organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6,7,8,9,10,11,12,13-Octahydro-5*H*-1,3dithiole[4,5-*b*][1,4]dithiacyclotridecine-2-thione

Felora Heshmatpour,^a Fatemeh Darviche,^a* Zeynab Emdadi^a and Bernhard Neumueller^b

^aChemistry Department, K. N. Toosi University of Technology, PO Box 15875-4416, Tehran 15418, Iran, and ^bFachbereich Chemie der Universität Marburg, Marburg, Germany

Correspondence e-mail: darvish@kntu.ac.ir

Received 9 December 2007; accepted 31 December 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.031; wR factor = 0.046; data-to-parameter ratio = 18.5.

In the crystal structure of the title compound, $C_{12}H_{18}S_5$, no significant intermolecular $\pi - \pi$ interactions are found. Weak intermolecular $C - S \cdots \pi$ [S \cdots centroid = 3.787 (1) Å] interactions and van der Waals forces may be effective in the stabilization of the structure.

Related literature

For general background, see: Ferraris *et al.* (1973); Williams *et al.* (1992); Bechgaard *et al.* (1975); Engler *et al.* (1977); Kini *et al.* (1999); Li *et al.* (2000); Svenstrup & Becher (1995). For related literature, see: Kumar *et al.* (1998). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data

Data collection

Stoe IPDS-II diffractometer Absorption correction: numerical (shape of crystal determined optically; *X-RED32* and *X-SHAPE*; Stoe & Cie, 2005) $T_{min} = 0.856, T_{max} = 0.948$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.046$ S = 0.902866 reflections $V = 1481.6 (3) Å^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.76 \text{ mm}^{-1}$ T = 173 (2) K 0.2 \times 0.18 \times 0.07 mm

20411 measured reflections 2866 independent reflections 1423 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.107$

 $\begin{array}{l} 155 \text{ parameters} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.20 \text{ e } \text{ Å}^{-3} \\ \Delta \rho_{min} = -0.20 \text{ e } \text{ Å}^{-3} \end{array}$

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

The authors acknowledge K. N. Toosi University of Technology for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2410).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bechgaard, K., Cowan, D. O., Bloch, A. N. & Henriksen, L. (1975). J. Org. Chem. 40, 746–749.
- Engler, E. M., Scott, B. A., Etemad, S., Penney, T. & Patel, V. V. (1977). J. Am. Chem. Soc. 99, 5909–5916.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Ferraris, J., Walatka, V., Perlstein, J. H. & Cowan, D. O. (1973). J. Am. Chem. Soc. 95, 948–949.
- Kini, A. M., Parakka, J. P., Geiser, U., Wang, H.-H., Rivas, F., DiNino, E., Thomas, S., Dudek, J. D. & Williams, J. M. (1999). J. Mater. Chem. 9, 883– 892.
- Kumar, E. V. K. S., Singh, J. D., Singh, H. B., Das, K., Yakhmi, J. V. & Butcher, R. J. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 1769–1777.
- Li, H.-X., Zhang, D.-Q., Zhang, B., Yao, Y.-X., Xu, W., Zhu, D.-B. & Wang, Z.-M. (2000). J. Mater. Chem. 10, 2063–2067.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2005). X-AREA (Version 1.31), X-RED32 (Version 1.28b) and X-SHAPE (Version 2.05). Stoe & Cie, Darmstadt, Germany.
- Svenstrup, N. & Becher, J. (1995). Synthesis, pp. 215-235.
- Williams, J. M., Ferraro, J. R., Thorn, R. J., Carlson, K. D., Geiser, U., Wang, H. H., Kini, A. M. & Whangbo, M.-H. (1992). Organic Superconductors (including Fullerenes). Englewood Cliffs, New Jersey: Prentice Hall.

supporting information

Acta Cryst. (2008). E64, o402 [doi:10.1107/S1600536807068833]

6,7,8,9,10,11,12,13-Octahydro-5*H*-1,3-dithiole[4,5-*b*][1,4]dithiacyclo-tridecine-2-thione

Felora Heshmatpour, Fatemeh Darviche, Zeynab Emdadi and Bernhard Neumueller

S1. Comment

Since the discovery of the first organic metal TTF-TCNQ (TTF: tetrathiafulvalene TCNQ: 7,7,8,8-tetracyanoquinodimethane) (Ferraris *et al.*, 1973) organic electron donors with a TTF backbone have been widely investigated in terms of synthetic and structural as well as physical aspects (Williams *et al.*, 1992). The most conventional route to these electron donors is based on the coupling of 1,3-thiole-2-thione (one) derivatives promoted by trialkyl phosphite (Bechgaard *et al.*, 1975; Engler *et al.*, 1977; Kini *et al.*, 1999; Li *et al.*, 2000). Thus, the key precursors to these TTF-based electron donors are 1,3-thiole-2-thione (one) derivatives. Among them, 4,5-bisalkylthio-1,3-dithiole-2-thione can be routinely prepared by the reaction between a zinc complex of 1,3-dithiole-2 -thione-4,5-dithiolate or the anion 1,3-dithiole-2-thione-4,5-dithiolate generated *in situ* and suitable electrophilic reagents (Svenstrup & Becher, 1995). Thus the interest in the synthesis of various 1,3-dithiole-2-chalcogenone is evident and promoted us to take up this project. In continuation of our work in this field, we report herein the crystal structure of title ligand, (I).

In the molecule of (I) (Fig. 1), the bond lengths are within normal ranges (Allen et al., 1987).

In the crystal structure, no significant intermolecular π - π interactions are observed. Weak intermolecular C—S··· π interactions, with S1···*Cg*1 = 3.787 (1) Å [*Cg*1 denotes centroid of cyclotridecine ring; (S1/S4/C1/C2/C12), symmetry code: -1 + *x*, *y*, *z*] and van der Waals forces stabilize the crystal structure.

S2. Experimental

The synthesis of (I) was carried out *via* the coupling of 1,9-dibromooctane (1 mmol) with the zinc complex of 1,3-dithiole-2-thione-4,5-dithiolate (0.5 mmol) in acetone (5 ml) at 293 K. The color of the mixture was turned from red to yellow. The pure compound was obtained in 32% yield by washing of the crude product with chloroform, in which it is highly soluble (Kumar *et al.*, 1998).

S3. Refinement

H atoms were positioned geometrically, with C—H = 0.99 Å for methylene H, and constrained to ride on their parent atoms, with $U_{iso}(H) = 0.050$ (2) Å².

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

6,7,8,9,10,11,12,13-Octahydro-5H-1,3-dithiole[4,5-b][1,4]dithiacyclotridecine- 2-thione

Crystal data	
$C_{12}H_{18}S_5$	F(000) = 680
$M_r = 322.56$	$D_{\rm x} = 1.446 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 10000 reflections
a = 5.588 (1) Å	$\theta = 1.9 - 25.9^{\circ}$
b = 13.067 (1) Å	$\mu = 0.76 \text{ mm}^{-1}$
c = 20.446 (2) Å	T = 173 K
$\beta = 97.07 \ (1)^{\circ}$	Plates, yellow
V = 1481.6 (3) Å ³	$0.2 \times 0.18 \times 0.07 \text{ mm}$
Z = 4	
Data collection	
Stoe IPDS-II	2866 independent reflections
diffractometer	1423 reflections with $I > 2\sigma(I)$
φ scans	$R_{\rm int} = 0.107$
Absorption correction: numerical	$\theta_{\rm max} = 25.9^{\circ}, \theta_{\rm min} = 1.9^{\circ}$
(shape of crystal determined optically; X-	$h = -6 \rightarrow 6$
RED32 and X-SHAPE; Stoe & Cie, 2005)	$k = -15 \rightarrow 16$
$T_{\min} = 0.856, \ T_{\max} = 0.948$	$l = -25 \rightarrow 25$
20411 measured reflections	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.046$ S = 0.00	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
 2866 reflections 155 parameters 0 restraints Primary atom site location: structure-invariant direct methods 	where $P = (F_o^2 + (0.011P)^2P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.002$ $\Delta\rho_{max} = 0.20 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.21 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$
S1	0.15648 (13)	0.36424 (6)	0.20855 (4)	0.0339 (2)
S2	0.60599 (13)	0.38230 (7)	0.30580 (4)	0.0359 (2)
S3	0.55751 (13)	0.13199 (7)	0.32641 (4)	0.0384 (2)
S4	0.11036 (13)	0.14671 (6)	0.22596 (4)	0.0356 (2)
S5	-0.26751 (12)	0.25565 (8)	0.13696 (3)	0.03771 (19)
C1	-0.0162 (4)	0.2563 (3)	0.18733 (11)	0.0301 (6)
C2	0.3700 (5)	0.3076 (2)	0.26703 (13)	0.0292 (7)
C3	0.4388 (5)	0.4824 (2)	0.34333 (15)	0.0403 (8)
H31	0.5563	0.5299	0.3675	0.050 (2)*
H32	0.3447	0.5219	0.3077	0.050 (2)*
C4	0.2663 (6)	0.4446 (3)	0.39077 (15)	0.0405 (8)
H41	0.1872	0.5045	0.4086	0.050 (2)*
H42	0.1390	0.4023	0.3659	0.050 (2)*
C5	0.3895 (5)	0.3822 (3)	0.44765 (14)	0.0438 (8)
H51	0.5312	0.4206	0.4687	0.050 (2)*
H52	0.4486	0.3175	0.4303	0.050 (2)*
C6	0.2221 (5)	0.3571 (3)	0.50025 (14)	0.0458 (9)
H61	0.3242	0.3340	0.5406	0.050 (2)*
H62	0.1424	0.4214	0.5114	0.050 (2)*
C7	0.0271 (5)	0.2770 (2)	0.48280 (14)	0.0434 (9)
H71	-0.0170	0.2769	0.4344	0.050 (2)*
H72	-0.1179	0.2972	0.5030	0.050 (2)*
C8	0.0975 (6)	0.1682 (3)	0.50494 (14)	0.0470 (9)
H81	0.1614	0.1704	0.5523	0.050 (2)*
H82	-0.0507	0.1260	0.5008	0.050 (2)*
С9	0.2818 (6)	0.1145 (3)	0.46824 (14)	0.0446 (9)
H91	0.3430	0.0533	0.4936	0.050 (2)*
H92	0.4199	0.1611	0.4653	0.050 (2)*

supporting information

C10	0.1780 (5)	0.0816 (2)	0.39871 (14)	0.0405 (8)
H101	0.0509	0.0298	0.4021	0.050 (2)*
H102	0.1009	0.1417	0.3753	0.050 (2)*
C11	0.3638 (5)	0.0371 (2)	0.35761 (15)	0.0376 (8)
H111	0.2777	-0.0008	0.3199	0.050 (2)*
H112	0.4656	-0.0126	0.3850	0.050 (2)*
C12	0.3500 (5)	0.2060 (2)	0.27516 (13)	0.0292 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0339 (4)	0.0324 (5)	0.0350 (4)	-0.0027 (4)	0.0022 (3)	0.0027 (4)
S2	0.0295 (4)	0.0386 (5)	0.0396 (4)	-0.0053 (4)	0.0042 (4)	-0.0042 (4)
S3	0.0312 (4)	0.0394 (5)	0.0437 (5)	0.0050 (4)	0.0013 (4)	0.0023 (4)
S4	0.0350 (5)	0.0306 (5)	0.0399 (4)	-0.0020 (4)	-0.0002 (4)	-0.0017 (4)
S5	0.0349 (4)	0.0417 (5)	0.0353 (4)	-0.0011 (4)	-0.0006 (3)	-0.0007 (4)
C1	0.0328 (15)	0.0328 (17)	0.0268 (15)	-0.0002 (15)	0.0126 (11)	-0.0026 (15)
C2	0.0277 (18)	0.034 (2)	0.0275 (16)	0.0014 (13)	0.0094 (14)	-0.0018 (14)
C3	0.0429 (18)	0.035 (2)	0.0437 (19)	-0.0040 (15)	0.0080 (15)	-0.0085 (15)
C4	0.0424 (19)	0.039 (2)	0.0399 (18)	0.0058 (15)	0.0050 (15)	-0.0045 (16)
C5	0.0462 (18)	0.043 (2)	0.0419 (18)	-0.0003 (16)	0.0042 (14)	-0.0029 (16)
C6	0.055 (2)	0.050(2)	0.0326 (17)	0.0093 (19)	0.0065 (15)	-0.0035 (17)
C7	0.0426 (17)	0.054 (3)	0.0351 (17)	0.0132 (16)	0.0122 (14)	0.0030 (16)
C8	0.054 (2)	0.051 (2)	0.0371 (18)	0.0110 (17)	0.0114 (15)	0.0080 (15)
C9	0.050(2)	0.043 (2)	0.0398 (18)	0.0173 (17)	0.0005 (15)	0.0056 (16)
C10	0.0394 (18)	0.046 (2)	0.0360 (18)	-0.0001 (15)	0.0055 (14)	0.0061 (15)
C11	0.0439 (19)	0.0284 (19)	0.0400 (19)	0.0005 (15)	0.0027 (15)	0.0029 (14)
C12	0.0252 (17)	0.039 (2)	0.0244 (15)	0.0002 (14)	0.0058 (13)	-0.0016 (14)

Geometric parameters (Å, °)

S1—C1	1.734 (3)	C5—H52	0.9900
S1—C2	1.746 (3)	C6—C7	1.521 (4)
S2—C2	1.750 (3)	C6—H61	0.9900
S2—C3	1.830 (3)	С6—Н62	0.9900
S3—C12	1.754 (3)	С7—С8	1.528 (4)
S3—C11	1.813 (3)	C7—H71	0.9900
S4—C1	1.743 (3)	С7—Н72	0.9900
S4—C12	1.753 (3)	C8—C9	1.519 (4)
S5—C1	1.636 (2)	C8—H81	0.9900
C2—C12	1.345 (3)	C8—H82	0.9900
C3—C4	1.531 (4)	C9—C10	1.529 (4)
C3—H31	0.9900	С9—Н91	0.9900
С3—Н32	0.9900	С9—Н92	0.9900
C4—C5	1.515 (4)	C10—C11	1.529 (4)
C4—H41	0.9900	C10—H101	0.9900
C4—H42	0.9900	C10—H102	0.9900
C5—C6	1.545 (4)	C11—H111	0.9900

supporting information

C5—H51	0.9900	C11—H112	0.9900
C1—S1—C2	97.99 (14)	C6—C7—C8	114.8 (3)
C2—S2—C3	101.15 (14)	С6—С7—Н71	108.6
C12—S3—C11	101.98 (14)	С8—С7—Н71	108.6
C1—S4—C12	97.81 (14)	С6—С7—Н72	108.6
S5-C1-S1	124.7 (2)	С8—С7—Н72	108.6
S5—C1—S4	123.4 (2)	H71—C7—H72	107.5
S1—C1—S4	111.88 (12)	C9—C8—C7	116.7 (2)
C12—C2—S1	116.3 (2)	С9—С8—Н81	108.1
C12—C2—S2	124.3 (2)	С7—С8—Н81	108.1
S1—C2—S2	119.16 (18)	С9—С8—Н82	108.1
C4—C3—S2	115.4 (2)	С7—С8—Н82	108.1
C4—C3—H31	108.4	H81—C8—H82	107.3
S2—C3—H31	108.4	C8—C9—C10	112.7 (3)
C4—C3—H32	108.4	С8—С9—Н91	109.0
S2—C3—H32	108.4	С10—С9—Н91	109.0
H31—C3—H32	107.5	С8—С9—Н92	109.0
C5—C4—C3	113.5 (3)	С10—С9—Н92	109.0
C5—C4—H41	108.9	Н91—С9—Н92	107.8
C3—C4—H41	108.9	С11—С10—С9	114.4 (2)
C5—C4—H42	108.9	C11—C10—H101	108.7
C3—C4—H42	108.9	С9—С10—Н101	108.7
H41—C4—H42	107.7	C11—C10—H102	108.7
C4—C5—C6	113.1 (2)	С9—С10—Н102	108.7
C4—C5—H51	109.0	H101—C10—H102	107.6
C6—C5—H51	109.0	C10—C11—S3	114.1 (2)
C4—C5—H52	109.0	C10-C11-H111	108.7
С6—С5—Н52	109.0	S3—C11—H111	108.7
H51—C5—H52	107.8	C10-C11-H112	108.7
C7—C6—C5	117.4 (2)	S3—C11—H112	108.7
С7—С6—Н61	107.9	H111—C11—H112	107.6
С5—С6—Н61	107.9	C2—C12—S4	115.8 (2)
С7—С6—Н62	107.9	C2—C12—S3	124.0 (2)
С5—С6—Н62	107.9	S4—C12—S3	120.10 (19)
H61—C6—H62	107.2		