Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N,N'-{[Bis(trifluoromethyl)methylene]di*p*-phenylene}diphthalimide

Yitao Li^a* and Zhiguo Wang^b

^aKey Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China, and ^bSchool of Chemical and Materials Engineering, Huangshi Institute of Technology, Huangshi 435003, People's Republic of China Correspondence e-mail: lytm1234@yahoo.com.cn

Received 5 November 2007; accepted 22 December 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.066; wR factor = 0.169; data-to-parameter ratio = 11.2

The molecule of the title compound, $C_{31}H_{16}F_6N_2O_4$, consists of two phthalimide units linked by a [bis(trifluoromethyl)methylene]di-p-phenylene bridge, with the two halves of the molecule related to each other by a twofold rotation axis. The dihedral angle between the planes of the two central benzene rings is $70.5 (3)^{\circ}$. The terminal isoindole groups are approximately planar, with a maximum r.m.s. deviation of 0.006 Å from the mean plane, and they form dihedral angles of $46.03 (3)^{\circ}$ to the attached benzene rings. Intermolecular C-H···O hydrogen bonds link neighboring molecules into chains along the c axis.

Related literature

For details of the biological activity and uses of bis(imide) derivatives, see: Rich et al. (1975); Degenhardt et al. (2002); Mallakpour & Kowsari (2004); Zhang et al. (1999); Langhals & Kirner (2000); Yakimov & Forrest (2002). For a related structure, see: Li et al. (2007).

Experimental

Crystal data

$C_{31}H_{16}F_6N_2O_4$	V = 2644.2 (6) Å ³
$M_r = 594.46$	Z = 4
Orthorhombic, Pcca	Mo $K\alpha$ radiation
a = 13.3588 (19) Å	$\mu = 0.13 \text{ mm}^{-1}$
b = 12.5340 (18) Å	T = 292 (2) K
c = 15.792 (2) Å	$0.30 \times 0.30 \times 0.20$ mm

Data collection

Bruker SMART 4K CCD areadetector diffractometer Absorption correction: none 15610 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.066$	64 restraints
$vR(F^2) = 0.168$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.23 \text{ e } \text{\AA}^{-3}$
2607 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$
232 parameters	

2607 independent reflections

 $R_{\rm int} = 0.119$

1864 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C15-H15\cdots O1^{i}$	0.93	2.42	3.199 (4)	141
Symmetry code: (i) x. –	$v + 2, z + \frac{1}{2}$			

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors thank Dr Xiang-Gao Meng for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2112).

References

Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2001). SMART (Version 5.054) and SAINT (Version 6.01). Bruker AXS Inc., Madison, Wisconsin, USA.

Degenhardt, C. F., Smith, M. D. & Shimizu, K. D. (2002). Org. Lett. 4, 723-726.

- Langhals, H. & Kirner, S. (2000). Eur. J. Org. Chem. pp. 365-380.
- Li, J., Li, Y.-T. & Wang, Z.-H. (2007). Acta Cryst. E63, 03420.
- Mallakpour, S. & Kowsari, E. (2004). J. Appl. Polym. Sci. 91, 2992-3000.
- Rich, D. H., Gesellchen, P. D., Tong, A., Cheung, A. & Buckner, C. K. (1975). J. Med. Chem. 18, 1004-1010.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yakimov, A. & Forrest, S. R. (2002). Appl. Phys. Lett. 81, 3085-3087.
- Zhang, Q., Hamilton, D. G., Feeder, N., Teat, S. J., Goodman, J. M. & Sanders, J. K. (1999). New J. Chem. 23, 897-903.

supporting information

Acta Cryst. (2008). E64, o388 [doi:10.1107/S1600536807068249]

N,N'-{[Bis(trifluoromethyl)methylene]di-*p*-phenylene}diphthalimide

Yitao Li and Zhiguo Wang

S1. Comment

Bisimides are heterocyclic compounds that sometimes exhibit biological activity (Rich *et al.*, 1975). Moreover, they are synthetic precursors with applications in organic synthesis (Degenhardt *et al.*, 2002), polymer synthesis (Mallakpour & Kowsari, 2004), supramolecular chemistry (Zhang *et al.*, 1999), and for the development of new materials (Langhals & Kirner, 2000) and molecular electronic devices (Yakimov & Forrest, 2002).

Following our studies on the synthesis of bisimides derivatives (Li *et al.*, 2007), we report here the structure of the title compound (I), Fig. 1. In the molecule, two phthalimide units are linked by a (1,1-di-trifluoromethyl)-methylenedi-*p*-phenylene bridge. The dihedral angle between the planes of the two central benzene rings is 70.5 (3)°. The terminal iso-indole group is approximately planar with a maximum r.m.s. deviation of 0.006Å from the best fit plane by C11 and makes a dihedral angle of 46.03 (3)° to the attached central benzene ring. Intermolecular C—H…O hydrogen bonds contribute to the stability of the structure (Table 1).

S2. Experimental

A solution of phthaloyl dichoride (420 mg, 2 mmol) was added slowly over a period of 10 min to a solution of 4-(2-(4-aminophenyl)-1,1,1,3,3,3- hexafluoropropan-2-yl)benzenamine (334 mg, 1 mmol) in dichloromethane (25 ml) at 273 K to yield a light yellow precipitate. Triethylamine (5 ml) was then added to dissolve the precipitate which became a yellow suspension after stirring for 12 h. The compound was filtered and dried to give (I), (yield 362 mg, 61%). Single crystals of (I) were obtained by recrystallization from DMF at room temperature.

S3. Refinement

Non-hydrogen atoms were refined with anisotropic displacement parameters. One of the trifluoromethyl groups (C1/F1/F2/F3) of the title compound was found to be disordered over two orientations. The occupancies of the disordered positions C1/C1', F1/F1', F2/F2'and F3/F3' were refined to 0.59 (5) /0.41 (5). All H atoms were initially located in a difference Fourier map and then included with constrained bond lengths and isotropic displacement parameters: C—H=0.93Å and $U_{iso}(H)=1.2U_{eq}(C)$ for aromatic H atoms.

F(000) = 1208

 $\theta = 2.6 - 21.8^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$

Block, colorless

 $0.30 \times 0.30 \times 0.20 \text{ mm}$

T = 292 K

 $D_{\rm x} = 1.493 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2679 reflections

Figure 1

The molecular structure of (I) showing atom labels with 50% probability displacement ellipsoids.

N,*N*'-{[Bis(trifluoromethyl)methylene]di-*p*- phenylene}diphthalimide

Crystal data

C₃₁H₁₆F₆N₂O₄ $M_r = 594.46$ Orthorhombic, *Pcca* Hall symbol: -P 2a 2ac a = 13.3588 (19) Å b = 12.5340 (18) Å c = 15.792 (2) Å $V = 2644.2 (6) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART 4K CCD area-detector	1864 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.119$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$
Graphite monochromator	$h = -16 \rightarrow 16$
φ and ω scans	$k = -15 \rightarrow 13$
15610 measured reflections	$l = -19 \rightarrow 19$
2607 independent reflections	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.066$ $wR(F^2) = 0.168$ S = 1.052607 reflections 232 parameters 64 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0607P)^2 + 1.4164P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.24$ e Å⁻³ $\Delta\rho_{min} = -0.23$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C1	0.1413 (6)	0.5169 (6)	0.0925 (5)	0.061 (3)	0.59
F1	0.1409 (5)	0.5845 (3)	0.0233 (3)	0.110 (2)	0.59
F2	0.0992 (5)	0.4244 (3)	0.0577 (3)	0.115 (2)	0.59
F3	0.0585 (4)	0.5547 (4)	0.1406 (4)	0.0905 (18)	0.59
C1′	0.1891 (7)	0.5093 (6)	0.0641 (4)	0.067 (3)	0.41
F1′	0.2253 (6)	0.5779 (5)	0.0078 (4)	0.088 (2)	0.41
F2′	0.1774 (6)	0.4132 (4)	0.0295 (4)	0.083 (2)	0.41
F3′	0.1045 (5)	0.5408 (7)	0.1022 (6)	0.072 (3)	0.41
C2	0.2500	0.5000	0.1377 (3)	0.089 (2)	
C3	0.2705 (3)	0.6000 (2)	0.1916 (2)	0.0590 (10)	
C4	0.2369 (3)	0.7005 (3)	0.1690 (2)	0.0572 (10)	
H4	0.1967	0.7089	0.1214	0.069*	
C5	0.3309 (3)	0.5905 (3)	0.2625 (2)	0.0641 (11)	
Н5	0.3531	0.5233	0.2788	0.077*	
C6	0.2630 (3)	0.7884 (2)	0.21707 (19)	0.0460 (8)	
H6	0.2388	0.8554	0.2022	0.055*	
C7	0.3592 (3)	0.6783 (3)	0.3097 (2)	0.0555 (9)	
H7	0.4011	0.6706	0.3564	0.067*	
C8	0.3240 (2)	0.7780 (2)	0.28632 (19)	0.0419 (7)	
C9	0.3798 (2)	0.9679 (2)	0.29929 (19)	0.0414 (7)	
C10	0.3466 (2)	0.8763 (3)	0.42443 (19)	0.0414 (7)	
C11	0.3948 (2)	1.0421 (2)	0.37121 (19)	0.0404 (7)	
C12	0.4248 (3)	1.1469 (3)	0.3716 (2)	0.0517 (9)	
H12	0.4403	1.1826	0.3217	0.062*	
C13	0.4310 (3)	1.1972 (3)	0.4497 (2)	0.0595 (10)	
H13	0.4506	1.2683	0.4522	0.071*	
C14	0.4084 (3)	1.1434 (3)	0.5240 (2)	0.0560 (10)	
H14	0.4129	1.1791	0.5755	0.067*	
C15	0.3795 (2)	1.0383 (3)	0.5228 (2)	0.0500 (9)	
H15	0.3648	1.0021	0.5726	0.060*	
C16	0.3731 (2)	0.9880 (2)	0.44536 (18)	0.0382 (7)	
N1	0.35108 (19)	0.86997 (19)	0.33529 (15)	0.0405 (6)	
01	0.38753 (18)	0.98510 (18)	0.22441 (13)	0.0569 (7)	
O3	0.32502 (19)	0.80458 (19)	0.47064 (14)	0.0570 (7)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.104 (8)	0.039 (5)	0.040 (4)	0.000 (5)	-0.012 (5)	0.007 (4)
F1	0.228 (7)	0.043 (2)	0.060 (3)	-0.030 (4)	-0.054 (4)	0.018 (2)
F2	0.200 (6)	0.041 (2)	0.105 (4)	-0.026 (3)	-0.081 (5)	0.001 (2)
F3	0.091 (4)	0.067 (3)	0.114 (5)	-0.007 (3)	-0.036 (3)	0.013 (3)
C1′	0.129 (8)	0.038 (5)	0.033 (5)	-0.027 (6)	0.005 (5)	-0.008(4)
F1′	0.146 (6)	0.055 (4)	0.061 (4)	-0.008(5)	-0.025 (5)	0.007 (3)
F2′	0.120 (5)	0.053 (4)	0.075 (5)	-0.010 (4)	-0.040 (4)	-0.014 (3)
F3′	0.046 (5)	0.055 (5)	0.115 (8)	0.016 (4)	-0.029 (4)	-0.005 (5)
C2	0.199 (8)	0.028 (3)	0.039 (3)	-0.018 (4)	0.000	0.000
C3	0.107 (3)	0.0301 (17)	0.0400 (19)	-0.0091 (18)	0.004 (2)	0.0000 (14)
C4	0.095 (3)	0.0373 (18)	0.0391 (18)	-0.0116 (18)	-0.0078 (19)	0.0001 (14)
C5	0.111 (3)	0.0280 (17)	0.053 (2)	0.0087 (18)	-0.003 (2)	0.0038 (15)
C6	0.071 (2)	0.0292 (15)	0.0377 (17)	-0.0012 (15)	-0.0008 (16)	0.0028 (13)
C7	0.076 (2)	0.0424 (19)	0.048 (2)	0.0042 (17)	-0.0049 (18)	0.0026 (16)
C8	0.0587 (19)	0.0338 (16)	0.0333 (16)	-0.0039 (14)	0.0052 (15)	-0.0013 (13)
C9	0.0523 (19)	0.0385 (17)	0.0333 (17)	-0.0040 (14)	0.0012 (14)	0.0000 (13)
C10	0.0429 (17)	0.0455 (19)	0.0358 (17)	0.0020 (14)	0.0023 (13)	0.0026 (15)
C11	0.0427 (16)	0.0434 (18)	0.0351 (17)	-0.0030 (13)	0.0015 (14)	-0.0020 (13)
C12	0.063 (2)	0.0432 (19)	0.049 (2)	-0.0073 (16)	0.0010 (17)	-0.0029 (16)
C13	0.062 (2)	0.049 (2)	0.068 (3)	-0.0036 (17)	-0.0006 (19)	-0.0192 (19)
C14	0.0503 (19)	0.068 (3)	0.049 (2)	0.0047 (17)	-0.0017 (16)	-0.0275 (18)
C15	0.0458 (18)	0.068 (2)	0.0362 (18)	0.0035 (16)	-0.0020 (15)	-0.0117 (16)
C16	0.0369 (16)	0.0454 (18)	0.0322 (15)	0.0037 (13)	-0.0015 (13)	-0.0020 (13)
N1	0.0558 (15)	0.0345 (14)	0.0313 (14)	-0.0033 (12)	-0.0005 (12)	-0.0015 (11)
O1	0.0885 (18)	0.0518 (14)	0.0305 (12)	-0.0178 (12)	0.0006 (12)	0.0018 (10)
03	0.0754 (16)	0.0545 (15)	0.0411 (13)	-0.0073 (12)	0.0015 (12)	0.0129 (11)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—F1	1.382 (7)	С5—Н5	0.9300
C1—F2	1.401 (8)	C6—C8	1.370 (4)
C1—F3	1.422 (8)	С6—Н6	0.9300
C1—C2	1.632 (7)	C7—C8	1.386 (4)
C1'—F1'	1.329 (8)	С7—Н7	0.9300
C1'—F2'	1.332 (7)	C8—N1	1.434 (4)
C1'—F3'	1.339 (8)	C9—O1	1.207 (4)
C1′—C2	1.423 (7)	C9—N1	1.406 (4)
C1′—C1′ ⁱ	1.645 (18)	C9—C11	1.482 (4)
C1'-F1' ⁱ	1.815 (12)	C10—O3	1.194 (4)
F1′—F2′ ⁱ	1.350 (11)	C10—N1	1.411 (4)
F1'-C1' ⁱ	1.815 (12)	C10—C16	1.481 (4)
F2'—F1' ⁱ	1.350 (11)	C11—C12	1.373 (4)
C2-C1'i	1.423 (7)	C11—C16	1.383 (4)
С2—С3	1.540 (4)	C12—C13	1.387 (5)
C2-C3 ⁱ	1.540 (4)	С12—Н12	0.9300

C2—C1 ⁱ	1.632 (7)	C13—C14	1.386 (5)
C3—C4	1.384 (5)	С13—Н13	0.9300
C3—C5	1.386 (5)	C14—C15	1.374 (5)
C4—C6	1.383 (4)	C14—H14	0.9300
C4—H4	0.9300	C15—C16	1.378 (4)
С5—С7	1.381 (5)	С15—Н15	0.9300
F1—C1—F2	101.3 (5)	C6—C4—C3	120.1 (3)
F1—C1—F3	102.4 (6)	C6—C4—H4	119.9
F2—C1—F3	100.0 (6)	C3—C4—H4	119.9
F1—C1—C2	115.3 (6)	C7—C5—C3	121.8 (3)
F2-C1-C2	114.9 (5)	С7—С5—Н5	119.1
$F_3 - C_1 - C_2$	1201(6)	C3-C5-H5	119.1
F1'-C1'-F2'	110.6 (6)	C8—C6—C4	120.8 (3)
F1'-C1'-F3'	114 7 (8)	С8—С6—Н6	119.6
F2'-C1'-F3'	110.6(7)	C4—C6—H6	119.6
$F_{12} = C_{11} = C_{12}$	113.0 (6)	$C_{5} - C_{7} - C_{8}$	119.0 118.8(3)
$F_{2}'-C_{1}'-C_{2}$	109.2(7)	C5-C7-H7	120.6
$F_{2}^{-} = C_{1}^{-} = C_{2}^{-}$	10 <i>5</i> .2 (7) 98 1 (6)	C_{3} C_{7} H_{7}	120.0
$F_{1}^{\prime} = C_{1}^{\prime} = C_{2}^{\prime}$	74.4(6)	C6 C8 C7	120.0
$F_{1} = C_{1} = C_{1}$ $F_{2'} = C_{1'} = C_{1'i}$	74.4(0) 80.3(7)	C_{0}	120.0(3)
$F_{2} = C_{1} = C_{1}$	57.3(7)	C_{0} C_{0} C_{0} C_{0} C_{1} C_{1} C_{2} C_{2} C_{2} C_{2} C_{1} C_{2} C_{2	120.3(3)
$F_3 = C_1 = C_1$	131.2(0)	$C = C_0 = N_1$	119.7(3)
$C_2 = C_1 = C_1^2$	34.7(4)	OI = C9 = INI	123.2(3)
FI - CI - FI	80.3 (6)	01-09-011	128.9 (3)
$F2 - C1 - F1^{\prime\prime}$	47.8 (5)		105.9 (2)
F3' - C1' - F1''	158.3 (7)	03	125.3 (3)
C2 - C1' - F1''	89.4 (6)	03-010-016	129.3 (3)
CI'' - CI' - FI''	44.8 (4)	NI-C10-C16	105.4 (3)
C1'— $F1'$ — $F2''$	103.5 (6)	C12—C11—C16	121.7 (3)
C1'— $F1'$ — $C1''$	60.8 (6)	C12—C11—C9	130.1 (3)
$F2''_{-}F1'_{-}C1''_{-}$	47.0 (4)	C16—C11—C9	108.2 (3)
$C1' - F2' - F1''_{1}$	85.2 (6)	C11—C12—C13	117.2 (3)
$C1'-C2-C1'^{1}$	70.6 (8)	C11—C12—H12	121.4
C1′—C2—C3	119.1 (3)	C13—C12—H12	121.4
C1' ⁱ —C2—C3	114.6 (4)	C14—C13—C12	121.2 (3)
C1'-C2-C3'	114.6 (4)	C14—C13—H13	119.4
$C1'^{i}$ — $C2$ — $C3^{i}$	119.1 (3)	С12—С13—Н13	119.4
$C3-C2-C3^{i}$	112.9 (4)	C15—C14—C13	121.1 (3)
$C1'$ — $C2$ — $C1^i$	99.4 (6)	C15—C14—H14	119.5
$C1'^{i}$ — $C2$ — $C1^{i}$	28.8 (4)	C13—C14—H14	119.5
$C3-C2-C1^{i}$	100.9 (3)	C14—C15—C16	117.9 (3)
$C3^{i}$ — $C2$ — $C1^{i}$	107.1 (3)	C14—C15—H15	121.0
C1′—C2—C1	28.8 (4)	C16—C15—H15	121.0
C1′ ⁱ —C2—C1	99.4 (6)	C15—C16—C11	120.9 (3)
C3—C2—C1	107.1 (3)	C15—C16—C10	130.1 (3)
C3 ⁱ —C2—C1	100.9 (3)	C11—C16—C10	108.9 (3)
C1 ⁱ —C2—C1	128.2 (7)	C9—N1—C10	111.5 (2)
C4—C3—C5	118.4 (3)	C9—N1—C8	123.5 (2)

C4—C3—C2	122.7 (3)	C10—N1—C8	124.9 (2)
C5—C3—C2	118.8 (3)		
F2'-C1'-F1'-F2' ⁱ	-103.3 (7)	C1′—C2—C3—C4	-3.8 (6)
F3'-C1'-F1'-F2' ⁱ	130.7 (8)	C1' ⁱ —C2—C3—C4	76.8 (6)
C2	19.4 (8)	$C3^{i}$ — $C2$ — $C3$ — $C4$	-142.5 (4)
$C1'^{i}$ — $C1'$ — $F1'$ — $F2'^{i}$	-20.2 (6)	C1 ⁱ C2C4	103.5 (5)
$F1'^{i}$ — $C1'$ — $F1'$ — $F2'^{i}$	-65.8 (7)	C1—C2—C3—C4	-32.4 (5)
$F2'-C1'-F1'-C1'^{i}$	-83.2 (8)	C1′—C2—C3—C5	-179.2(5)
F3'-C1'-F1'-C1' ⁱ	150.9 (8)	C1′ ⁱ —C2—C3—C5	-98.6 (6)
C2C1'F1'C1' ⁱ	39.6 (5)	C3 ⁱ —C2—C3—C5	42.1 (3)
$F1'^{i}$ — $C1'$ — $F1'$ — $C1'^{i}$	-45.6 (4)	C1 ⁱ —C2—C3—C5	-71.9 (5)
F1'-C1'-F2'-F1' ⁱ	54.2 (8)	C1—C2—C3—C5	152.2 (4)
F3'-C1'-F2'-F1' ⁱ	-177.6 (8)	C5—C3—C4—C6	-0.5 (6)
C2—C1′—F2′—F1′ ⁱ	-70.8 (7)	C2—C3—C4—C6	-175.9(3)
$C1'^{i}$ — $C1'$ — $F2'$ — $F1'^{i}$	-18.8 (5)	C4—C3—C5—C7	-1.0 (6)
F1'-C1'-C2-C1' ⁱ	-48.7 (5)	C2—C3—C5—C7	174.6 (3)
$F2'-C1'-C2-C1'^{i}$	74.8 (7)	C3—C4—C6—C8	1.5 (5)
F3'-C1'-C2-C1' ⁱ	-170.0 (9)	C3—C5—C7—C8	1.5 (6)
$F1'^{i}$ — $C1'$ — $C2$ — $C1'^{i}$	30.4 (3)	C4—C6—C8—C7	-0.9 (5)
F1'-C1'-C2-C3	59.2 (8)	C4C6C8N1	179.5 (3)
F2'—C1'—C2—C3	-177.2 (5)	C5—C7—C8—C6	-0.5 (5)
F3'—C1'—C2—C3	-62.0(7)	C5C7C8N1	179.0 (3)
C1' ⁱ —C1'—C2—C3	108.0 (5)	O1-C9-C11-C12	-3.0 (6)
F1' ⁱ —C1'—C2—C3	138.4 (4)	N1-C9-C11-C12	178.6 (3)
$F1'-C1'-C2-C3^{i}$	-162.7 (5)	O1—C9—C11—C16	177.2 (3)
$F2'-C1'-C2-C3^{i}$	-39.1 (8)	N1-C9-C11-C16	-1.2 (3)
$F3'-C1'-C2-C3^{i}$	76.1 (7)	C16-C11-C12-C13	-1.0(5)
$C1'^{i}$ — $C1'$ — $C2$ — $C3^{i}$	-114.0 (5)	C9-C11-C12-C13	179.2 (3)
$F1'^{i}$ — $C1'$ — $C2$ — $C3^{i}$	-83.5 (5)	C11—C12—C13—C14	0.5 (5)
$F1'$ — $C1'$ — $C2$ — $C1^i$	-48.9 (7)	C12—C13—C14—C15	0.2 (5)
$F2'$ — $C1'$ — $C2$ — $C1^i$	74.7 (7)	C13—C14—C15—C16	-0.4 (5)
$F3'$ — $C1'$ — $C2$ — $C1^i$	-170.1 (6)	C14—C15—C16—C11	-0.2 (5)
$C1'^{i}$ — $C1'$ — $C2$ — $C1^{i}$	-0.2 (6)	C14-C15-C16-C10	178.5 (3)
$F1'^{i}$ — $C1'$ — $C2$ — $C1^{i}$	30.3 (5)	C12-C11-C16-C15	0.9 (5)
F1'-C1'-C2-C1	130.9 (12)	C9-C11-C16-C15	-179.2 (3)
F2'—C1'—C2—C1	-105.5 (12)	C12-C11-C16-C10	-178.0 (3)
F3'—C1'—C2—C1	9.7 (8)	C9-C11-C16-C10	1.8 (3)
C1' ⁱ —C1'—C2—C1	179.7 (12)	O3—C10—C16—C15	-0.3 (6)
F1' ⁱ —C1'—C2—C1	-149.9 (11)	N1-C10-C16-C15	179.4 (3)
F1—C1—C2—C1′	-42.3 (8)	O3-C10-C16-C11	178.6 (3)
F2—C1—C2—C1′	75.0 (10)	N1-C10-C16-C11	-1.7 (3)
F3—C1—C2—C1′	-165.7 (13)	O1—C9—N1—C10	-178.4 (3)
F1-C1-C2-C1'i	-42.0 (7)	C11—C9—N1—C10	0.0 (3)
F2-C1-C2-C1'i	75.3 (7)	O1—C9—N1—C8	-2.0 (5)
F3—C1—C2—C1' ⁱ	-165.4 (6)	C11—C9—N1—C8	176.4 (3)
F1—C1—C2—C3	77.5 (7)	O3—C10—N1—C9	-179.3 (3)
F2—C1—C2—C3	-165.2 (5)	C16—C10—N1—C9	1.0 (3)

$F3-C1-C2-C3 F1-C1-C2-C3^{i} F2-C1-C2-C3^{i} F3-C1-C2-C3^{i} F1-C1-C2-C1^{i} F2-C1-C2-C1^{i} F2-C1-C2-C3^{i} F3-C1-C2-C3^{i} F3-C1-C3-C3-C3^{i} F3-C1-C3-C3-C3-C3-C3-C3-C3-C3-C3-C3-C3-C3-C3-$	-45.9 (7)	O3—C10—N1—C8	4.4 (5)
	-164.3 (5)	C16—C10—N1—C8	-175.3 (3)
	-47.0 (7)	C6—C8—N1—C9	-43.6 (4)
	72.4 (6)	C7—C8—N1—C9	136.9 (3)
	-42.1 (5)	C6—C8—N1—C10	132.3 (3)
	75.2 (6)	C7—C8—N1—C10	-47.2 (4)
$F1-C1-C2-C1^{i}$ $F2-C1-C2-C1^{i}$ $F3-C1-C2-C1^{i}$	-42.1 (5) 75.2 (6) -165.5 (7)	C6—C8—N1—C10 C7—C8—N1—C10	-47.2 (4)

Symmetry code: (i) -x+1/2, -y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C15—H15…O1 ⁱⁱ	0.93	2.42	3.199 (4)	141

Symmetry code: (ii) x, -y+2, z+1/2.