)	0.076 (3)	-0.0286 (19)	0.0094 (19)	-0.022 (2)
C22	0.044 (2)	0.073 (3)	0.098 (4)	-0.016 (2)	-0.006 (2)	-0.040 (3)
C23	0.084 (3)	0.092 (4)	0.082 (4)	-0.016 (3)	-0.014 (3)	-0.031 (3)
C24	0.054 (3)	0.122 (4)	0.156 (5)	-0.029 (3)	-0.004 (3)	-0.081 (4)
C25	0.037 (2)	0.070 (3)	0.057 (2)	-0.0222 (19)	-0.0018 (17)	-0.014 (2)
C26	0.045 (2)	0.066 (3)	0.053 (2)	-0.0225 (19)	0.0024 (17)	-0.014 (2)
C27	0.051 (2)	0.090 (3)	0.077 (3)	-0.031 (2)	0.008 (2)	-0.035 (3)
C28	0.061 (3)	0.088 (3)	0.075 (3)	-0.035 (3)	0.003 (2)	-0.030 (3)
C29	0.077 (3)	0.075 (3)	0.069 (3)	-0.028 (3)	-0.006 (2)	-0.017 (2)
C30	0.066 (3)	0.079 (3)	0.102 (4)	-0.014 (3)	0.002 (3)	-0.032 (3)
C31	0.052 (3)	0.085 (3)	0.091 (3)	-0.026 (2)	0.009 (2)	-0.029 (3)
C32	0.106 (4)	0.091 (4)	0.132 (5)	-0.030 (3)	-0.003 (3)	-0.049 (4)

Geometric parameters (Å, °)

Cl1—C2	1.708 (4)	C11—H11	0.9300	
Cl2—C18	1.699 (5)	C12—C13	1.363 (7)	
F1—C1	1.276 (8)	C12—H12	0.9300	
F2—C1	1.468 (8)	C13—C14	1.372 (7)	
F3—C1	1.328 (8)	C13—C16	1.510 (7)	
F1′—C1	1.444 (8)	C14—C15	1.380 (6)	

F2′—C1	1.352 (8)	C14—H14	0.9300
F3′—C1	1.251 (8)	C15—H15	0.9300
F4—C17	1.297 (10)	C16—H16A	0.9600
F5—C17	1.382 (8)	C16—H16B	0.9600
F6—C17	1.265 (8)	C16—H16C	0.9600
F4′—C17	1.313 (8)	C17—C18	1.467 (7)
F5′—C17	1.338 (8)	C18—C19	1.298 (6)
F6′—C17	1.423 (8)	C19—C20	1.456 (5)
O1—C9	1.219 (4)	С19—Н19	0.9300
O2—C25	1.230 (4)	C20—C21	1.517 (6)
N1—C9	1.335 (5)	C20—C22	1.519 (6)
N1—C10	1.411 (5)	С20—Н20	0.9800
N1—H1	0.8600	C21—C25	1.484 (5)
N2—C25	1.341 (5)	C21—C22	1.511 (6)
N2—C26	1.403 (5)	C21—H21	0.9800
N2—H2	0.8600	C22—C23	1.481 (7)
C1—C2	1.453 (6)	C22—C24	1.519 (6)
C2—C3	1.297 (5)	С23—Н23А	0.9600
C3—C4	1.464 (5)	С23—Н23В	0.9600
С3—Н3	0.9300	С23—Н23С	0.9600
C4—C5	1.515 (6)	C24—H24A	0.9600
C4—C6	1.516 (7)	C24—H24B	0.9600
C4—H4	0.9800	C24—H24C	0.9600
С5—С9	1.492 (5)	C26—C31	1.372 (6)
С5—С6	1.514 (7)	C26—C27	1.377 (5)
С5—Н5	0.9800	C27—C28	1.376 (6)
C6—C7	1.495 (8)	С27—Н27	0.9300
C6—C8	1.516 (6)	C28—C29	1.365 (6)
С7—Н7А	0.9600	C28—H28	0.9300
С7—Н7В	0.9600	C29—C30	1.374 (6)
C7—H7C	0.9600	C29—C32	1.502 (7)
C8—H8A	0.9600	C30—C31	1.374 (6)
C8—H8B	0.9600	С30—Н30	0.9300
C8—H8C	0.9600	C31—H31	0.9300
C10—C15	1.380 (6)	С32—Н32А	0.9600
C10—C11	1.380 (5)	С32—Н32В	0.9600
C11—C12	1.369 (6)	С32—Н32С	0.9600
C9—N1—C10	128.6 (3)	F4—C17—F4′	32.5 (6)
C9—N1—H1	115.7	F6—C17—F5'	64.6 (7)
C10—N1—H1	115.7	F4—C17—F5'	130.9 (7)
C25—N2—C26	129.5 (3)	F4'—C17—F5'	107.5 (8)
C25—N2—H2	115.2	F6—C17—F5	96.3 (8)
C26—N2—H2	115.2	F4—C17—F5	108.3 (8)
F1—C1—F3	112.4 (7)	F4′—C17—F5	77.7 (7)
F3'—C1—F2'	101.0 (8)	F5'—C17—F5	34.8 (5)
F3'—C1—F1'	99.0 (7)	F6—C17—F6'	35.0 (5)
F2'—C1—F1'	110.7 (7)	F4—C17—F6'	84.8 (7)

F3′—C1—C2	121.7 (6)	F4'—C17—F6'	112.5 (8)
F1-C1-C2	118.0 (6)	F5'-C17-F6'	99.3 (7)
F3—C1—C2	112.8 (6)	F5—C17—F6'	128.3 (7)
F2'-C1-C2	114.6 (6)	F6-C17-C18	117.7(7)
F1′—C1—C2	108.6 (5)	F4-C17-C18	112.6 (6)
$F_3 = C_1 = F_2$	1104(7)	F4'-C17-C18	112.0(6)
C_{2} C_{1} F_{2}	1044(5)	F5'-C17-C18	113.2(0)
C_{3} C_{2} C_{1}	101.1(3) 1224(4)	F_{5} C_{17} C_{18}	110.6(0)
C_{3} C_{2} C_{11}	122.4(4) 124.0(3)	F6' - C17 - C18	109.4 (6)
$C_1 - C_2 - C_{11}$	124.0(3)	$C_{19} - C_{18} - C_{17}$	109.4(0) 123.0(4)
$C_1 = C_2 = C_1$	115.0(3) 126.5(4)	$C_{19} = C_{18} = C_{17}$	123.0(4) 123.8(3)
$C_2 = C_3 = C_4$	116.8	$C_{17} = C_{18} = C_{12}$	123.8(3) 113.2(4)
$C_2 = C_3 = H_3$	116.8	C17 - C18 - C12	113.2(4)
$C_4 - C_5 - C_5$	110.0 122.0(2)	C18 - C19 - C20	120.0 (4)
$C_3 = C_4 = C_5$	123.0(3)	С18—С19—Н19	117.0
$C_{5} = C_{4} = C_{6}$	120.3(4)	C10 C20 C21	117.0
C_{3}	59.9 (5)	C19 - C20 - C21	123.0 (4)
C3—C4—H4	114.3	C19 - C20 - C22	121.5 (4)
C5—C4—H4	114.3	$C_{21} = C_{20} = C_{22}$	59.7 (3)
C6—C4—H4	114.3	C19—C20—H20	114.0
C9—C5—C6	120.5 (4)	С21—С20—Н20	114.0
C9—C5—C4	123.5 (3)	С22—С20—Н20	114.0
C6—C5—C4	60.1 (3)	C25—C21—C22	120.6 (4)
С9—С5—Н5	114.1	C25—C21—C20	124.1 (3)
С6—С5—Н5	114.1	C22—C21—C20	60.2 (3)
C4—C5—H5	114.1	C25—C21—H21	113.9
C7—C6—C5	119.8 (4)	C22—C21—H21	113.9
C7—C6—C8	114.9 (5)	C20—C21—H21	113.9
C5—C6—C8	115.3 (5)	C23—C22—C21	118.9 (4)
C7—C6—C4	120.1 (4)	C23—C22—C20	120.8 (4)
C5—C6—C4	60.0 (3)	C21—C22—C20	60.1 (3)
C8—C6—C4	115.8 (5)	C23—C22—C24	114.9 (4)
С6—С7—Н7А	109.5	C21—C22—C24	115.6 (4)
С6—С7—Н7В	109.5	C20—C22—C24	115.7 (4)
H7A—C7—H7B	109.5	С22—С23—Н23А	109.5
С6—С7—Н7С	109.5	С22—С23—Н23В	109.5
H7A—C7—H7C	109.5	H23A—C23—H23B	109.5
H7B—C7—H7C	109.5	С22—С23—Н23С	109.5
С6—С8—Н8А	109.5	H23A—C23—H23C	109.5
C6—C8—H8B	109.5	H23B—C23—H23C	109.5
H8A—C8—H8B	109.5	C22—C24—H24A	109.5
C6—C8—H8C	109.5	C22—C24—H24B	109.5
H8A—C8—H8C	109.5	H24A—C24—H24B	109.5
H8B—C8—H8C	109.5	C22—C24—H24C	109.5
O1—C9—N1	123.4 (3)	H24A—C24—H24C	109.5
O1—C9—C5	123.9 (3)	H24B—C24—H24C	109.5
N1—C9—C5	112.7 (3)	O2—C25—N2	123.5 (4)
C15—C10—C11	118.2 (4)	O2—C25—C21	123.3 (4)
C15—C10—N1	117.8 (3)	N2—C25—C21	113.2 (3)

C11—C10—N1	123.9 (4)	C31—C26—C27	118.4 (4)
C12—C11—C10	120.2 (4)	C31—C26—N2	117.8 (3)
C12—C11—H11	119.9	C27—C26—N2	123.8 (4)
C10-C11-H11	119.9	C28—C27—C26	120.0 (4)
C13—C12—C11	122.6 (4)	С28—С27—Н27	120.0
C13—C12—H12	118.7	С26—С27—Н27	120.0
C11—C12—H12	118.7	C29—C28—C27	122.5 (4)
C12—C13—C14	116.9 (5)	C29—C28—H28	118.8
C12—C13—C16	121.6 (5)	C27—C28—H28	118.8
C14—C13—C16	121.5 (5)	C28—C29—C30	116.8 (4)
C13—C14—C15	122.1 (5)	C28—C29—C32	122.0 (4)
C13—C14—H14	118.9	C30—C29—C32	121.2 (5)
C15—C14—H14	118.9	C31—C30—C29	122.0 (4)
C10—C15—C14	120.0 (4)	С31—С30—Н30	119.0
C10—C15—H15	120.0	С29—С30—Н30	119.0
C14—C15—H15	120.0	C26—C31—C30	120.4 (4)
C13—C16—H16A	109.5	C26—C31—H31	119.8
C13—C16—H16B	109.5	С30—С31—Н31	119.8
H16A—C16—H16B	109.5	С29—С32—Н32А	109.5
C13—C16—H16C	109.5	С29—С32—Н32В	109.5
H16A—C16—H16C	109.5	H32A—C32—H32B	109.5
H16B—C16—H16C	109.5	С29—С32—Н32С	109.5
F6—C17—F4	110.0 (8)	H32A—C32—H32C	109.5
F6—C17—F4′	125.2 (9)	H32B—C32—H32C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
N1—H1···O2 ⁱ	0.86	2.15	2.978 (4)	161
N2—H2…O1	0.86	2.14	2.959 (4)	158

Symmetry code: (i) x-1, y, z.