Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[μ -1,2-bis(diphenylphosphino)methane- $\kappa^2 P:P'$]bis[(η^2 -ethene)nickel(0)] toluene disolvate

Jens Langer, Reinhald Fischer, Helmar Görls and Dirk Walther*

Friedrich-Schiller-Universität Jena, Institut für Anorganische und Analytische Chemie, August-Bebel-Strasse 2, D-07743 Jena, Germany Correspondence e-mail: dirk.walther@uni-jena.de.de

Received 13 December 2007; accepted 21 January 2008

Key indicators: single-crystal X-ray study; T = 183 K; mean σ (C–C) = 0.013 Å; disorder in solvent or counterion; R factor = 0.086; wR factor = 0.234; data-to-parameter ratio = 17.2.

In the title compound, $[Ni_2(C_2H_4)_2(C_{25}H_{22}P_2)_2] \cdot 2C_7H_8$, each Ni atom is coordinated in a trigonal-planar geometry by two P atoms of the bridging 1,2-bis(diphenylphosphino)methane (dppm) ligands and by the centroid of the double bond of an ethene ligand. An eight-membered ring comprising the two Ni atoms, four P atoms and the CH₂ groups of the two dppm ligands is thus formed. The methyl group in one of the solvent toluene molecules is disordered over two positions with equal occupancies.

Related literature

For related literature, see: Aresta & Dibenedetto (2007); Cheng *et al.* (1971); Fischer *et al.* (2006); Hoberg *et al.* (1987); Krüger & Tsay (1972); Langer *et al.* (2007); Papai *et al.* (2004); Wilke & Herrmann (1962).

Experimental

Crystal data

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (Blessing, 1997) $T_{min} = 0.834, T_{max} = 0.994$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.086$ 666 parameters

 $wR(F^2) = 0.233$ H-atom parameters

 S = 1.14 $\Delta \rho_{max} = 1.46$ e

 11467 reflections
 $\Delta \rho_{min} = -0.63$

16239 measured reflections 11467 independent reflections 8057 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.050$

666 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 1.46$ e Å⁻³ $\Delta \rho_{\rm min} = -0.63$ e Å⁻³

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997); data reduction: *DENZO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL/PC* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The authors gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (SFB 436). JL acknowledges the German Federal Environmental Foundation (Deutsche Bundesstiftung Umwelt, DBU) for a PhD grant.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2093).

References

Aresta, M. & Dibenedetto, A. (2007). J. Chem. Soc. Dalton Trans. pp. 2975–2992.

- Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
- Cheng, P.-T., Cook, C. D., Koo, C. H., Nyburg, S. C. & Shiomi, M. T. (1971). Acta Cryst. B27, 1904–1908.
- Fischer, R., Langer, J., Malassa, A., Walther, D., Görls, H. & Vaughan, G. (2006). J. Chem. Soc. Chem. Commun. pp. 2510–2512.
- Hoberg, H., Jemni, H. K., Angermund, K. & Krüger, C. (1987). Angew. Chem. Int. Ed. Engl. 26, 153–158.
- Krüger, C. & Tsay, Y.-H. (1972). J. Organomet. Chem. 34, 387-395.
- Langer, J., Fischer, R., Görls, H. & Walther, D. (2007). Eur. J. Inorg. Chem. pp. 2257–2264.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Papai, I., Schubert, G., Mayer, I., Besenyei, G. & Aresta, M. (2004). Organometallics, 23, 5252–5273.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wilke, G. & Herrmann, G. (1962). Angew. Chem. 74, 693-694.

supporting information

Acta Cryst. (2008). E64, m412 [doi:10.1107/S1600536808002110]

Bis[μ -1,2-bis(diphenylphosphino)methane- $\kappa^2 P:P'$]bis[(η^2 -ethene)nickel(0)] toluene disolvate

Jens Langer, Reinhald Fischer, Helmar Görls and Dirk Walther

S1. Comment

Our recent research has shown, that 1,2-bis(diphenylphosphino)methane (dppm) is a suitable ligand to promote \­dride elimination in nickelacyclic carboxylates under formation of nickel acrylate complexes (Fischer et al. 2006, Langer et al. 2007). This reaction models the final step of the hypothetical acrylic acid synthesis from ethene and CO₂, catalyzed by homogeneous Ni catalysts (Hoberg et al. 1987; Papai & Aresta 2004, Langer et al. 2007, Aresta & Dibenedetto 2007). In connection with these investigations we were also interested in isolating a well defined dppm Ni complex containing ethene as a ligand, which can be considered as starting complex for the first step of this catalytic reaction. Since the method of choice for preparing nickel ethene complexes is often the reduction of Ni(acac)₂ with Al(Et)₃ in presence of ligands (Wilke & Herrmann 1962) we used this method. In the presence of dppm a mixture of products were formed as judged by the ³¹P NMR spectrum of the reaction solution. After removing of half of the solvent in vacuum, subsequent cooling, filtration and storing the mother liquor of the reaction at -40 °C orange crystals of the desired ethene nickel(0) complex having the composition $\{(\mu-dppm)_2[Ni(C_2H_4)]_2(toluene)_2\}$ were isolated together with [(dppm)Ni(et)(acac)(toluene)] as by-product. The crystal structure of this new Ni(0) complex, presented in Figure 1, shows that a nickel(0) dimer is formed in which two μ -dppm bridges connect the two Ni atoms, thus forming a eightmembered inner ring of the two Ni atoms, four P atoms and the two CH₂ groups of the dppm ligand. The nickel atoms are in a distorted trigonal planar environment formed by two phosphorous atoms of two dppm ligands and the centroid of the coordinated double bond of ethene. The angle between the planes defined by Ni1P1P4 (Ni2P2P3) and Ni1C1C2 (Ni2C3C4) is 12.27 ° (10.21 °) and lies in typical range for ethene complexes of nickel. The Ni—P bond between 2.1396 (18) and 2.1665 (19) Å and the Ni-C bond length between 1.969 (7) and 1.976 (7) Å compare well with those found in bis(triphenylphosphine)(ethene) nickel (Cheng et al. 1971) and the corresponding tricyclohexylphosphine complex (Krüger & Tsay 1972). As expected, the C=C bonds of the coordinated olefins are lengthened compared with the uncoordinated olefin.

S2. Experimental

All manipulations were carried out by using modified Schlenk techniques under an atmosphere of argon. Prior to use, toluene was distilled over sodium/benzophenone.

A filtered solution of Ni(acac)₂ (1.06 g, 4.12 mmol) in toluene (10 ml) was treated with 1,2 bis(diphenylphosphino)methane (1.58 g, 4.11 mmol). The resulting green solution was cooled to 0 °C and placed under an atmosphere of ethene. Afterwards AlEt₃ (1.25 ml, 9.03 mmol) was added dropwise at this temperature with rapid stirring. The resulting brown solution was stirred for an hour at 0 °C and then stored at -20 °C for three days. The formed partial crystalline precipitate was removed by filtration. Afterwards the brown mother liquor was reduced to half of the original volume and stored for three weeks at -40 °C. During this time, well shaped orange crystals of {(μ - $dppm)_2[Ni(C_2H_4)]_2(toluene)_2\}$ precipitated from the brown oily solution, together with pale yellow crystals of [(dppm)Ni(et)(acac)(toluene)]. After separation, the cystals of $\{(\mu-dppm)_2[Ni(C_2H_4)]_2(toluene)_2\}$ so formed were suitable for X-ray diffraction.

S3. Refinement

The quality of the crystal was very bad (mosaicity $2.512 (3)^{\circ}$), so hundreds of high order reflections are missing from the data set. All hydrogen atoms were set to idealized positions and were refined with 1.2 times (1.5 for methyl groups) the isotropic displacement parameter of the corresponding carbon atom. The central Ni-atom shows an interaction to the ethene molecules, giving the C-atoms a partial *sp*³ hybridization. For this reason, the AFIX 2 instruction was used for these hydrogen positions. Atoms C7TB and C7TC of a toluene molecule are disordered over two positions with equal occupancies. The carbon atoms of disordered part of the toluene molecule were refined using isotropic thermal parameters.

Figure 1

Molecular structure of **1**. Displacement ellipsoids are drawn at the 40% probability level. Except for the ethene ligands, all H atoms have been omitted for clarity.

Bis[μ -1,2-bis(diphenylphosphino)methane- $\kappa^2 P:P'$]bis[(η^2 - ethene)nickel(0)] toluene disolvate

Crystal data	
$[Ni_2(C_2H_4)_2(C_{25}H_{22}P_2)_2]\cdot 2C_7H_8$	Hall symbol: -P 1
$M_r = 1126.52$	a = 13.0963 (12) Å
Triclinic, P1	<i>b</i> = 15.2367 (16) Å

Mo *K* α radiation, $\lambda = 0.71073$ Å

 $\theta = 2.0 - 27.5^{\circ}$

 $\mu = 0.81 \text{ mm}^{-1}$

Prism, orange

 $0.05 \times 0.05 \times 0.03$ mm

T = 183 K

Cell parameters from 16239 reflections

c = 15.6177 (16) Å $\alpha = 70.566 (4)^{\circ}$ $\beta = 78.727 (4)^{\circ}$ $\gamma = 78.689 (7)^{\circ}$ $V = 2853.1 (5) \text{ Å}^{3}$ Z = 2 F(000) = 1184 $D_{x} = 1.311 \text{ Mg m}^{-3}$

Data collection

Dula concerton	
Nonius KappaCCD	16239 measured reflections
diffractometer	11467 independent reflections
Radiation source: fine-focus sealed tube	8057 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.050$
φ and ω scans	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 16$
(Blessing, 1997)	$k = -17 \rightarrow 19$
$T_{\min} = 0.834, T_{\max} = 0.994$	$l = -17 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.086$	Hydrogen site location: inferred from
$wR(F^2) = 0.233$	neighbouring sites
<i>S</i> = 1.14	H-atom parameters constrained
11467 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0587P)^2 + 15.5715P]$
666 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.46 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.63 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ni1	0.79325 (6)	0.90928 (6)	0.58612 (5)	0.0336 (2)	
Ni2	0.94947 (7)	0.73710 (6)	0.79352 (6)	0.0375 (2)	
P1	0.73773 (13)	0.94131 (12)	0.71209 (11)	0.0338 (4)	
P2	0.80241 (14)	0.76591 (12)	0.87616 (11)	0.0366 (4)	
P3	0.92014 (13)	0.65602 (12)	0.71245 (11)	0.0355 (4)	
P4	0.74457 (13)	0.77889 (12)	0.59627 (11)	0.0332 (4)	
C1	0.8393 (6)	1.0309 (5)	0.5101 (4)	0.0448 (17)	
H1A	0.7843	1.0867	0.4999	0.054*	
H1B	0.9069	1.0434	0.5198	0.054*	

C2	0.8452 (6)	0.9699 (5)	0.4560 (4)	0.0426 (15)
H2A	0.9165	0.9444	0.4320	0.051*
H2B	0.7939	0.9877	0.4121	0.051*
C3	1.1034 (6)	0.7358 (6)	0.7689 (6)	0.0543 (19)
H3A	1.1473	0.6734	0.7859	0.065*
H3B	1.1316	0.7797	0.7103	0.065*
C4	1.0589 (6)	0.7737 (6)	0.8399 (6)	0.0533 (19)
H4A	1.0589	0.8419	0.8267	0.064*
H4B	1.0745	0.7356	0.9022	0.064*
C5	0.6950 (5)	0.8506 (5)	0.8197 (4)	0.0353 (13)
H5A	0.6532	0.8827	0.8635	0.042*
H5B	0.6480	0.8149	0.8060	0.042*
C6	0.6151 (5)	1.0238 (5)	0.6959 (4)	0.0354 (14)
C7	0.6130 (6)	1.1210 (5)	0.6618 (5)	0.0458 (16)
H7A	0.6770	1.1466	0.6482	0.055*
C8	0.5196 (6)	1.1810(6)	0.6473 (5)	0.0521 (19)
H8A	0.5200	1.2470	0.6256	0.063*
C9	0.4261 (6)	1.1457 (6)	0.6642 (5)	0.0501 (18)
H9A	0.3623	1.1872	0.6534	0.060*
C10	0.4258 (6)	1.0502 (6)	0.6966 (5)	0.0492 (18)
H10A	0.3616	1.0255	0.7082	0.059*
C11	0.5192 (5)	0.9896 (5)	0.7126 (4)	0.0422 (15)
H11A	0.5177	0.9237	0.7354	0.051*
C12	0.8149 (5)	1.0058 (5)	0.7518 (4)	0.0389 (15)
C13	0.7702 (6)	1.0600 (5)	0.8089 (4)	0.0423 (15)
H13A	0.6965	1.0658	0.8286	0.051*
C14	0.8324 (6)	1.1061 (5)	0.8374 (5)	0.0475 (17)
H14A	0.8011	1.1433	0.8766	0.057*
C15	0.9390 (6)	1.0980 (5)	0.8091 (5)	0.0492 (18)
H15A	0.9812	1.1299	0.8285	0.059*
C16	0.9850 (6)	1.0438 (5)	0.7526 (4)	0.0441 (16)
H16A	1.0590	1.0375	0.7341	0.053*
C17	0.9231 (5)	0.9981 (5)	0.7225 (4)	0.0393 (15)
H17A	0.9545	0.9621	0.6824	0.047*
C18	0.7414 (6)	0.6594 (5)	0.9333 (4)	0.0393 (15)
C19	0.6330 (6)	0.6560 (5)	0.9527 (5)	0.0468 (17)
H19A	0.5853	0.7116	0.9317	0.056*
C20	0.5944 (7)	0.5725 (6)	1.0020 (6)	0.0556 (19)
H20A	0.5206	0.5717	1.0148	0.067*
C21	0.6616 (8)	0.4900 (6)	1.0331 (6)	0.064 (2)
H21A	0.6341	0.4332	1.0668	0.077*
C22	0.7696 (7)	0.4909 (5)	1.0145 (5)	0.0535 (19)
H22A	0.8166	0.4349	1.0358	0.064*
C23	0.8079 (6)	0.5747 (5)	0.9646 (4)	0.0418 (15)
H23A	0.8819	0.5747	0.9511	0.050*
C24	0.7971 (5)	0.8071 (5)	0.9760 (4)	0.0411 (15)
C25	0.7317 (6)	0.7762 (6)	1.0571 (5)	0.0531 (19)
H25A	0.6868	0.7319	1.0629	0.064*

C26	0.7302 (7)	0.8088 (7)	1.1312 (6)	0.063 (2)
H26A	0.6864	0.7852	1.1874	0.075*
C27	0.7924 (7)	0.8752 (6)	1.1226 (5)	0.058 (2)
H27A	0.7906	0.8983	1.1724	0.069*
C28	0.8570(7)	0.9080 (6)	1.0419 (5)	0.0519 (19)
H28A	0.8988	0.9547	1.0357	0.062*
C29	0.8616 (6)	0.8734 (5)	0.9688 (5)	0.0444 (16)
H29A	0.9085	0.8948	0.9141	0.053*
C30	0.7847 (5)	0.6702 (5)	0.6872 (4)	0.0373 (14)
H30A	0.7353	0.6689	0.7443	0.045*
H30B	0.7775	0.6155	0.6691	0.045*
C31	0.9419 (5)	0.5287 (5)	0.7717 (4)	0.0371 (14)
C32	0.8869 (6)	0.4623(5)	0.7658 (5)	0.0495 (18)
H32A	0.8331	0.4825	0.7276	0.059*
C33	0.9073(7)	0.3675 (5)	0.8135 (6)	0.059(2)
H33A	0.8673	0 3241	0.8086	0.071*
C34	0.9861(7)	0.3211 0.3367 (5)	0.8680 (5)	0.057(2)
H34A	1 0011	0.2720	0.9010	0.068*
C35	1.0011 1.0417 (7)	0.2720	0.8740 (6)	0.062(2)
H35A	1.0963	0.3788	0.9113	0.074*
C36	1.0205	0.4940 (6)	0.8275 (5)	0.071 0.0531 (19)
H36A	1.0213 (0)	0 5364	0.8334	0.064*
C37	1.0022 (5)	0.6633 (5)	0.6006 (4)	0.0388(14)
C38	1.0022(5) 1.0313(5)	0.5889(5)	0.5651(4)	0.0300(14) 0.0411(15)
H38A	1.0013 (5)	0.5302	0.5991	0.0411(15)
C39	1.0001	0.5983 (5)	0.4808 (5)	0.047 (17)
H30A	1.0940 (0)	0.5464	0.4574	0.057*
C40	1.1134	0.6839 (5)	0.4307(5)	0.037 0.0458 (17)
H40A	1.1202 (5)	0.6907	0.3727	0.055*
C41	1.1700	0.7593 (5)	0.3727 0.4651 (5)	0.0439 (16)
H41A	1.1000 (0)	0.8179	0.4309	0.053*
C42	1.1240	0.3179 0.7491 (5)	0.5503 (5)	0.033 0.0423 (15)
С 4 2 Н42 Δ	1.0304 (3)	0.8007	0.5743	0.051*
C43	0.7689 (5)	0.7306 (5)	0.3743	0.031 0.0359 (14)
C44	0.7009(5) 0.8451(5)	0.7500(5) 0.7592(5)	0.4255(4)	0.0337(14) 0.0401(15)
H44A	0.8431 (5)	0.8066	0.4235	0.0401 (13)
C45	0.8655 (6)	0.3000	0.4233 0.3537 (5)	0.048
U45A	0.0005 (0)	0.7401	0.3036	0.054*
1145A C46	0.9190	0.7401	0.3030	0.034°
U40	0.8102 (0)	0.6312 (3)	0.3338 (3)	0.0449(10) 0.054*
1140A	0.0243 0.7225(6)	0.0243	0.3070	0.034°
	0.7355 (0)	0.0213 (3)	0.4209 (5)	0.0472(17) 0.057*
П4/А С48	0.0933	0.5757 0.6612 (5)	0.4308	0.037°
U40 U48A	0.7110(0)	0.0013 (3)	0.4333 (3)	0.0410(13) 0.050*
C40	0.0570	0.0+13 0.7892 (A)	0.5493	0.030°
C50	0.0002(3)	0.7003(4)	0.0211(4)	0.0343(13)
U50 A	0.3432(3) 0.5821	0.0011(3)	0.5580 (5)	0.0423 (13)
1130A	0.3031	0.9012	0.5005	0.031°
0.31	0.4501 (5)	0.0750 (5)	0.3094 (3)	0.04/8(1/)

H51A	0.4002	0.9251	0.5254	0.057*	
C52	0.3800 (6)	0.8198 (6)	0.6436 (6)	0.0554 (19)	
H52A	0.3053	0.8306	0.6516	0.066*	
C53	0.4324 (6)	0.7472 (6)	0.7073 (6)	0.057 (2)	
H53A	0.3935	0.7082	0.7590	0.069*	
C54	0.5423 (5)	0.7312 (5)	0.6957 (5)	0.0447 (16)	
H54A	0.5777	0.6808	0.7393	0.054*	
C1TA	0.5103 (7)	0.5123 (7)	0.3440 (7)	0.066 (2)	
C2TA	0.5831 (8)	0.5413 (8)	0.2679 (7)	0.080 (3)	
H2TA	0.5618	0.5904	0.2158	0.096*	
C3TA	0.6876 (8)	0.4994 (10)	0.2664 (8)	0.092 (4)	
НЗТА	0.7377	0.5210	0.2140	0.111*	
C4TA	0.7178 (8)	0.4275 (9)	0.3399 (8)	0.082 (3)	
H4TA	0.7890	0.3985	0.3384	0.099*	
C5TA	0.6461 (8)	0.3962 (7)	0.4165 (8)	0.076 (3)	
H5TA	0.6670	0.3457	0.4679	0.091*	
СбТА	0.5430 (8)	0.4400 (7)	0.4170 (7)	0.070 (2)	
Н6ТА	0.4933	0.4191	0.4699	0.084*	
C7TA	0.3960 (7)	0.5584 (8)	0.3462 (8)	0.080 (3)	
H7TA	0.3560	0.5289	0.4054	0.120*	
H7TB	0.3662	0.5504	0.2968	0.120*	
H7TC	0.3924	0.6256	0.3376	0.120*	
C1TB	0.3093 (12)	0.7418 (12)	0.0031 (15)	0.121 (6)	
H1TA	0.2669	0.7046	-0.0091	0.146*	
C2TB	0.3580 (14)	0.7099 (10)	0.0797 (14)	0.125 (6)	
H2TB	0.3487	0.6503	0.1231	0.150*	
C3TB	0.4189 (10)	0.7641 (11)	0.0926 (10)	0.106 (4)	
НЗТВ	0.4545	0.7400	0.1449	0.127*	
C4TB	0.4329 (11)	0.8513 (10)	0.0356 (10)	0.098 (4)	
H4TB	0.4733	0.8888	0.0496	0.118*	0.50
C5TB	0.3894 (10)	0.8821 (9)	-0.0393 (10)	0.094 (4)	
H5TB	0.4031	0.9409	-0.0825	0.112*	
C6TB	0.3244 (10)	0.8322 (10)	-0.0573 (9)	0.095 (4)	
H6TB	0.2897	0.8582	-0.1101	0.114*	0.50
C7TB	0.2704 (19)	0.8666 (17)	-0.1299 (16)	0.093 (7)*	0.50
H7TD	0.2881	0.9291	-0.1664	0.139*	0.50
H7TE	0.1947	0.8712	-0.1079	0.139*	0.50
H7TF	0.2892	0.8244	-0.1678	0.139*	0.50
C7TC	0.486 (3)	0.923 (2)	0.039 (2)	0.140 (11)*	0.50
H7TG	0.4795	0.9777	-0.0157	0.210*	0.50
H7TH	0.5610	0.8991	0.0428	0.210*	0.50
H7TI	0.4551	0.9427	0.0939	0.210*	0.50

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	<i>U</i> ²³
Ni1	0.0344 (4)	0.0384 (5)	0.0293 (4)	-0.0054 (3)	-0.0067 (3)	-0.0105 (3)
Ni2	0.0354 (5)	0.0443 (5)	0.0360 (4)	-0.0035 (4)	-0.0094 (3)	-0.0154 (4)

P1	0.0339 (8)	0.0384 (9)	0.0293 (8)	-0.0028 (7)	-0.0070 (6)	-0.0107 (6)
P2	0.0383 (9)	0.0411 (9)	0.0313 (8)	-0.0021 (7)	-0.0101 (7)	-0.0113 (7)
P3	0.0362 (9)	0.0383 (9)	0.0331 (8)	-0.0030 (7)	-0.0104 (7)	-0.0107 (7)
P4	0.0323 (8)	0.0379 (9)	0.0298 (8)	-0.0048 (6)	-0.0072 (6)	-0.0091 (6)
C1	0.057 (4)	0.038 (4)	0.038 (4)	-0.014 (3)	-0.017 (3)	0.000 (3)
C2	0.041 (4)	0.046 (4)	0.037 (3)	-0.005 (3)	-0.008(3)	-0.006(3)
C3	0.035 (4)	0.079 (6)	0.058 (5)	-0.012 (4)	-0.006(3)	-0.031 (4)
C4	0.047 (4)	0.059 (5)	0.065 (5)	-0.001(3)	-0.024(4)	-0.028 (4)
C5	0.031 (3)	0.043 (4)	0.031 (3)	-0.005(3)	-0.006(2)	-0.010(3)
C6	0.035 (3)	0.047 (4)	0.027 (3)	0.000 (3)	-0.009(2)	-0.016 (3)
C7	0.047 (4)	0.050 (4)	0.042 (4)	-0.002(3)	-0.011(3)	-0.016(3)
C8	0.064 (5)	0.047 (4)	0.041 (4)	0.016 (4)	-0.017(3)	-0.015(3)
C9	0.047 (4)	0.063 (5)	0.038 (4)	0.013 (4)	-0.015(3)	-0.019(3)
C10	0.039(4)	0.073(5)	0.036(4)	-0.001(3)	-0.008(3)	-0.018(3)
C11	0.039(1) 0.042(4)	0.075(3)	0.033(3)	-0.003(3)	-0.006(3)	-0.014(3)
C12	0.042(1)	0.037(3)	0.033(3)	-0.005(3)	-0.013(3)	-0.004(3)
C12	0.044(4)	0.057(5)	0.035(3)	-0.004(3)	-0.005(3)	-0.021(3)
C13	0.053(5)	0.031(4) 0.048(4)	0.037(3) 0.048(4)	-0.004(3)	-0.010(3)	-0.023(3)
C15	0.053(5)	0.040(4)	0.043(4)	-0.013(4)	-0.016(3)	-0.013(3)
C15	0.001(3)	0.049(4)	0.042(4)	-0.013(4)	-0.000(3)	-0.012(3)
C10 C17	0.039(4)	0.000(3)	0.031(3)	-0.018(3)	-0.009(3)	-0.012(3)
C17	0.043(4)	0.043(4)	0.029(3)	0.000(3)	-0.007(3)	-0.012(3)
C18	0.048(4)	0.037(4)	0.034(3)	-0.003(3)	-0.007(3)	-0.015(3)
C19	0.048 (4)	0.047 (4)	0.046 (4)	-0.007(3)	-0.008(3)	-0.015(3)
C20	0.054 (5)	0.053(5)	0.062(5)	-0.013(4)	-0.005(4)	-0.020(4)
C21	0.093 (7)	0.045 (5)	0.053 (5)	-0.018 (4)	-0.003(4)	-0.012(4)
C22	0.068 (5)	0.039 (4)	0.050 (4)	0.001 (4)	-0.014 (4)	-0.011(3)
C23	0.047 (4)	0.043 (4)	0.035 (3)	0.000 (3)	-0.008(3)	-0.014 (3)
C24	0.039 (4)	0.048 (4)	0.037 (3)	0.004 (3)	-0.012 (3)	-0.015 (3)
C25	0.042 (4)	0.076 (6)	0.046 (4)	-0.005 (4)	-0.004 (3)	-0.028 (4)
C26	0.061 (5)	0.092 (7)	0.044 (4)	-0.012 (5)	-0.004(4)	-0.033 (4)
C27	0.063 (5)	0.074 (6)	0.043 (4)	0.007 (4)	-0.018 (4)	-0.031 (4)
C28	0.064 (5)	0.052 (4)	0.046 (4)	0.001 (4)	-0.024 (4)	-0.019 (3)
C29	0.054 (4)	0.046 (4)	0.034 (3)	-0.007(3)	-0.014 (3)	-0.010 (3)
C30	0.034 (3)	0.044 (4)	0.033 (3)	-0.004 (3)	-0.009 (3)	-0.009 (3)
C31	0.038 (3)	0.045 (4)	0.028 (3)	0.001 (3)	-0.006 (3)	-0.014 (3)
C32	0.049 (4)	0.046 (4)	0.052 (4)	-0.007 (3)	-0.015 (3)	-0.009 (3)
C33	0.058 (5)	0.041 (4)	0.072 (5)	-0.009 (4)	-0.007 (4)	-0.007 (4)
C34	0.079 (6)	0.037 (4)	0.046 (4)	0.005 (4)	-0.014 (4)	-0.005 (3)
C35	0.071 (6)	0.055 (5)	0.060 (5)	0.016 (4)	-0.036 (4)	-0.017 (4)
C36	0.061 (5)	0.050 (4)	0.051 (4)	0.001 (4)	-0.028 (4)	-0.014 (3)
C37	0.034 (3)	0.044 (4)	0.040 (3)	-0.005 (3)	-0.013 (3)	-0.011 (3)
C38	0.044 (4)	0.045 (4)	0.035 (3)	-0.005 (3)	-0.007 (3)	-0.012 (3)
C39	0.050 (4)	0.051 (4)	0.045 (4)	-0.002 (3)	-0.008 (3)	-0.021 (3)
C40	0.036 (4)	0.062 (5)	0.039 (4)	-0.010 (3)	-0.005 (3)	-0.014 (3)
C41	0.044 (4)	0.045 (4)	0.043 (4)	-0.010 (3)	-0.008 (3)	-0.009 (3)
C42	0.040 (4)	0.044 (4)	0.046 (4)	-0.007 (3)	-0.012 (3)	-0.014 (3)
C43	0.039 (3)	0.042 (4)	0.029 (3)	0.002 (3)	-0.011 (3)	-0.015 (3)
C44	0.039 (4)	0.047 (4)	0.036 (3)	-0.008 (3)	-0.007 (3)	-0.014 (3)

C45	0.048 (4)	0.051 (4)	0.036 (3)	-0.005 (3)	-0.004 (3)	-0.016 (3)
C46	0.049 (4)	0.054 (4)	0.038 (4)	0.002 (3)	-0.010 (3)	-0.024 (3)
C47	0.061 (5)	0.045 (4)	0.040 (4)	-0.006 (3)	-0.010 (3)	-0.018 (3)
C48	0.043 (4)	0.041 (4)	0.043 (4)	-0.007 (3)	-0.008 (3)	-0.013 (3)
C49	0.036 (3)	0.039 (3)	0.034 (3)	-0.006 (3)	-0.008 (3)	-0.017 (3)
C50	0.039 (4)	0.052 (4)	0.036 (3)	-0.002 (3)	-0.008 (3)	-0.015 (3)
C51	0.032 (4)	0.054 (4)	0.059 (4)	0.003 (3)	-0.019 (3)	-0.018 (4)
C52	0.034 (4)	0.068 (5)	0.062 (5)	-0.006 (3)	-0.009 (3)	-0.017 (4)
C53	0.042 (4)	0.069 (5)	0.056 (5)	-0.016 (4)	0.004 (3)	-0.015 (4)
C54	0.037 (4)	0.044 (4)	0.050 (4)	-0.005 (3)	-0.013 (3)	-0.008 (3)
C1TA	0.042 (5)	0.071 (6)	0.090 (7)	-0.002 (4)	-0.016 (4)	-0.031 (5)
C2TA	0.053 (6)	0.111 (9)	0.078 (7)	-0.001 (5)	-0.013 (5)	-0.036 (6)
C3TA	0.060 (6)	0.149 (11)	0.083 (7)	-0.006 (7)	-0.008 (5)	-0.061 (8)
C4TA	0.052 (5)	0.125 (9)	0.099 (8)	0.012 (6)	-0.017 (6)	-0.083 (7)
C5TA	0.062 (6)	0.084 (7)	0.102 (8)	0.009 (5)	-0.035 (6)	-0.052 (6)
C6TA	0.064 (6)	0.072 (6)	0.079 (6)	-0.019 (5)	-0.012 (5)	-0.024 (5)
C7TA	0.051 (5)	0.086 (7)	0.091 (7)	-0.003 (5)	-0.005 (5)	-0.018 (6)
C1TB	0.086 (10)	0.097 (11)	0.207 (19)	-0.025 (8)	0.027 (11)	-0.101 (13)
C2TB	0.099 (12)	0.066 (8)	0.177 (17)	-0.016 (8)	0.068 (11)	-0.041 (10)
C3TB	0.065 (7)	0.119 (11)	0.106 (10)	0.010 (7)	0.017 (6)	-0.029 (8)
C4TB	0.097 (9)	0.103 (10)	0.098 (9)	-0.030 (7)	0.034 (8)	-0.053 (8)
C5TB	0.080 (8)	0.084 (8)	0.112 (10)	-0.027 (6)	0.046 (7)	-0.047 (7)
C6TB	0.082 (8)	0.110 (10)	0.091 (8)	0.004 (7)	0.010 (6)	-0.052 (7)

Geometric parameters (Å, °)

Ni1—C2	1.976 (7)	C31—C32	1.387 (10)
Nil—C1	1.976 (6)	C32—C33	1.387 (10)
Nil—P1	2.1396 (18)	C32—H32A	0.9500
Nil—P4	2.1508 (19)	C33—C34	1.378 (11)
Ni2—C4	1.969 (7)	С33—Н33А	0.9500
Ni2—C3	1.974 (7)	C34—C35	1.353 (12)
Ni2—P2	2.154 (2)	C34—H34A	0.9500
Ni2—P3	2.1665 (19)	C35—C36	1.372 (11)
P1—C6	1.838 (6)	C35—H35A	0.9500
P1—C12	1.847 (7)	C36—H36A	0.9500
P1—C5	1.854 (6)	C37—C38	1.380 (10)
P2—C18	1.826 (7)	C37—C42	1.402 (9)
P2—C24	1.849 (7)	C38—C39	1.389 (10)
Р2—С5	1.854 (6)	C38—H38A	0.9500
P3—C31	1.842 (7)	C39—C40	1.388 (10)
Р3—С37	1.844 (7)	С39—Н39А	0.9500
Р3—С30	1.848 (6)	C40—C41	1.382 (10)
P4—C49	1.841 (7)	C40—H40A	0.9500
P4—C43	1.849 (6)	C41—C42	1.395 (10)
P4—C30	1.850 (6)	C41—H41A	0.9500
C1—C2	1.433 (10)	C42—H42A	0.9500
C1—H1A	0.9900	C43—C44	1.376 (9)

C1_H1B	0.9900	C43_C48	1 404 (9)
$C_2 H_2 \Lambda$	0.9900	C44 $C45$	1.404(9) 1.400(9)
$C_2 = H_2 R$	0.9900	C44 = C43	0.0500
$C_2 = C_4$	1.3900	C_{44} C_{45} C_{46}	1.370(10)
C_{2} U_{2}	0.0000	$C_{45} = U_{45}$	1.379 (10)
C2 H2D	0.9900	C45 - H45A	0.9300
	0.9900	C_{40}	1.380 (10)
	0.9900	C40 - H40A	0.9300
C4—H4B	0.9900	C47 - C48	1.390 (10)
C5—H5A	0.9900	C4/-H4/A	0.9500
C5—H5B	0.9900	C48—H48A	0.9500
C6-C/	1.394 (10)	C49—C54	1.389 (9)
C6—C11	1.398 (9)	C49—C50	1.400 (9)
С7—С8	1.383 (10)	C50—C51	1.387 (9)
С7—Н7А	0.9500	C50—H50A	0.9500
C8—C9	1.377 (11)	C51—C52	1.366 (11)
C8—H8A	0.9500	C51—H51A	0.9500
C9—C10	1.373 (11)	C52—C53	1.386 (11)
С9—Н9А	0.9500	C52—H52A	0.9500
C10—C11	1.390 (10)	C53—C54	1.398 (10)
C10—H10A	0.9500	С53—Н53А	0.9500
C11—H11A	0.9500	C54—H54A	0.9500
C12—C13	1.385 (10)	C1TA—C6TA	1.367 (13)
C12—C17	1.396 (9)	C1TA—C2TA	1.374 (14)
C13—C14	1.389 (10)	C1TA—C7TA	1.522 (12)
C13—H13A	0.9500	С2ТА—С3ТА	1.391 (14)
C14—C15	1.374 (11)	С2ТА—Н2ТА	0.9500
C14—H14A	0.9500	СЗТА—С4ТА	1.358 (16)
C15—C16	1.382 (11)	СЗТА—НЗТА	0.9500
С15—Н15А	0.9500	С4ТА—С5ТА	1.378 (15)
C16—C17	1.396 (9)	С4ТА—Н4ТА	0.9500
C16—H16A	0.9500	С5ТА—С6ТА	1 383 (13)
C17—H17A	0.9500	C5TA—H5TA	0.9500
C18 - C19	1 400 (10)	Сбта—Нбта	0.9500
C18 - C23	1 404 (9)	С7ТА—Н7ТА	0.9800
C19 - C20	1.384(10)	C7TA_H7TB	0.9800
C19_H19A	0.9500		0.9800
C_{20}	1.384(12)	C1TB_C2TB	1.36(2)
$C_{20} = C_{21}$	0.0500	CITE CATE	1.30(2) 1.41(2)
C_{20} C_{21} C_{22}	1 200 (12)		1.41(2)
C_{21} C_{22}	1.566 (12)	CITD—IIIA CITD—CITD	0.9300
C21—H21A	0.9300	C2TD U2TD	1.34(2)
C_{22} C_{23} C	1.566 (10)	$C_{21}D = C_{4}TD$	0.9300
C22—H22A	0.9500	C3TD H3TD	1.354 (18)
C_{23} — Π_{23A}	0.9000		0.9500
C24—C25	1.5/8 (10)		1.305 (18)
C24—C29	1.404 (10)	C41B—C/1C	1.44 (3)
C25—C26	1.399 (11)	C4TB—H4TB	0.9500
C25—H25A	0.9500	С5ТВ—С6ТВ	1.368 (17)
C26—C27	1.377 (12)	C5TB—H5TB	0.9500

supporting information

	0.0500	C(TD CTTD	1.25 (2)
C26—H26A	0.9500		1.35 (2)
C27—C28	1.372 (12)	СбТВ—НбТВ	0.9500
С27—Н27А	0.9500	C7TB—H7TD	0.9800
C28—C29	1.395 (10)	C7TB—H7TE	0.9800
C28—H28A	0.9500	C7TB—H7TF	0.9800
С29—Н29А	0.9500	C7TC—H7TG	0.9800
С30—Н30А	0.9900	С7ТС—Н7ТН	0.9800
C30—H30B	0 9900	C7TC—H7TI	0 9800
C_{31} C_{36}	1 400 (9)		0.9000
051-050	1.400 (9)		
C_2 Ni1 C_1	12 5 (3)	D ₂ C ₂₀ D ₄	115.2(2)
$C_2 = N_1 = C_1$	+2.5(3)	$P_{2} = C_{20} = H_{20}$	109.4
C2—NII—PI	141.0(2)	P3-C30-H30A	108.4
CI—NII—PI	98.9 (2)	P4—C30—H30A	108.4
C2—N11—P4	107.9 (2)	P3—C30—H30B	108.4
C1—Ni1—P4	149.8 (2)	P4—C30—H30B	108.4
P1—Ni1—P4	109.21 (7)	H30A—C30—H30B	107.5
C4—Ni2—C3	41.4 (3)	C36—C31—C32	115.9 (6)
C4—Ni2—P2	106.9 (2)	C36—C31—P3	118.0 (5)
C3—Ni2—P2	148.3 (2)	C32—C31—P3	126.0 (5)
C4—Ni2—P3	144.8 (2)	C31—C32—C33	122.5 (7)
C3—Ni2—P3	104.2 (2)	C31—C32—H32A	118.7
P2N;2P3	106.67(7)	C_{33} C_{32} H_{32A}	118.7
C6 P1 C12	100.07(7)	$C_{34} C_{32} C_{32} C_{32}$	110.7
$C_0 = r_1 = C_{12}$	101.3(3)	$C_{34} = C_{33} = C_{32}$	119.4 (6)
	100.9 (3)	C34—C33—H33A	120.3
C12—P1—C5	102.4 (3)	C32—C33—H33A	120.3
C6—P1—Ni1	107.00 (19)	C35—C34—C33	119.1 (7)
C12—P1—Ni1	119.8 (2)	C35—C34—H34A	120.5
C5—P1—Ni1	121.9 (2)	C33—C34—H34A	120.5
C18—P2—C24	99.5 (3)	C34—C35—C36	121.8 (7)
C18—P2—C5	103.0 (3)	C34—C35—H35A	119.1
C24—P2—C5	99.9 (3)	C36—C35—H35A	119.1
C18—P2—Ni2	111.1 (2)	C35—C36—C31	121.2 (7)
C24—P2—Ni2	121.3 (2)	C35—C36—H36A	119.4
C_{5} P2 Ni2	1189(2)	C31 - C36 - H36A	119.4
C_{31} P_3 C_{37}	101.4(3)	C_{38} C_{37} C_{42}	119.1 118.7(7)
$C_{31} = P_{3} = C_{30}$	101.4(3) 100.5(3)	$C_{38} = C_{37} = C_{42}$	110.7(7) 123.7(5)
C_{27} D_{2} C_{20}	100.5(3)	$C_{30} = C_{37} = 13$	123.7(3)
$C_{37} - P_{3} - C_{30}$	103.7 (3)	C42 - C37 - P3	117.6(5)
C31—P3—N12	111.9 (2)	C37—C38—C39	121.2 (7)
C37—P3—Ni2	118.9 (2)	C37—C38—H38A	119.4
C30—P3—Ni2	117.8 (2)	C39—C38—H38A	119.4
C49—P4—C43	100.1 (3)	C38—C39—C40	119.8 (7)
C49—P4—C30	101.5 (3)	С38—С39—Н39А	120.1
C43—P4—C30	98.9 (3)	С40—С39—Н39А	120.1
C49—P4—Ni1	109.9 (2)	C41—C40—C39	120.1 (7)
C43—P4—Ni1	122.8 (2)	C41—C40—H40A	120.0
C30—P4—Ni1	120.1 (2)	C39—C40—H40A	120.0
C2-C1-Ni1	68.8 (4)	C40—C41—C42	119.8(7)
C2-C1-H1A	116.8	C40—C41—H41A	120.1

Nil—C1—H1A	116.8	C42—C41—H41A	120.1
C2—C1—H1B	116.8	C41—C42—C37	120.4 (7)
Ni1—C1—H1B	116.8	C41—C42—H42A	119.8
H1A—C1—H1B	113.8	C37—C42—H42A	119.8
C1—C2—Ni1	68.7 (4)	C44—C43—C48	118.5 (6)
C1—C2—H2A	116.8	C44—C43—P4	121.1 (5)
Ni1—C2—H2A	116.8	C48—C43—P4	120.4 (5)
C1—C2—H2B	116.8	C43—C44—C45	121.1 (6)
Ni1—C2—H2B	116.8	C43—C44—H44A	119.4
H2A—C2—H2B	113.8	C45—C44—H44A	119.4
C4—C3—Ni2	69.1 (4)	C46—C45—C44	119.8 (7)
С4—С3—Н3А	116.7	C46—C45—H45A	120.1
Ni2—C3—H3A	116.7	C44—C45—H45A	120.1
C4—C3—H3B	116.7	C45—C46—C47	120.0 (7)
Ni2—C3—H3B	116.7	C45—C46—H46A	120.0
H3A—C3—H3B	113.8	C47—C46—H46A	120.0
C3—C4—Ni2	69.5 (4)	C46—C47—C48	120.2 (7)
C3—C4—H4A	116.7	С46—С47—Н47А	119.9
Ni2—C4—H4A	116.7	С48—С47—Н47А	119.9
C3—C4—H4B	116.7	C47—C48—C43	120.4 (7)
Ni2—C4—H4B	116.7	C47—C48—H48A	119.8
H4A—C4—H4B	113.7	C43—C48—H48A	119.8
P2—C5—P1	115.5 (3)	C54—C49—C50	118.0 (6)
P2—C5—H5A	108.4	C54—C49—P4	126.4 (5)
P1—C5—H5A	108.4	C50—C49—P4	115.6 (5)
P2—C5—H5B	108.4	C51—C50—C49	121.1 (7)
P1—C5—H5B	108.4	С51—С50—Н50А	119.5
H5A—C5—H5B	107.5	С49—С50—Н50А	119.5
C7—C6—C11	117.1 (6)	C52—C51—C50	120.4 (7)
C7—C6—P1	122.8 (5)	С52—С51—Н51А	119.8
C11—C6—P1	120.0 (5)	С50—С51—Н51А	119.8
C8—C7—C6	121.3 (7)	C51—C52—C53	119.8 (7)
С8—С7—Н7А	119.3	С51—С52—Н52А	120.1
С6—С7—Н7А	119.3	С53—С52—Н52А	120.1
C9—C8—C7	120.6 (7)	C52—C53—C54	120.2 (7)
С9—С8—Н8А	119.7	С52—С53—Н53А	119.9
С7—С8—Н8А	119.7	С54—С53—Н53А	119.9
C8—C9—C10	119.4 (7)	C49—C54—C53	120.5 (6)
С8—С9—Н9А	120.3	C49—C54—H54A	119.7
С10—С9—Н9А	120.3	С53—С54—Н54А	119.7
C9—C10—C11	120.3 (7)	C6TA—C1TA—C2TA	118.1 (9)
С9—С10—Н10А	119.9	C6TA—C1TA—C7TA	120.9 (9)
C11—C10—H10A	119.8	C2TA—C1TA—C7TA	120.9 (9)
C10—C11—C6	121.3 (7)	C1TA—C2TA—C3TA	120.8 (11)
C10-C11-H11A	119.4	C1TA—C2TA—H2TA	119.6
C6—C11—H11A	119.4	СЗТА—С2ТА—Н2ТА	119.6
C13—C12—C17	119.5 (6)	C4TA—C3TA—C2TA	119.8 (11)
C13—C12—P1	123.0 (5)	С4ТА—С3ТА—Н3ТА	120.1

C17—C12—P1	117.6 (5)	С2ТА—С3ТА—Н3ТА	120.1
C12—C13—C14	120.5 (7)	СЗТА—С4ТА—С5ТА	120.7 (10)
C12—C13—H13A	119.8	СЗТА—С4ТА—Н4ТА	119.7
C14—C13—H13A	119.8	С5ТА—С4ТА—Н4ТА	119.7
C15—C14—C13	120.0 (7)	С6ТА—С5ТА—С4ТА	118.5 (10)
C15-C14-H14A	120.0	С6ТА—С5ТА—Н5ТА	120.8
C13—C14—H14A	120.0	C4TA—C5TA—H5TA	120.8
C16-C15-C14	120.3(7)		122.2(10)
C_{16} C_{15} H_{15A}	110.8		118.9
C_{14} C_{15} H_{15A}	119.8		118.9
C_{15} C_{16} C_{17}	120.1 (7)	C1TA $C7TA$ $H7TA$	100.5
$C_{15} = C_{16} = C_{17}$	120.1 (7)	C1TA C7TA H7TP	109.5
C17 C16 H16A	119.9	CTIA - C/TA - H/TB	109.5
C1/-C10HI0A	119.9	$\Pi/IA - C/IA - \Pi/IB$	109.5
C16 - C17 - C12	119.0 (7)	CTIA - C/TA - H/TC	109.5
C10 - C17 - H17A	120.2	H/IA - C/IA - H/IC	109.5
C12—C17—H17A	120.2	H/IB—C/IA—H/IC	109.5
C19—C18—C23	117.1 (6)	C21B—C11B—C61B	117.4 (14)
C19—C18—P2	125.2 (5)	C2TB—C1TB—H1TA	121.3
C23—C18—P2	117.6 (5)	C6TB—C1TB—H1TA	121.3
C20—C19—C18	120.7 (7)	C3TB—C2TB—C1TB	118.9 (15)
C20—C19—H19A	119.6	C3TB—C2TB—H2TB	120.5
C18—C19—H19A	119.6	C1TB—C2TB—H2TB	120.5
C19—C20—C21	121.1 (8)	C2TB—C3TB—C4TB	124.0 (16)
C19—C20—H20A	119.4	C2TB—C3TB—H3TB	118.0
C21—C20—H20A	119.4	C4TB—C3TB—H3TB	118.0
C22—C21—C20	119.6 (8)	C5TB—C4TB—C3TB	118.0 (14)
C22—C21—H21A	120.2	C5TB—C4TB—C7TC	108.6 (18)
C20-C21-H21A	120.2	C3TB—C4TB—C7TC	133 (2)
C23—C22—C21	119.1 (7)	C5TB—C4TB—H4TB	121.0
C23—C22—H22A	120.4	C3TB—C4TB—H4TB	121.0
C21—C22—H22A	120.4	C7TC—C4TB—H4TB	12.5
C22—C23—C18	122.4 (7)	C4TB—C5TB—C6TB	121.8 (13)
С22—С23—Н23А	118.8	C4TB—C5TB—H5TB	119.1
C18—C23—H23A	118.8	С6ТВ—С5ТВ—Н5ТВ	119.1
C25—C24—C29	118.3 (7)	C7TB—C6TB—C5TB	122.9 (17)
C25—C24—P2	122.9 (6)	C7TB-C6TB-C1TB	117.5 (18)
$C_{29} - C_{24} - P_{2}$	1122.9(0)	C5TB—C6TB—C1TB	119.6 (14)
$C_{24} - C_{25} - C_{26}$	121.2(8)	C7TB—C6TB—H6TB	3 2
$C_{24} = C_{25} = C_{20}$	119.4	C5TB_C6TB_H6TB	120.2
$C_{24} = C_{25} = H_{25} A$	119.4	CITE COTE HOTE	120.2
$C_{20} = C_{20} = M_{20} = M_{20}$	119.4	CATE CATE HATD	120.2
$C_{27} = C_{20} = C_{23}$	120 (0)	COTD-C/ID-II/ID COTB C7TD U7TE	107.5
$C_{27} = C_{20} = \Pi_{20} \Lambda$	120.1	$\begin{array}{c} COTD - C/TD - T/TE \\ H7TD - C7TP - H7TE \end{array}$	109.5
$C_{20} = C_{20} = \Pi_{20} A$	120.1	$\frac{\Pi}{\Pi} \frac{\Pi}{\Pi} \frac{\Pi}$	109.5
$C_2 = C_2 / - C_2 \delta$	120.0 (7)	$\begin{array}{c} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	109.5
C_{20} C_{27} H_{27}	120.0	H/ID - C/IB - H/IF	109.5
$C_{20} - C_{2} - H_{2} / A$	120.0	H/IE - U/IB - H/IF	109.5
$C_2 / - C_2 \delta - C_2 9$	120.5 (8)	C41B - C/1C - H/1G	109.5
C2/C28H28A	119./	C41B—C/IC—H/IH	109.5

C29—C28—H28A	119.7	H7TG—C7TC—H7TH	109.5
C28—C29—C24	120.2 (7)	C4TB—C7TC—H7TI	109.5
С28—С29—Н29А	119.9	H7TG—C7TC—H7TI	109.5
С24—С29—Н29А	119.9	H7TH—C7TC—H7TI	109.5