organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-(4-Bromophenylhydrazono)-1-(5-bromopyrimidin-2-yl)-3-methyl-2-pyrazolin-5-one

M. Subramanyam,^a B. Lingappa,^b A. Thiruvalluvar,^a* R. J. Butcher^c and Balakrishna Kalluraya^b

^aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamil Nadu, India, ^bDepartment of Studies in Chemistry, Mangalore University, Mangalagangothri 574 199, Karnataka, India, and ^cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059 USA

Correspondence e-mail: athiru@vsnl.net

Received 16 November 2007; accepted 20 December 2007

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.008 Å; R factor = 0.083; wR factor = 0.139; data-to-parameter ratio = 23.0.

The asymmetric unit of the title compound, C₁₄H₁₀Br₂N₆O, contains two crystallographically independent molecules. The pyrazole ring of one molecule makes dihedral angles of 22.0 (3) and 3.5 (3) $^{\circ}$ with the pyrimidine and benzene rings, respectively; the corresponding values in the other molecule are 9.2 (3) and 2.1 (3) $^{\circ}$, respectively. The molecules are linked by N-H···O, C-H···N and C-H···Br hydrogen bonds.

Related literature

For related literature, see: Baraldi et al. (1996, 2003); Kalluraya & Rahiman (1997); Kalluraya et al. (2001); Lingappa et al. (2006, 2007). For related crystal structures, see: Thiruvalluvar, Subramanyam, Kalluraya et al. (2007a,b); Thiruvalluvar, Subramanyam, Lingappa et al. (2007).

mm

Experimental

Crystal data

$C_{14}H_{10}Br_2N_6O$	$\gamma = 78.747 \ (3)^{\circ}$
$M_r = 438.08$	$V = 1539.67 (10) \text{ Å}^3$
Triclinic, P1	Z = 4
a = 9.1647 (3) Å	Mo $K\alpha$ radiation
b = 12.2833 (5) Å	$\mu = 5.28 \text{ mm}^{-1}$
c = 14.0288 (5) Å	T = 200 (2) K
$\alpha = 86.532 \ (3)^{\circ}$	$0.44 \times 0.39 \times 0.28$ m
$\beta = 84.218 \ (3)^{\circ}$	

Data collection

Oxford Diffraction Gemini	$T_{\min} = 0.205, T_{\max} = 0.320$
diffractometer	(expected range = $0.146-0.228$)
Absorption correction: multi-scan	24958 measured reflections
(CrysAlis RED; Oxford	9542 independent reflections
Diffraction, 2007)	6336 reflections with $I > 2\sigma(I)$
	$R_{\rm int} = 0.057$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.082$ 415 parameters $wR(F^2) = 0.139$ H-atom parameters constrained S = 1.25 $\Delta \rho_{\rm max} = 0.83 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.64 \text{ e} \text{ Å}^{-3}$ 9542 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N6A - H6A \cdots O5A$	0.88	2.14	2.821 (6)	134
$N6B - H6B \cdots O5B$	0.88	2.10	2.782 (6)	134
$C13A - H13A \cdots N12B^{i}$	0.95	2.61	3.193 (7)	120
$C15A - H15A \cdots Br4^{ii}$	0.95	2.92	3.761 (6)	148
$C15B-H15B\cdots Br2^{ii}$	0.95	2.87	3.746 (6)	153
$C31A - H31A \cdots Br3^{i}$	0.98	2.88	3.858 (6)	173
$C31B - H31D \cdots Br1^{i}$	0.98	2.92	3.862 (6)	160
$C45A - H45A \cdot \cdot \cdot N16B^{ii}$	0.95	2.62	3.539 (7)	162

Symmetry codes: (i) -x, -y + 1, -z; (ii) -x + 1, -y + 1, -z + 1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

RJB acknowledges the NSF-MRI program for funding to purchase the X-ray CCD diffractometer. AT thanks the UGC, India, for the award of a Minor Research Project [file No. MRP-2355/06(UGC-SERO), link No. 2355, 10/01/2007].

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2116).

References

Baraldi, P. G., Cacciari, B. & Spalluto, G. (1996). J. Med. Chem. 39, 1164-1169.

- Baraldi, P. G., Fruttarolo, F., Tabrizi, M. A., Preti, D., Romagnoli, H., El-Kashef, H., Moorman, A., Varani, K., Gessi, S., Merighi, S. & Borea, P. A. (2003). J. Med. Chem. 46, 1229-1233.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Kalluraya, B. & Rahiman, A. M. (1997). Pol. J. Chem. 1049, 71-75.
- Kalluraya, B., Rahiman, A. M. & Banji, D. (2001). Arch. Pharm. Med. Chem. 263, 334-341
- Lingappa, B., Kalluraya, B. & Satheesha Rai, N. (2006). Indian J. Org. Chem. 2, 5-6.
- Lingappa, B., Kalluraya, B. & Satheesha Rai, N. (2007). Phosphorus, Sulphur Silicon Relat. Elem. 182, 1393-1401.
- Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Versions 1.171.32. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Thiruvalluvar, A., Subramanyam, M., Kalluraya, B. & Lingappa, B. (2007a). Acta Crvst. E63, o2911.
- Thiruvalluvar, A., Subramanyam, M., Kalluraya, B. & Lingappa, B. (2007b). Acta Cryst. E63, 03362.
- Thiruvalluvar, A., Subramanyam, M., Lingappa, B. & Kalluraya, B. (2007). Acta Cryst. E63, 03425.

Acta Cryst. (2008). E64, o362 [doi:10.1107/S1600536807067943]

4-(4-Bromophenylhydrazono)-1-(5-bromopyrimidin-2-yl)-3-methyl-2pyrazolin-5-one

M. Subramanyam, B. Lingappa, A. Thiruvalluvar, R. J. Butcher and Balakrishna Kalluraya

S1. Comment

The chemistry of pyrimidine and its derivatives has been studied due to their diverse biological activities (Baraldi *et al.*, 1996; Lingappa *et al.*, 2006, 2007). Pyrazoles and their derivatives are found to be associated with diverse pharmacological activities. Pyrazoles constitute an important class of heterocycles, which display interesting biological properties such as fungicidal, anti-inflammatory, anti-arthritic, anti-depressant and antiviral activity (Baraldi *et al.*, 2003; Kalluraya *et al.*, 2001; Kalluraya & Rahiman, 1997). The title compound, has been analysed as part of our crystallographic studies on pyrimidine derivatives (Thiruvalluvar *et al.*, 2007*a*,b; Thiruvalluvar, Subramanyam, Lingappa *et al.*, 2007). The asymmetric unit of the title compound, C₁₄H₁₀Br₂N₆O, Fig. 1, contains two crystallographically independent molecules, A and B. The pyrazole ring of A makes dihedral angles of 22.0 (3)° and 3.5 (3)° with the pyrimidine ring and phenyl ring respectively; the corresponding values in molecule B are 9.2 (3)° and 2.1 (3)°. The molecules are linked by N—H…O, C—H…N and C—H…Br hydrogen bonds; see Fig. 2 and hydrogen bond table.

S2. Experimental

Ethyl-2-(4-bromohydrazono-3-oxobutanoate (3.2 g, 0.01 mol) was dissolved in glacial acetic acid (15 ml). To this a solution of 2-hydrazino-5-bromo-pyrimidine (1.9 g, 0.01 mol) in glacial acetic acid (20 ml) was added and the mixture was refluxed for 4 h in an oil bath. It was cooled and allowed to stand overnight. The separated solid was filtered, dried and then recrystallized from ethanol to give reddish flakes. Further recrystallization from ethyl acetate gave the yellowish red crystals suitable for X-ray analysis (3.0 g, 70%).

S3. Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.88–0.98 Å and U_{iso} =1.2 or 1.5 times U_{eq} (C).

Figure 1

The molecular structure of the title compound with the atomic numbering and 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radius.

Figure 2

The packing of the title compound, viewed down the a axis. Dashed lines indicate hydrogen bonds.

4-(4-Bromophenylhydrazono)-1-(5-bromopyrimidin-2-yl)-3-methyl-2-pyrazolin-5-one

Crystal data	
$C_{14}H_{10}Br_2N_6O$	$\gamma = 78.747 \ (3)^{\circ}$
$M_r = 438.08$	$V = 1539.67 (10) \text{ Å}^3$
Triclinic, $P\overline{1}$	Z = 4
Hall symbol: -P 1	F(000) = 856
a = 9.1647 (3) Å	$D_{\rm x} = 1.890 {\rm ~Mg} {\rm ~m}^{-3}$
b = 12.2833 (5) Å	Melting point: 534(1) K
c = 14.0288 (5) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
$\alpha = 86.532 \ (3)^{\circ}$	Cell parameters from 5753 reflections
$\beta = 84.218 \ (3)^{\circ}$	$\theta = 4.6 - 32.4^{\circ}$

 $\mu = 5.28 \text{ mm}^{-1}$ T = 200 K

Data collection

Duiu conection	
Oxford Diffraction Gemini diffractometer	24958 measured reflections 9542 independent reflections
Radiation source: fine-focus sealed tube	6336 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.057$
Detector resolution: 10.5081 pixels mm ⁻¹	$\theta_{\rm max} = 32.5^{\circ}, \ \theta_{\rm min} = 4.6^{\circ}$
φ and ω scans	$h = -13 \rightarrow 13$
Absorption correction: multi-scan	$k = -18 \rightarrow 18$
(CrysAlis RED; Oxford Diffraction, 2007)	$l = -20 \rightarrow 20$
$T_{\min} = 0.205, \ T_{\max} = 0.320$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.082$	Hydrogen site location: inferred from
$wR(F^2) = 0.139$	neighbouring sites
S = 1.25	H-atom parameters constrained
9542 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0029P)^2 + 9.1374P]$
415 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$

Prism, pale-yellow

 $\Delta \rho_{\rm max} = 0.83 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.64 \text{ e} \text{ Å}^{-3}$

 $0.44 \times 0.39 \times 0.28 \text{ mm}$

Special details

direct methods

Primary atom site location: structure-invariant

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
0.25785 (9)	0.06030 (5)	0.13400 (5)	0.0442 (2)	
0.35450 (8)	0.83940 (5)	0.95346 (4)	0.0376 (2)	
0.3522 (5)	0.4304 (3)	0.4711 (3)	0.0337 (12)	
0.1660 (5)	0.4635 (4)	0.3613 (3)	0.0230 (12)	
0.0409 (5)	0.5473 (4)	0.3440 (3)	0.0233 (12)	
0.1545 (5)	0.6383 (4)	0.5533 (3)	0.0236 (12)	
0.2645 (5)	0.5980 (4)	0.6055 (3)	0.0272 (14)	
0.1363 (5)	0.3829 (4)	0.2204 (3)	0.0269 (14)	
0.2742 (5)	0.2773 (4)	0.3423 (3)	0.0283 (14)	
0.0276 (6)	0.6191 (4)	0.4112 (4)	0.0241 (16)	
0.1428 (6)	0.5855 (4)	0.4762 (4)	0.0249 (17)	
0.2370 (6)	0.4835 (4)	0.4405 (4)	0.0251 (17)	
0.1945 (6)	0.3696 (4)	0.3045 (4)	0.0233 (17)	
0.1549 (6)	0.2918 (4)	0.1690 (4)	0.0256 (17)	
	x 0.25785 (9) 0.35450 (8) 0.3522 (5) 0.1660 (5) 0.0409 (5) 0.1545 (5) 0.2645 (5) 0.2742 (5) 0.2742 (5) 0.0276 (6) 0.1428 (6) 0.2370 (6) 0.1945 (6) 0.1549 (6)	xy $0.25785(9)$ $0.06030(5)$ $0.35450(8)$ $0.83940(5)$ $0.3522(5)$ $0.4304(3)$ $0.1660(5)$ $0.4635(4)$ $0.0409(5)$ $0.5473(4)$ $0.1545(5)$ $0.6383(4)$ $0.2645(5)$ $0.5980(4)$ $0.1363(5)$ $0.2773(4)$ $0.2742(5)$ $0.2773(4)$ $0.0276(6)$ $0.6191(4)$ $0.1428(6)$ $0.5855(4)$ $0.2370(6)$ $0.4835(4)$ $0.1549(6)$ $0.2918(4)$	xyz $0.25785(9)$ $0.06030(5)$ $0.13400(5)$ $0.35450(8)$ $0.83940(5)$ $0.95346(4)$ $0.3522(5)$ $0.4304(3)$ $0.4711(3)$ $0.1660(5)$ $0.4635(4)$ $0.3613(3)$ $0.0409(5)$ $0.5473(4)$ $0.3440(3)$ $0.1545(5)$ $0.6383(4)$ $0.5533(3)$ $0.2645(5)$ $0.5980(4)$ $0.6055(3)$ $0.1363(5)$ $0.2773(4)$ $0.3423(3)$ $0.2742(5)$ $0.2773(4)$ $0.3423(3)$ $0.0276(6)$ $0.6191(4)$ $0.4112(4)$ $0.1428(6)$ $0.5855(4)$ $0.4762(4)$ $0.2370(6)$ $0.4835(4)$ $0.3045(4)$ $0.1549(6)$ $0.2918(4)$ $0.1690(4)$	xyz $U_{iso}*/U_{eq}$ 0.25785 (9)0.06030 (5)0.13400 (5)0.0442 (2)0.35450 (8)0.83940 (5)0.95346 (4)0.0376 (2)0.3522 (5)0.4304 (3)0.4711 (3)0.0337 (12)0.1660 (5)0.4635 (4)0.3613 (3)0.0230 (12)0.0409 (5)0.5473 (4)0.3440 (3)0.0233 (12)0.1545 (5)0.6383 (4)0.5533 (3)0.0236 (12)0.2645 (5)0.5980 (4)0.6055 (3)0.0272 (14)0.1363 (5)0.3829 (4)0.2204 (3)0.0269 (14)0.2742 (5)0.2773 (4)0.3423 (3)0.0283 (14)0.0276 (6)0.6191 (4)0.4112 (4)0.0241 (16)0.1428 (6)0.5855 (4)0.4762 (4)0.0251 (17)0.2370 (6)0.4835 (4)0.3045 (4)0.0233 (17)0.1549 (6)0.2918 (4)0.1690 (4)0.0256 (17)

C14A	0.2345 (6)	0.1912 (5)	0.2024 (4)	0.0267 (17)
C15A	0.2941 (7)	0.1879 (4)	0.2893 (4)	0.0294 (16)
C31A	-0.0912 (7)	0.7199 (5)	0.4167 (4)	0.0310(17)
C41A	0.2811 (6)	0.6529 (4)	0.6887 (4)	0.0218 (14)
C42A	0.1781 (6)	0.7470 (5)	0.7170 (4)	0.0269 (17)
C43A	0.1993 (7)	0.7997 (5)	0.7976 (4)	0.0289 (17)
C44A	0.3238 (6)	0.7582 (4)	0.8478 (4)	0.0240 (16)
C45A	0.4250 (6)	0.6644 (5)	0.8210 (4)	0.0274 (17)
C46A	0.4032 (6)	0.6110 (5)	0.7402 (4)	0.0268 (17)
Br3	0.35984 (7)	0.28407 (6)	-0.22267 (5)	0.0439 (2)
Br4	0.35687 (7)	1.01017 (5)	0.64977 (4)	0.0352 (2)
O5B	0.3253 (4)	0.5890 (3)	0.1841 (3)	0.0289 (11)
N1B	0.1528 (5)	0.6272 (4)	0.0654 (3)	0.0242 (12)
N2B	0.0319 (5)	0.7132 (4)	0.0455 (3)	0.0257 (12)
N5B	0.1476 (5)	0.8095 (4)	0.2504 (3)	0.0243 (12)
N6B	0.2564 (5)	0.7670 (4)	0.3048 (3)	0.0255 (12)
N12B	0.1135 (5)	0.5468 (4)	-0.0740 (3)	0.0246 (12)
N16B	0.3245 (5)	0.4721 (4)	0.0142 (3)	0.0297 (16)
C3B	0.0199 (6)	0.7867 (5)	0.1108 (4)	0.0257 (17)
C4B	0.1306 (6)	0.7519 (5)	0.1779 (4)	0.0243 (16)
C5B	0.2192 (6)	0.6457 (5)	0.1473 (4)	0.0225 (16)
C11B	0.1992 (6)	0.5427 (4)	-0.0014 (4)	0.0221 (14)
C13B	0.1610 (6)	0.4687 (4)	-0.1378 (4)	0.0253 (17)
C14B	0.2899 (6)	0.3913 (5)	-0.1295 (4)	0.0280 (17)
C15B	0.3703 (7)	0.3965 (5)	-0.0520 (4)	0.0337 (17)
C31B	-0.0924 (7)	0.8914 (5)	0.1110 (4)	0.0378 (19)
C41B	0.2806 (6)	0.8256 (5)	0.3837 (4)	0.0248 (17)
C42B	0.1926 (7)	0.9294 (5)	0.4041 (4)	0.0326 (17)
C43B	0.2166 (7)	0.9838 (5)	0.4834 (4)	0.0327 (17)
C44B	0.3283 (6)	0.9332 (5)	0.5407 (4)	0.0261 (16)
C45B	0.4170 (7)	0.8313 (5)	0.5212 (4)	0.0281 (17)
C46B	0.3920 (6)	0.7777 (4)	0.4417 (4)	0.0258 (16)
H6A	0.32796	0.53710	0.58914	0.0325*
H13A	0.11317	0.29614	0.10926	0.0305*
H15A	0.35103	0.11993	0.31218	0.0351*
H31A	-0.15409	0.72242	0.36379	0.0462*
H31B	-0.15261	0.71796	0.47794	0.0462*
H31C	-0.04557	0.78606	0.41202	0.0462*
H42A	0.09463	0.77462	0.68162	0.0322*
H43A	0.12971	0.86348	0.81856	0.0344*
H45A	0.50800	0.63667	0.85679	0.0324*
H46A	0.47163	0.54612	0.72037	0.0320*
H6B	0.31353	0.70229	0.29195	0.0304*
H13B	0.10427	0.46644	-0.19044	0.0301*
H15B	0.46075	0.34463	-0.04581	0.0402*
H31D	-0.15362	0.89370	0.05723	0.0567*
H31E	-0.15657	0.89487	0.17142	0.0567*
H31F	-0.04134	0.95486	0.10445	0.0567*

H42B	0.11701	0.96245	0.36400	0.0391*	
H43B	0.15775	1.05438	0.49828	0.0397*	
H45B	0.49313	0.79874	0.56111	0.0337*	
H46B	0.45184	0.70742	0.42684	0.0303*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0592 (4)	0.0278 (3)	0.0472 (4)	-0.0018 (3)	-0.0158 (3)	-0.0168 (3)
Br2	0.0477 (4)	0.0328 (3)	0.0341 (3)	-0.0035 (3)	-0.0141 (3)	-0.0127 (3)
O5A	0.036 (2)	0.031 (2)	0.034 (2)	0.0029 (19)	-0.0159 (19)	-0.0093 (18)
N1A	0.026 (2)	0.020 (2)	0.023 (2)	0.0008 (19)	-0.0097 (18)	-0.0067 (18)
N2A	0.026 (2)	0.018 (2)	0.025 (2)	-0.0002 (19)	-0.0041 (18)	-0.0041 (18)
N5A	0.028 (2)	0.023 (2)	0.020 (2)	-0.003(2)	-0.0056 (18)	-0.0030 (18)
N6A	0.033 (3)	0.022 (2)	0.025 (2)	0.001 (2)	-0.005 (2)	-0.0042 (19)
N12A	0.032 (3)	0.023 (2)	0.026 (2)	-0.001 (2)	-0.010 (2)	-0.0059 (19)
N16A	0.035 (3)	0.023 (2)	0.025 (2)	0.004 (2)	-0.011 (2)	-0.0035 (19)
C3A	0.028 (3)	0.020 (2)	0.024 (3)	-0.003(2)	-0.005 (2)	0.001 (2)
C4A	0.029 (3)	0.021 (3)	0.026 (3)	-0.007(2)	-0.002 (2)	-0.004 (2)
C5A	0.031 (3)	0.022 (3)	0.022 (3)	-0.003(2)	-0.005 (2)	0.000 (2)
C11A	0.025 (3)	0.022 (3)	0.024 (3)	-0.005 (2)	-0.004 (2)	-0.005 (2)
C13A	0.029 (3)	0.025 (3)	0.023 (3)	-0.002 (2)	-0.008(2)	-0.004 (2)
C14A	0.029 (3)	0.029 (3)	0.026 (3)	-0.012 (2)	-0.004(2)	-0.008(2)
C15A	0.037 (3)	0.016 (2)	0.034 (3)	0.002 (2)	-0.012 (3)	0.000 (2)
C31A	0.032 (3)	0.029 (3)	0.032 (3)	-0.002(3)	-0.007(2)	-0.007 (2)
C41A	0.026 (3)	0.021 (2)	0.019 (2)	-0.005 (2)	-0.003 (2)	-0.002 (2)
C42A	0.029 (3)	0.025 (3)	0.026 (3)	-0.001 (2)	-0.008(2)	-0.001 (2)
C43A	0.034 (3)	0.021 (3)	0.030 (3)	0.002 (2)	-0.005 (2)	-0.008(2)
C44A	0.031 (3)	0.023 (3)	0.019 (2)	-0.006 (2)	-0.004 (2)	-0.003 (2)
C45A	0.026 (3)	0.033 (3)	0.024 (3)	-0.005 (2)	-0.005 (2)	-0.005 (2)
C46A	0.025 (3)	0.029 (3)	0.027 (3)	-0.004(2)	-0.004(2)	-0.006 (2)
Br3	0.0343 (3)	0.0493 (4)	0.0480 (4)	0.0003 (3)	-0.0035 (3)	-0.0294 (3)
Br4	0.0448 (4)	0.0345 (3)	0.0278 (3)	-0.0061 (3)	-0.0067 (3)	-0.0123 (2)
O5B	0.033 (2)	0.029 (2)	0.0251 (19)	-0.0004 (18)	-0.0116 (17)	-0.0067 (16)
N1B	0.023 (2)	0.023 (2)	0.027 (2)	-0.0024 (19)	-0.0071 (18)	-0.0026 (19)
N2B	0.024 (2)	0.024 (2)	0.027 (2)	0.003 (2)	-0.0061 (19)	-0.0031 (19)
N5B	0.026 (2)	0.024 (2)	0.023 (2)	-0.003(2)	-0.0044 (18)	-0.0050 (18)
N6B	0.028 (2)	0.025 (2)	0.023 (2)	-0.001 (2)	-0.0056 (19)	-0.0060 (18)
N12B	0.026 (2)	0.023 (2)	0.025 (2)	-0.003 (2)	-0.0058 (18)	-0.0033 (18)
N16B	0.030 (3)	0.034 (3)	0.023 (2)	0.003 (2)	-0.0068 (19)	-0.006 (2)
C3B	0.023 (3)	0.026 (3)	0.027 (3)	0.000 (2)	-0.005 (2)	-0.004 (2)
C4B	0.027 (3)	0.027 (3)	0.020 (2)	-0.006 (2)	-0.003 (2)	-0.006 (2)
C5B	0.024 (3)	0.027 (3)	0.018 (2)	-0.007 (2)	-0.005 (2)	-0.001 (2)
C11B	0.024 (3)	0.021 (2)	0.020 (2)	0.000 (2)	-0.003 (2)	-0.002 (2)
C13B	0.028 (3)	0.024 (3)	0.025 (3)	-0.005 (2)	-0.006 (2)	-0.004 (2)
C14B	0.025 (3)	0.029 (3)	0.028 (3)	0.001 (2)	0.001 (2)	-0.010 (2)
C15B	0.026 (3)	0.038 (3)	0.033 (3)	0.009 (3)	-0.009 (2)	-0.007 (3)
C31B	0.041 (4)	0.039 (3)	0.029 (3)	0.009 (3)	-0.009 (3)	-0.011 (3)

C41B	0.025 (3)	0.027 (3)	0.022 (3)	-0.003 (2)	0.000(2)	-0.007(2)
C42B	0.038 (3)	0.031 (3)	0.028 (3)	0.000 (3)	-0.011 (3)	-0.003 (2)
C43B	0.037 (3)	0.028 (3)	0.031 (3)	0.002 (3)	-0.004 (3)	-0.009 (2)
C44B	0.032 (3)	0.029 (3)	0.018 (2)	-0.008 (3)	-0.001 (2)	-0.002 (2)
C45B	0.029 (3)	0.032 (3)	0.023 (3)	-0.003 (3)	-0.006 (2)	-0.002 (2)
C46B	0.031 (3)	0.021 (2)	0.025 (3)	-0.004 (2)	-0.002 (2)	-0.003 (2)

Geometric parameters (Å, °)

Br1—C14A	1.888 (6)	C41A—C46A	1.390 (8)
Br2—C44A	1.909 (5)	C41A—C42A	1.392 (8)
Br3—C14B	1.888 (6)	C42A—C43A	1.385 (8)
Br4—C44B	1.912 (6)	C43A—C44A	1.396 (8)
O5A—C5A	1.230 (7)	C44A—C45A	1.376 (8)
O5B—C5B	1.221 (7)	C45A—C46A	1.394 (8)
N1A—N2A	1.414 (7)	C13A—H13A	0.9500
N1A—C11A	1.409 (7)	C15A—H15A	0.9500
N1A—C5A	1.400(7)	C31A—H31A	0.9800
N2A—C3A	1.310 (7)	C31A—H31C	0.9800
N5A—N6A	1.307 (6)	C31A—H31B	0.9800
N5A—C4A	1.318 (7)	C42A—H42A	0.9500
N6A—C41A	1.418 (7)	C43A—H43A	0.9500
N12A—C11A	1.331 (7)	C45A—H45A	0.9500
N12A—C13A	1.342 (7)	C46A—H46A	0.9500
N16A—C11A	1.335 (7)	C3B—C4B	1.440 (8)
N16A—C15A	1.336 (7)	C3B—C31B	1.482 (9)
N6A—H6A	0.8800	C4B—C5B	1.459 (8)
N1B—N2B	1.411 (7)	C13B—C14B	1.374 (8)
N1B-C11B	1.415 (7)	C14B—C15B	1.385 (8)
N1B—C5B	1.403 (7)	C41B—C46B	1.388 (8)
N2B—C3B	1.307 (7)	C41B—C42B	1.398 (9)
N5B—C4B	1.312 (7)	C42B—C43B	1.389 (8)
N5B—N6B	1.323 (6)	C43B—C44B	1.392 (8)
N6B—C41B	1.414 (7)	C44B—C45B	1.379 (9)
N12B—C13B	1.332 (7)	C45B—C46B	1.389 (8)
N12B—C11B	1.340 (7)	C13B—H13B	0.9500
N16B—C15B	1.332 (7)	C15B—H15B	0.9500
N16B—C11B	1.326 (7)	C31B—H31D	0.9800
N6B—H6B	0.8800	C31B—H31E	0.9800
C3A—C31A	1.481 (8)	C31B—H31F	0.9800
C3A—C4A	1.447 (8)	C42B—H42B	0.9500
C4A—C5A	1.460 (7)	C43B—H43B	0.9500
C13A—C14A	1.388 (8)	C45B—H45B	0.9500
C14A—C15A	1.381 (8)	C46B—H46B	0.9500
Br1…Br2 ⁱ	3.7421 (9)	C5B····N2A	3.347 (7)
Br2···C15B ⁱⁱ	3.746 (6)	C11B····C45A ^x	3.527 (8)
Br2…Br1 ⁱⁱⁱ	3.7421 (9)	C11B····C44A ^x	3.578 (7)

Br2…C3B ^{iv}	3.733 (6)	C11B…N12B ^v	3.319(7)
Br3····C31B ^v	3.740 (6)	C13A····C42A ^{ix}	3.405 (8)
Br3…N6B ^{vi}	3.536 (5)	C13A…N12B ^v	3.193 (7)
Br3…C46B ^{vi}	3.659 (6)	C13B····C41A ^x	3.467 (8)
Br4…C45B ^{vii}	3.721 (6)	C13B····N2B ^v	3.244 (7)
Br4…C43A	3.644 (6)	C13B···N1B ^v	3.358 (7)
Br1···H31D ^v	2.9200	C13B····C46A ^x	3.361 (8)
Br2…H15B ⁱⁱ	2.8700	C13B…N12A ^v	3.245 (7)
Br3…H6B ^{vi}	3.0900	C14B····C46A ^x	3.438 (8)
Br3…H46B ^{vi}	3.2000	C15B····O5B ^{vi}	3.219 (7)
Br3···H31E ^v	3.1600	C15B…Br2 ⁱⁱ	3.746 (6)
Br3···H31A ^v	2.8800	C31A····C5A ^{ix}	3.493 (8)
Br4…H31E ^{viii}	3.1000	C31AN5B	3.323 (8)
Br4…H15A ⁱⁱ	2.9200	C31B···Br3 ^v	3.740 (6)
05A…N5A	3.044 (6)	C41A…C45B	3.425 (8)
O5A···C46B ⁱⁱ	3.375 (7)	C41A····C13B ^{iv}	3.467 (8)
05A···N6A	2.821 (6)	C41B···C4A	3.555 (8)
05AN16A	2.917 (6)	C42A····C13A ^{ix}	3.405 (8)
05B…N16B	2.857 (6)	C42A…C45B	3.569 (8)
05B···N5B	3.022 (6)	C43A…Br4	3.644 (6)
05B···N6B	2.782 (6)	C44A····C11B ^{iv}	3.578 (7)
O5B····C15B ^{vi}	3.219 (7)	C45A…C11B ^{iv}	3.527 (8)
05B…N1A	3.220 (6)	C45B…Br4 ^{vii}	3.721 (6)
05B…C46A ⁱⁱ	3.344 (7)	C45B…C41A	3.425 (8)
O5A…H46B ⁱⁱ	2.6800	C45B···C42A	3.569 (8)
О5А…Н6А	2.1400	C46A····C13B ^{iv}	3.361 (8)
O5A…H31B ^{ix}	2.8400	C46A····C14B ^{iv}	3.438 (8)
O5B…H6B	2.1000	C46A····O5B ⁱⁱ	3.344 (7)
O5B…H46A ⁱⁱ	2.6500	C46B…N5A	3.250 (7)
O5B…H15B ^{vi}	2.8200	C46B····O5A ⁱⁱ	3.375 (7)
N1A…O5B	3.220 (6)	C46B…N6A	3.372 (7)
N1B····C13B ^v	3.358 (7)	C46B…C4A	3.573 (7)
N2A…N12A	2.698 (6)	C46B····Br3 ^{vi}	3.659 (6)
N2A…C5B	3.347 (7)	С5А…Н6А	2.4900
N2A…C4A ^{ix}	3.402 (7)	C5A····H31B ^{ix}	2.8700
N2B…N12B	2.667 (6)	С5В…Н6В	2.4700
N2B····C13B ^v	3.244 (7)	C15A····H45B ⁱⁱ	3.0400
N5A…C46B	3.250 (7)	C15B····H45A ⁱⁱ	3.0400
N5A…O5A	3.044 (6)	C31A····H43B ^{viii}	3.0100
N5B…O5B	3.022 (6)	C42B…H31C	3.0500
N5B…C31A	3.323 (8)	Н6А…С5А	2.4900
N5B···C3A	3.411 (7)	Н6А…Н46А	2.3900
N6A…C46B	3.372 (7)	Н6А…О5А	2.1400
N6A…O5A	2.821 (6)	H6B…H46B	2.3900
N6B···C4A	3.404 (7)	H6B…O5B	2.1000
N6B…Br3 ^{vi}	3.536 (5)	H6B…C5B	2.4700
N6B···C3A	3.233 (7)	H6B…Br3 ^{vi}	3.0900
N6B…O5B	2.782 (6)	H13A…N2B ^v	2.6800

N12A····C13B ^v	3.245 (7)	H13A…N12B ^v	2.6100
N12A…N12B ^v	3.188 (6)	H13B…N12A ^v	2.6400
N12A…N2A	2.698 (6)	H13B…N2A ^v	2.6700
N12B…N2B	2.667 (6)	H15A…Br4 ⁱⁱ	2.9200
N12B····C13A ^v	3.193 (7)	H15B····O5B ^{vi}	2.8200
N12B···C11B ^v	3.319(7)	H15B…Br2 ⁱⁱ	2.8700
N12B···N12A ^v	3.188 (6)	H31A…Br3 ^v	2.8800
N12B···N12B ^v	3.120 (6)	H31B…N16A ^{ix}	2.6500
N16A…O5A	2.917 (6)	H31B····C5A ^{ix}	2.8700
N16B…O5B	2.857 (6)	H31B···O5A ^{ix}	2.8400
N2A···H13B ^v	2.6700	H31C…N5B	2.7700
N2B···H13A ^v	2.6800	H31C…C42B	3.0500
N5A····H42A	2.4800	H31C···H43B ^{viii}	2.3900
N5B…H42B	2.4900	H31DBr1v	2.9200
N5B···H31C	2.7700	H31E…Br4 ^{viii}	3.1000
N12A····H13B ^v	2.6400	H31E····Br3 ^v	3 1600
N12B···H13A ^v	2.6100	$H31E \cdot H43A^{viii}$	2 4900
N16A····H45B ⁱⁱ	2.6300	H42AN5A	2.1900
N16A···H31B ^{ix}	2.6500	H42BN5B	2.1000
N16B···H45A ⁱⁱ	2.6300	$H43A \cdots H31F^{viii}$	2.4900
C3A···N5B	3411(7)	H43B···H31C ^{viii}	2.4900
$C3A \cdots C4A^{ix}$	3.411(7) 3.436(7)	H43B····C31A ^{viii}	3 0100
$C3A \cdots C5A^{ix}$	3.430(7) 3.414(8)	H45A····C15B ⁱⁱ	3.0400
C3A····N6B	3,714(0) 3,733(7)	H45AN16B ⁱⁱ	2 6200
$C3B\cdots Br^{2x}$	3,733 (6)	H45B····C15A ⁱⁱ	3 0400
C44N6B	3.735(0) 3.404(7)	H45BN164 ⁱⁱ	2 6300
$C4A \cdots N2A^{ix}$	3 402 (7)	$H464 \cdots O5B^{ii}$	2.6500
$C4A \cdots C41B$	3,555 (8)	H46AH6A	2.0500
C4A····C46B	3,573 (7)	H46BH6B	2.3900
$C_{4A} = C_{4A} = C_{4A}$	3.375 (7)	$H_{46}B_{11}B_{r}^{2vi}$	3 2000
$C5A \cdots C31A^{ix}$	3 /03 (8)	$H_{46B} = 0.5 \text{ A}^{\text{ii}}$	2 6800
$C5A \cdots C3A^{ix}$	3.493(8)	II40D OJA	2.0800
CJA CJA	5.414 (6)		
	1128(4)	H31B C31A H31C	109.00
N2A = N1A = C11A	112.8(4) 117.8(4)	$H_{31A} = C_{31A} = H_{31C}$	109.00
C_{5} N_{1} C_{11}	117.8(4) 129.2(5)	$C43\Delta - C42\Delta - H42\Delta$	109.00
$N_{1A} N_{2A} C_{3A}$	129.2(3) 106.9(4)	$C_{43}A = C_{42}A = H_{42}A$	120.00
NIA - NZA - CJA	100.9(4)	C41A - C42A - H42A	121.00
N5A N6A C41A	110.1(5)	C42A = C43A = H43A	120.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	119.7 (5)	C44A = C45A = H45A	120.00
$C_{11A} = N_{12A} = C_{15A}$	110.3(5)	C44A = C45A = H45A	121.00
C_{11A} NGA HGA	120.00	$C_{40}A = C_{40}A = H_{40}A$	121.00
N5A $N6A$ $H6A$	120.00	C41A - C40A - H40A	120.00
N2D N1D C5D	120.00	N2P C2P C21P	120.00
C5P N1P C11P	112.4(4) 120 1 (5)	N2D = C2D = C4D	122.0(3)
NOD NID CIID	129.1(3)	N2D - C3D - C4D	110.7(3) 126.7(5)
N1D N2D C2D	110.2 (4)	C4D - C3B - C31B	120.7(3)
NID-NZD-C3D	107.2 (4)	N S B = C 4 B = C S B	128.2 (5)
NOB-NOB-C4B	11/.4(5)	N3B-C4B-C3B	124.6 (5)

N5B—N6B—C41B	119.9 (5)	C3B—C4B—C5B	107.2 (5)
C11B—N12B—C13B	115.0 (5)	O5B—C5B—C4B	128.0 (5)
C11B—N16B—C15B	114.9 (5)	N1B—C5B—C4B	102.5 (5)
C41B—N6B—H6B	120.00	O5B—C5B—N1B	129.5 (5)
N5B—N6B—H6B	120.00	N12B—C11B—N16B	128.5 (5)
N2A—C3A—C31A	122.8 (5)	N1B—C11B—N12B	115.7 (5)
C4A—C3A—C31A	126.4 (5)	N1B—C11B—N16B	115.8 (5)
N2A—C3A—C4A	110.8 (5)	N12B—C13B—C14B	121.8 (5)
C3A—C4A—C5A	106.9 (5)	C13B—C14B—C15B	117.9 (5)
N5A—C4A—C5A	128.3 (5)	Br3—C14B—C15B	120.7 (4)
N5A—C4A—C3A	124.9 (5)	Br3—C14B—C13B	121.4 (4)
O5A—C5A—C4A	128.5 (5)	N16B—C15B—C14B	121.9 (6)
N1A—C5A—C4A	102.7 (4)	C42B—C41B—C46B	120.3 (5)
O5A—C5A—N1A	128.9 (5)	N6B—C41B—C42B	120.8 (5)
N1A—C11A—N16A	116.1 (5)	N6B—C41B—C46B	118.9 (5)
N12A—C11A—N16A	127.8 (5)	C41B—C42B—C43B	119.5 (6)
N1A—C11A—N12A	116.2 (5)	C42B—C43B—C44B	118.9 (6)
N12A—C13A—C14A	120.5 (5)	Br4—C44B—C45B	120.0 (4)
Br1—C14A—C15A	120.0 (4)	Br4—C44B—C43B	117.7 (4)
C13A—C14A—C15A	118.2 (5)	C43B—C44B—C45B	122.4 (5)
Br1—C14A—C13A	121.8 (4)	C44B—C45B—C46B	118.2 (5)
N16A—C15A—C14A	122.0 (5)	C41B—C46B—C45B	120.7 (5)
C42A—C41A—C46A	121.2 (5)	N12B—C13B—H13B	119.00
N6A—C41A—C46A	118.3 (5)	C14B—C13B—H13B	119.00
N6A—C41A—C42A	120.5 (5)	N16B—C15B—H15B	119.00
C41A—C42A—C43A	119.0 (5)	C14B—C15B—H15B	119.00
C42A—C43A—C44A	119.4 (5)	C3B—C31B—H31D	109.00
Br2—C44A—C43A	117.7 (4)	C3B—C31B—H31E	109.00
Br2—C44A—C45A	120.3 (4)	C3B—C31B—H31F	109.00
C43A—C44A—C45A	122.0 (5)	H31D—C31B—H31E	109.00
C44A—C45A—C46A	118.6 (5)	H31D—C31B—H31F	109.00
C41A—C46A—C45A	119.8 (5)	H31E—C31B—H31F	109.00
N12A—C13A—H13A	120.00	C41B—C42B—H42B	120.00
C14A—C13A—H13A	120.00	C43B—C42B—H42B	120.00
N16A—C15A—H15A	119.00	C42B—C43B—H43B	121.00
C14A—C15A—H15A	119.00	C44B—C43B—H43B	121.00
C3A—C31A—H31A	109.00	C44B—C45B—H45B	121.00
H31A—C31A—H31B	109.00	C46B—C45B—H45B	121.00
C3A—C31A—H31B	109.00	C41B—C46B—H46B	120.00
C3A—C31A—H31C	109.00	C45B—C46B—H46B	120.00
C5A—N1A—N2A—C3A	-1.5 (6)	C15B—N16B—C11B—N1B	-176.9 (5)
C11A—N1A—N2A—C3A	173.3 (5)	N2A—C3A—C4A—N5A	-176.9 (5)
N2A—N1A—C5A—O5A	-175.7 (5)	N2A—C3A—C4A—C5A	1.9 (6)
N2A—N1A—C5A—C4A	2.5 (6)	C31A—C3A—C4A—N5A	3.2 (9)
C11A—N1A—C5A—O5A	10.3 (9)	C31A—C3A—C4A—C5A	-178.0 (5)
C11A—N1A—C5A—C4A	-171.5 (5)	N5A—C4A—C5A—O5A	-5.6 (10)
N2A—N1A—C11A—N12A	22.2 (7)	N5A—C4A—C5A—N1A	176.2 (5)
	× /		· · /

N2A—N1A—C11A—N16A	-156.5 (5)	C3A—C4A—C5A—O5A	175.7 (6)
C5A—N1A—C11A—N12A	-164.1 (5)	C3A—C4A—C5A—N1A	-2.6 (6)
C5A—N1A—C11A—N16A	17.2 (8)	N12A—C13A—C14A—Br1	178.0 (4)
N1A—N2A—C3A—C4A	-0.4 (6)	N12A—C13A—C14A—C15A	-0.3 (8)
N1A—N2A—C3A—C31A	179.6 (5)	C13A—C14A—C15A—N16A	1.6 (9)
C4A—N5A—N6A—C41A	179.7 (5)	Br1—C14A—C15A—N16A	-176.7 (4)
N6A—N5A—C4A—C3A	179.9 (5)	N6A—C41A—C46A—C45A	178.5 (5)
N6A—N5A—C4A—C5A	1.3 (8)	N6A—C41A—C42A—C43A	-178.8 (5)
N5A—N6A—C41A—C42A	2.3 (8)	C42A—C41A—C46A—C45A	-0.9 (9)
N5A—N6A—C41A—C46A	-177.0 (5)	C46A—C41A—C42A—C43A	0.5 (9)
C13A—N12A—C11A—N1A	-175.8 (5)	C41A—C42A—C43A—C44A	0.7 (9)
C13A—N12A—C11A—N16A	2.8 (8)	C42A—C43A—C44A—Br2	176.1 (4)
C11A—N12A—C13A—C14A	-1.7 (8)	C42A—C43A—C44A—C45A	-1.6 (9)
C15A—N16A—C11A—N1A	177.0 (5)	C43A—C44A—C45A—C46A	1.2 (9)
C15A—N16A—C11A—N12A	-1.5 (9)	Br2—C44A—C45A—C46A	-176.4 (4)
C11A—N16A—C15A—C14A	-0.8 (8)	C44A—C45A—C46A—C41A	0.0 (8)
C5B—N1B—C11B—N16B	-1.4 (8)	N2B—C3B—C4B—N5B	178.8 (5)
C11B—N1B—N2B—C3B	-173.3 (5)	N2B—C3B—C4B—C5B	0.8 (7)
N2B—N1B—C5B—O5B	-179.6 (6)	C31B—C3B—C4B—N5B	0.1 (9)
N2B—N1B—C5B—C4B	-0.4 (6)	C31B—C3B—C4B—C5B	-178.0 (5)
C11B—N1B—C5B—O5B	-6.2 (10)	N5B—C4B—C5B—O5B	1.1 (10)
C11B—N1B—C5B—C4B	173.0 (5)	N5B—C4B—C5B—N1B	-178.2 (6)
N2B—N1B—C11B—N12B	-6.1 (7)	C3B—C4B—C5B—O5B	179.1 (6)
C5B—N1B—N2B—C3B	0.9 (6)	C3B—C4B—C5B—N1B	-0.2 (6)
C5B—N1B—C11B—N12B	-179.2 (5)	N12B—C13B—C14B—Br3	-177.8 (4)
N2B—N1B—C11B—N16B	171.7 (5)	N12B—C13B—C14B—C15B	0.1 (8)
N1B—N2B—C3B—C31B	177.8 (5)	Br3—C14B—C15B—N16B	179.2 (4)
N1B—N2B—C3B—C4B	-1.0 (6)	C13B—C14B—C15B—N16B	1.3 (9)
C4B—N5B—N6B—C41B	179.7 (5)	N6B—C41B—C42B—C43B	178.5 (5)
N6B—N5B—C4B—C3B	-178.9 (5)	C46B—C41B—C42B—C43B	-0.6 (9)
N6B—N5B—C4B—C5B	-1.3 (9)	N6B—C41B—C46B—C45B	-178.5 (5)
N5B—N6B—C41B—C42B	-1.3 (8)	C42B—C41B—C46B—C45B	0.6 (9)
N5B—N6B—C41B—C46B	177.8 (5)	C41B—C42B—C43B—C44B	0.0 (9)
C13B—N12B—C11B—N16B	0.7 (8)	C42B—C43B—C44B—Br4	-179.5 (5)
C11B—N12B—C13B—C14B	-1.0 (8)	C42B—C43B—C44B—C45B	0.5 (9)
C13B—N12B—C11B—N1B	178.1 (5)	Br4—C44B—C45B—C46B	179.5 (4)
C15B—N16B—C11B—N12B	0.6 (8)	C43B—C44B—C45B—C46B	-0.5 (9)
C11B—N16B—C15B—C14B	-1.6 (8)	C44B—C45B—C46B—C41B	-0.1 (9)

Symmetry codes: (i) *x*, *y*-1, *z*-1; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*, *y*+1, *z*+1; (iv) *x*, *y*, *z*+1; (v) -*x*, -*y*+1, -*z*; (vi) -*x*+1, -*y*+1, -*z*; (vii) -*x*+1, -*y*+2, -*z*+1; (viii) -*x*, -*y*+2, -*z*+1; (ix) -*x*, -*y*+1, -*z*+1; (x) *x*, *y*, *z*-1.

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
0.88	2.14	2.821 (6)	134
0.88	2.10	2.782 (6)	134
0.95	2.61	3.193 (7)	120
0.95	2.92	3.761 (6)	148
	<i>D</i> —H 0.88 0.88 0.95 0.95	D—H H···A 0.88 2.14 0.88 2.10 0.95 2.61 0.95 2.92	D—H H···A D···A 0.88 2.14 2.821 (6) 0.88 2.10 2.782 (6) 0.95 2.61 3.193 (7) 0.95 2.92 3.761 (6)

C15B—H15B····Br2 ⁱⁱ	0.95	2.87	3.746 (6)	153	
$C31A$ — $H31A$ ···Br 3^{v}	0.98	2.88	3.858 (6)	173	
C31B— $H31D$ ···Br1 ^v	0.98	2.92	3.862 (6)	160	
C45 <i>A</i> —H45 <i>A</i> …N16 <i>B</i> ⁱⁱ	0.95	2.62	3.539 (7)	162	

Symmetry codes: (ii) -*x*+1, -*y*+1, -*z*+1; (v) -*x*, -*y*+1, -*z*.