

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(1-Naphthyl)acetoacetamide

Xi-Shi Tai,* Yi-Min Feng and Hua-Xiang Zhang

Department of Chemistry, Weifang University, Weifang 261061, People's Republic of China

Correspondence e-mail: taixishi@lzu.edu.cn

Received 23 January 2008: accepted 23 January 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; *R* factor = 0.044; *wR* factor = 0.122; data-to-parameter ratio = 13.7.

The title compound, $C_{14}H_{13}NO_2$, exists in the keto form. An N-H···O hydrogen bond helps to establish the packing.

Related literature

For background, see: Huang et al. (2001).

Experimental

Crystal data C14H13NO2 $M_r = 227.25$ Monoclinic, $P2_1/c$ a = 17.856 (2) Å b = 8.1076 (12) Å

c = 8.5153 (14) Å
$\beta = 102.777 \ (2)^{\circ}$
V = 1202.2 (3) Å ³
Z = 4
Mo $K\alpha$ radiation

 $\mu = 0.08 \text{ mm}^{-1}$ T = 298 (2) K

Data collection

Bruker SMART CCD	5815 measured reflections
diffractometer	2116 independent reflections
Absorption correction: multi-scan	1335 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2000)	$R_{\rm int} = 0.042$
$T_{\rm min} = 0.959, \ T_{\rm max} = 0.969$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.043$ 155 parameters $wR(F^2) = 0.121$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.15 \text{ e} \text{ Å}^{-3}$ S = 1.05 $\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$ 2116 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1\cdotsO1^{i}$	0.86	2.01	2.853 (2)	168
	. 1 . 1			

Symmetry code: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the National Natural Science Foundation of China (grant No. 20671073), NingXia Natural Gas Transferring Key Laboratory (grant No. 2004007) and Weifang University for a research grant.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2694).

References

- Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Huang, L., Wang, K. Z., Huang, C. H., Li, F. Y. & Huang, Y. Y. (2001). J. Mater. Chem. 11, 790-793.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

 $0.50 \times 0.40 \times 0.38 \text{ mm}$

supporting information

Acta Cryst. (2008). E64, o531 [doi:10.1107/S1600536808002638]

N-(1-Naphthyl)acetoacetamide

Xi-Shi Tai, Yi-Min Feng and Hua-Xiang Zhang

S1. Comment

The europium(III) and terbium(III) complexes of beta-diketonato and related conjugated ligands have been studied as emitting materials for organic light emitting diodes (OLEDs) (*e.g.* Huang *et al.*, 2001). However, the quantum efficiency of most these complexes are unfortunately still low. This may be due to inefficiency of the trpilet-triplet energy transfer in these complexes. Therefore, there is a need to design ligands which have better energy transfer properties when coordinated to the lanthanide metal ion. As part of our studies in this area, we now report the synthesis and structure of the title compound, (I).

In (I), the C=O bonds length are 1.226 (2)Å and 1.208 (2) Å, indicating that it exists in the keto form (Fig. 1) in the solid state.

In the crystal structure, the molecules are stabilized by an N-H. O intermolecular hydrogen bond (Table 1) leading to [001] chains.

S2. Experimental

A solution of 1-naphthaline (10 mmol) in 30 ml benzene was added to a solution of ethyl acetoacetate (10 mmol). The reaction mixture was refluxed for 2 h with stirring, then the resulting pale precipitate was obtained by filtration, washed several times with benzene and dried *in vacuo* (yield 89%). Colourless blocks of (I) were recrystallized from ethanol by slow evaporation. IR (KBr, cm⁻¹): 3242 (m, N—H), 1723 (s, CH₃C=O), 1665 (s, amide C=O).

S3. Refinement

The H atoms were geometrically placed (C—H = 0.93–0.97 Å, N—H = 0.86 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C, N)$ or $1.5U_{eq}(methyl C)$.

Figure 1

The molecular structure of (I) showing 30% probability ellipsoids (arbitrary spheres for the H atoms).

N-(1-Naphthyl)acetoacetamide

Crystal data

C₁₄H₁₃NO₂ $M_r = 227.25$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 17.856 (2) Å b = 8.1076 (12) Å c = 8.5153 (14) Å $\beta = 102.777$ (2)° V = 1202.2 (3) Å³ Z = 4

Data collection

Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{\min} = 0.959, T_{\max} = 0.969$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.121$ S = 1.052116 reflections 155 parameters 0 restraints F(000) = 480 $D_x = 1.256 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1643 reflections $\theta = 2.3-23.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 298 KBlock, colourless $0.50 \times 0.40 \times 0.38 \text{ mm}$

5815 measured reflections 2116 independent reflections 1335 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 25.0^\circ, \ \theta_{min} = 2.3^\circ$ $h = -21 \rightarrow 21$ $k = -9 \rightarrow 6$ $l = -10 \rightarrow 10$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0402P)^{2} + 0.3082P] \qquad \Delta \rho_{\max} = 0.15 \text{ e } \text{\AA}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{\min} = -0.17 \text{ e } \text{\AA}^{-3}$ $(\Delta/\sigma)_{\max} < 0.001$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates an	<i>id isotropic or</i>	equivalent isotrop	oic displacement	parameters	$(Å^2)$	i
----------------------------------	------------------------	--------------------	------------------	------------	---------	---

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.21814 (9)	0.2430 (2)	0.4659 (2)	0.0487 (5)	
H1	0.2099	0.2073	0.5557	0.058*	
O1	0.16833 (8)	0.38359 (18)	0.23841 (18)	0.0561 (4)	
02	0.05169 (8)	0.08943 (19)	0.29965 (19)	0.0631 (5)	
C1	0.16240 (11)	0.3270 (2)	0.3687 (3)	0.0429 (5)	
C2	0.08902 (11)	0.3457 (2)	0.4262 (2)	0.0445 (5)	
H2A	0.1011	0.3525	0.5428	0.053*	
H2B	0.0642	0.4480	0.3845	0.053*	
C3	0.03443 (11)	0.2049 (3)	0.3741 (2)	0.0453 (5)	
C4	-0.04209 (12)	0.2179 (3)	0.4158 (3)	0.0648 (7)	
H4A	-0.0724	0.1229	0.3757	0.097*	
H4B	-0.0677	0.3157	0.3679	0.097*	
H4C	-0.0355	0.2236	0.5307	0.097*	
C5	0.29076 (11)	0.2094 (3)	0.4290 (2)	0.0451 (5)	
C6	0.34536 (13)	0.3281 (3)	0.4510 (3)	0.0623 (6)	
H6	0.3347	0.4324	0.4860	0.075*	
C7	0.41772 (14)	0.2943 (4)	0.4212 (3)	0.0737 (8)	
H7	0.4547	0.3769	0.4355	0.088*	
C8	0.43444 (13)	0.1437 (3)	0.3720 (3)	0.0694 (7)	
H8	0.4834	0.1227	0.3557	0.083*	
C9	0.37919 (12)	0.0178 (3)	0.3450 (3)	0.0531 (6)	
C10	0.30501 (11)	0.0509 (3)	0.3728 (2)	0.0460 (5)	
C11	0.24937 (13)	-0.0750 (3)	0.3404 (3)	0.0631 (7)	
H11	0.2006	-0.0558	0.3583	0.076*	
C12	0.26597 (16)	-0.2243 (3)	0.2834 (4)	0.0827 (9)	
H12	0.2284	-0.3057	0.2616	0.099*	
C13	0.33885 (17)	-0.2560 (4)	0.2574 (4)	0.0852 (9)	
H13	0.3496	-0.3584	0.2186	0.102*	
C14	0.39381 (15)	-0.1396 (3)	0.2880 (3)	0.0719 (7)	
H14	0.4424	-0.1634	0.2713	0.086*	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
 N1	0.0492 (10)	0.0576 (11)	0.0413 (10)	0.0042 (9)	0.0144 (8)	0.0041 (8)
01	0.0621 (9)	0.0623 (10)	0.0472 (9)	0.0061 (7)	0.0196 (7)	0.0069 (8)
02	0.0646 (10)	0.0575 (10)	0.0711 (11)	-0.0038 (8)	0.0237 (8)	-0.0201 (8)
C1	0.0510 (12)	0.0366 (11)	0.0421 (12)	-0.0014 (9)	0.0124 (10)	-0.0047 (10)
C2	0.0494 (12)	0.0423 (12)	0.0427 (12)	0.0050 (9)	0.0124 (9)	-0.0022 (9)
C3	0.0513 (12)	0.0463 (13)	0.0388 (12)	0.0039 (10)	0.0110 (10)	0.0022 (10)
C4	0.0586 (14)	0.0655 (16)	0.0763 (17)	-0.0046 (12)	0.0281 (13)	-0.0085 (13)
C5	0.0398 (11)	0.0541 (13)	0.0406 (12)	-0.0009 (10)	0.0072 (9)	0.0017 (10)
C6	0.0578 (14)	0.0590 (15)	0.0686 (16)	-0.0085 (12)	0.0109 (12)	-0.0098 (12)
C7	0.0507 (15)	0.0733 (19)	0.096 (2)	-0.0191 (13)	0.0133 (14)	-0.0021 (16)
C8	0.0432 (13)	0.084 (2)	0.0812 (18)	-0.0005 (13)	0.0156 (12)	0.0075 (15)
C9	0.0444 (12)	0.0598 (15)	0.0547 (14)	0.0070 (11)	0.0101 (10)	0.0058 (11)
C10	0.0407 (11)	0.0494 (13)	0.0459 (13)	0.0014 (10)	0.0053 (9)	0.0045 (10)
C11	0.0501 (13)	0.0556 (15)	0.0823 (18)	-0.0022 (11)	0.0115 (12)	-0.0008 (13)
C12	0.0718 (18)	0.0572 (17)	0.114 (2)	-0.0058 (14)	0.0102 (16)	-0.0108 (16)
C13	0.091 (2)	0.0591 (17)	0.103 (2)	0.0171 (16)	0.0165 (18)	-0.0126 (16)
C14	0.0645 (16)	0.0731 (18)	0.0809 (19)	0.0219 (14)	0.0223 (14)	0.0032 (15)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

N1—C1	1.332 (2)	С6—Н6	0.9300
N1—C5	1.427 (2)	С7—С8	1.346 (3)
N1—H1	0.8600	С7—Н7	0.9300
O1—C1	1.226 (2)	C8—C9	1.403 (3)
O2—C3	1.208 (2)	C8—H8	0.9300
C1—C2	1.504 (3)	C9—C14	1.410 (3)
C2—C3	1.503 (3)	C9—C10	1.422 (3)
C2—H2A	0.9700	C10—C11	1.408 (3)
C2—H2B	0.9700	C11—C12	1.361 (3)
C3—C4	1.490 (3)	C11—H11	0.9300
C4—H4A	0.9600	C12—C13	1.391 (4)
C4—H4B	0.9600	C12—H12	0.9300
C4—H4C	0.9600	C13—C14	1.344 (4)
C5—C6	1.353 (3)	C13—H13	0.9300
C5—C10	1.413 (3)	C14—H14	0.9300
C6—C7	1.398 (3)		
C1—N1—C5	123.47 (17)	С7—С6—Н6	119.9
C1—N1—H1	118.3	C8—C7—C6	120.8 (2)
C5—N1—H1	118.3	С8—С7—Н7	119.6
01-C1-N1	123.44 (18)	С6—С7—Н7	119.6
01—C1—C2	120.82 (19)	C7—C8—C9	121.0 (2)
N1-C1-C2	115.72 (18)	С7—С8—Н8	119.5
C3—C2—C1	112.45 (16)	С9—С8—Н8	119.5
С3—С2—Н2А	109.1	C8—C9—C14	122.5 (2)

C1—C2—H2A	109.1	C8—C9—C10	118.9 (2)
C3—C2—H2B	109.1	C14—C9—C10	118.6 (2)
C1—C2—H2B	109.1	C11—C10—C5	123.57 (19)
H2A—C2—H2B	107.8	C11—C10—C9	118.3 (2)
O2—C3—C4	122.28 (19)	C5—C10—C9	118.16 (18)
O2—C3—C2	121.29 (18)	C12-C11-C10	121.0 (2)
C4—C3—C2	116.41 (18)	C12—C11—H11	119.5
C3—C4—H4A	109.5	C10-C11-H11	119.5
C3—C4—H4B	109.5	C11—C12—C13	120.4 (2)
H4A—C4—H4B	109.5	C11—C12—H12	119.8
C3—C4—H4C	109.5	C13—C12—H12	119.8
H4A—C4—H4C	109.5	C14—C13—C12	120.5 (3)
H4B—C4—H4C	109.5	C14—C13—H13	119.7
C6—C5—C10	121.01 (19)	С12—С13—Н13	119.7
C6—C5—N1	119.7 (2)	C13—C14—C9	121.3 (2)
C10—C5—N1	119.28 (17)	C13—C14—H14	119.4
C5—C6—C7	120.1 (2)	C9—C14—H14	119.4
С5—С6—Н6	119.9		
C5—N1—C1—O1	-0.2(3)	N1-C5-C10-C11	4.3 (3)
C5—N1—C1—C2	178.25 (17)	C6—C5—C10—C9	2.0 (3)
O1—C1—C2—C3	90.1 (2)	N1—C5—C10—C9	-176.73 (18)
N1—C1—C2—C3	-88.3 (2)	C8—C9—C10—C11	178.1 (2)
C1—C2—C3—O2	2.6 (3)	C14—C9—C10—C11	-0.6 (3)
C1—C2—C3—C4	-175.97 (18)	C8—C9—C10—C5	-0.9(3)
C1—N1—C5—C6	79.3 (3)	C14—C9—C10—C5	-179.6(2)
C1—N1—C5—C10	-101.9 (2)	C5-C10-C11-C12	178.7 (2)
C10—C5—C6—C7	-1.3 (3)	C9—C10—C11—C12	-0.3 (3)
N1—C5—C6—C7	177.5 (2)	C10-C11-C12-C13	0.7 (4)
C5—C6—C7—C8	-0.7 (4)	C11—C12—C13—C14	-0.1 (5)
C6—C7—C8—C9	1.8 (4)	C12—C13—C14—C9	-0.8 (4)
C7—C8—C9—C14	177.7 (2)	C8—C9—C14—C13	-177.4 (3)
C7—C8—C9—C10	-0.9 (4)	C10-C9-C14-C13	1.2 (4)
C6—C5—C10—C11	-176.9 (2)		~ /

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···O1 ⁱ	0.86	2.01	2.853 (2)	168

Symmetry code: (i) x, -y+1/2, z+1/2.