

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Tetraaquabis(2-oxo-1,2-dihydroquinoline-4-carboxylato- $\kappa O^4$ )nickel(II)

### Gang Yuan, Jun-Sheng Qin, Zhong-Min Su,\* Kui-Zhan Shao and Yao-Mei Fu

Institute of Functional Materials Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China Correspondence e-mail: zmsu@nenu.edu.cn

Received 13 November 2007; accepted 5 December 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.034; wR factor = 0.121; data-to-parameter ratio = 14.9.

In the title compound,  $[Ni(C_{10}H_6NO_3)_2(H_2O)_4]$ , the central Ni<sup>II</sup> atom is located on an inversion center and coordinated in a slightly distorted octahedral geometry by two O atoms from two 2-oxo-1,2-dihydroquinoline-4-carboxylate ligands and four water molecules, all of which act as monodentate ligands. The crystal structure features an extensive network of intermolecular hydrogen-bonding interactions (O-H···O and N-H···O) and offset face-to-face  $\pi$ - $\pi$  stacking interactions [centroid–centroid distances = 3.525 (3) and 3.281 (5) Å].

### **Related literature**

For related literature, see: Bai *et al.* (2007); Bu *et al.* (2005); Liu (2007); Pang *et al.* (2007); Wu *et al.* (2007); Xiong *et al.* (2000); Zhang *et al.* (2007).



#### Experimental

Crystal data [Ni(C<sub>10</sub>H<sub>6</sub>NO<sub>3</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>]  $M_r = 507.07$ Triclinic,  $P\overline{1}$  a = 7.105 (5) Å b = 8.507 (5) Å c = 9.216 (5) Å  $\alpha = 108.723$  (5)°  $\beta = 108.396$  (5)°

```
\gamma = 90.840 (5)^{\circ}

V = 496.4 (5) \text{ Å}^3

Z = 1

Mo K\alpha radiation

\mu = 1.04 \text{ mm}^{-1}

T = 293 (2) \text{ K}

0.5 \times 0.4 \times 0.3 \text{ mm}
```

metal-organic compounds

 $R_{\rm int} = 0.015$ 

3041 measured reflections

2250 independent reflections

2064 reflections with  $I > 2\sigma(I)$ 

#### Data collection

```
Bruker SMART APEXII CCD
area-detector diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
T<sub>min</sub> = 0.601, T<sub>max</sub> = 0.721
```

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.034$ | 151 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.121$               | H-atom parameters constrained                              |
| S = 1.02                        | $\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 2250 reflections                | $\Delta \rho_{\rm min} = -0.57 \text{ e } \text{\AA}^{-3}$ |

# Table 1 Selected geometric parameters (Å, °).

| Ni1-O1               | 2.007 (2)  | Ni1-O2W              | 2.117 (2) |
|----------------------|------------|----------------------|-----------|
| Ni1 - O1W            | 2.083 (2)  |                      |           |
| O1 - Ni1 - O1W       | 89.31 (10) | O1W-Ni1-O2W          | 89.05 (9) |
| $O1 - Ni1 - O1W^{i}$ | 90.69 (10) | $O1W^i - Ni1 - O2W$  | 90.95 (9) |
| O1 - Ni1 - O2W       | 88.35 (8)  | $O1 - Ni1 - O2W^{i}$ | 91.65 (8) |

Symmetry code: (i) -x + 1, -y + 2, -z + 1.

# Table 2 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                                                              | D-H                                          | $H \cdot \cdot \cdot A$              | $D \cdots A$                                                  | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------|---------------------------------------------------------------|--------------------------------------|
| $N1-H1A\cdotsO2W^{ii}$ $O1W-H1\cdotsO2^{iii}$ $O1W-H2\cdotsO3^{iv}$ $O2W-H3\cdotsO2^{i}$ $O2W-H4\cdotsO3^{v}$ | 0.86<br>0.85<br>0.85<br>0.85<br>0.85<br>0.85 | 2.18<br>1.94<br>1.89<br>1.90<br>1.98 | 3.031 (3)<br>2.783 (3)<br>2.722 (3)<br>2.709 (3)<br>2.767 (3) | 173<br>169<br>164<br>158<br>154      |

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x + 1, -y + 1, -z; (iii) x - 1, y, z; (iv) -x + 1, -y + 2, -z; (v) x, y, z + 1.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Siemens, 1990); software used to prepare material for publication: *SHELXTL-Plus*.

We thank the Changjiang Scholars and Innovative Research Team in Universities Program, the National Natural Science Foundation of China (grant No. 20573016) and the Science Foundation for Young Teachers of Northeast Normal University (grant No. 20070310) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2104).

#### References

- Bai, Y., Shang, W.-L., Zhang, F.-L., Pan, X.-J. & Niu, X.-F. (2007). Acta Cryst. E63, m2628.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bu, X. H., Tong, M. L., Xie, Y. B., Li, J. R., Chang, H. C., Kitagawa, S. & Ribas, J. (2005). Inorg. Chem. 44, 9837–9846.
- Liu, H.-Q. (2007). Acta Cryst. E63, m2470.
- Pang, S.-J., Su, J. & Lin, Q. (2007). *Acta Cryst.* E63, m2369.
   Sheldrick, G. M. (1996). *SADABS*. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Siemens (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

- Wu, H.-H., Lian, F.-Y., Yuan, D.-Q. & Hong, M.-C. (2007). Acta Cryst. E63, m67–m69.
- Xiong, R. G., Zuo, J. L., You, X. Z., Fun, H. K. & Raj, S. S. (2000). Organometallics, 19, 4183-4186.
- Zhang, X., Yang, Q.-F., Yi, Z.-H. & Xu, J.-Q. (2007). Acta Cryst. E63, m1034m1036.

# supporting information

Acta Cryst. (2008). E64, m389-m390 [doi:10.1107/S1600536807065671]

## Tetraaquabis(2-oxo-1,2-dihydroquinoline-4-carboxylato- $\kappa O^4$ )nickel(II)

### Gang Yuan, Jun-Sheng Qin, Zhong-Min Su, Kui-Zhan Shao and Yao-Mei Fu

### S1. Comment

Recently, the complexes based on quinoline-4-carboxylic acid have been reported (Bu *et al.*, 2005; Xiong *et al.*, 2000). However, the compounds built from 2-oxo-1,2-dihydroquinoline-4-carboxylic acid (dhqc) and transition metals have not been reported. When 2-hydroquinoline-4-carboxylic acid (hqc) and NiCl<sub>2</sub> were employed as starting materials, the title compound, as shown in Fig. 1, was obtained. X-ray diffraction analysis has revealed that hqc exists mainly in the form of its tautomer dhqc, because the proton transfers from hydroxyl O atom to N atom under alkaline condition. Similar to the most mononuclear Ni complexes reported previously (Bai *et al.*, 2007; Liu, 2007; Pang *et al.*, 2007; Wu *et al.*, 2007; Zhang *et al.*, 2007), the Ni<sup>II</sup> atom in the title compound, lying on an inversion center, is six-coordinated by four water molecules and two O atoms from two dhqc ligands (Table 1), forming a slightly distorted octahedral geometry. The molecules are linked into a three-dimensional network by a combination of intermolecular hydrogen bonds (O–H…O and N–H…O) (Table 2) and offset face-to-face  $\pi$ - $\pi$  stacking interactions [centroid-to-centroid distances 3.525 (3) and 3.281 (5) Å].

### S2. Experimental

A mixture of 2-hydroxyquinoline-4-carboxylic acid (0.945 g, 5 mmol), NaOH(0.4 g, 10 mmol) and NiCl<sub>2</sub>.6H<sub>2</sub>O (2.3 g,10 mmol) in water (50 ml) was boiled for 20 min with stirring. Then the mixture was cooled to room temperature. The resulting solution was filtered and allowed to stand. After a week, green crystals of the title compound were obtained.

### **S3. Refinement**

H atoms on C atoms and N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å, N—H = 0.86Å and  $U_{iso}(H)=1.2U_{eq}(C,N)$ . Water H atoms were located in a difference Fourier map and refined with a restraint of O—H = 0.85 (1) Å, and  $U_{iso}(H)=1.5U_{eq}(O)$ .



### Figure 1

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) 1 - x, 2 - y, 1 - z.]

### $Tetraaquabis (2-oxo-1, 2-dihydroquinoline-4-carboxylato-\kappa O^4) nickel (II)$

| Crystal data                                                                                    |                                                           |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| $[Ni(C_{10}H_6NO_3)_2(H_2O)_4]$                                                                 | Z = 1                                                     |
| $M_r = 507.07$                                                                                  | F(000) = 262                                              |
| Triclinic, <i>P</i> 1                                                                           | $D_x = 1.696 \text{ Mg m}^{-3}$                           |
| Hall symbol: -P 1                                                                               | Mo K\alpha radiation, \lambda = 0.71069 \mathbf{A}        |
| a = 7.105 (5) Å                                                                                 | Cell parameters from 2250 reflections                     |
| b = 8.507 (5)  Å                                                                                | $\theta = 1.3-26.0^{\circ}$                               |
| c = 9.216 (5)  Å                                                                                | $\mu = 1.04 \text{ mm}^{-1}$                              |
| $a = 108.723 (5)^{\circ}$                                                                       | T = 293  K                                                |
| $\beta = 108.396 (5)^{\circ}$<br>$\gamma = 90.840 (5)^{\circ}$<br>$V = 496.4 (5) \text{ Å}^{3}$ | Block, green<br>$0.5 \times 0.4 \times 0.3 \text{ mm}$    |
| Data collection                                                                                 |                                                           |
| Bruker SMART APEXII CCD area-detector                                                           | 3041 measured reflections                                 |
| diffractometer                                                                                  | 2250 independent reflections                              |
| Radiation source: fine-focus sealed tube                                                        | 2064 reflections with $I > 2\sigma(I)$                    |
| Graphite monochromator                                                                          | $R_{int} = 0.015$                                         |
| $\varphi$ and $\omega$ scans                                                                    | $\theta_{max} = 28.3^{\circ}, \theta_{min} = 2.5^{\circ}$ |
| Absorption correction: multi-scan                                                               | $h = -9 \rightarrow 9$                                    |
| ( <i>SADABS</i> ; Sheldrick, 1996)                                                              | $k = -8 \rightarrow 11$                                   |
| $T_{min} = 0.601, T_{max} = 0.721$                                                              | $l = -12 \rightarrow 7$                                   |
| Refinement                                                                                      |                                                           |
| Refinement on $F^2$                                                                             | 0 restraints                                              |
| Least-squares matrix: full                                                                      | Primary atom site location: structure-invariant           |
| $R[F^2 > 2\sigma(F^2)] = 0.034$                                                                 | direct methods                                            |
| $wR(F^2) = 0.121$                                                                               | Secondary atom site location: difference Fourier          |
| S = 1.02                                                                                        | map                                                       |
| 2250 reflections                                                                                | Hydrogen site location: inferred from                     |
| 151 parameters                                                                                  | neighbouring sites                                        |

| H-atom parameters constrained                     | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
|---------------------------------------------------|------------------------------------------------------------|
| $w = 1/[\sigma^2(F_o^2) + (0.0726P)^2 + 0.4272P]$ | $\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$  |
| where $P = (F_o^2 + 2F_c^2)/3$                    | $\Delta \rho_{\rm min} = -0.57 \text{ e } \text{\AA}^{-3}$ |

| Fractional atomic coordinates and  | l isotropic or e | auivalent isotropi        | c displacement | narameters $(Å^2)$ |
|------------------------------------|------------------|---------------------------|----------------|--------------------|
| 1 ructional atomic coordinates and |                  | <i>guivaicni isoiropi</i> | c aispiacemeni |                    |

|     | x          | У          | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|------------|------------|-------------|-----------------------------|
| Ni1 | 0.5000     | 1.0000     | 0.5000      | 0.02024 (16)                |
| C1  | 0.6765 (4) | 0.6477 (3) | -0.1760 (3) | 0.0260 (5)                  |
| C2  | 0.6843 (4) | 0.7807 (3) | -0.0285 (3) | 0.0276 (6)                  |
| H2A | 0.6609     | 0.8868     | -0.0322     | 0.033*                      |
| C3  | 0.7249 (4) | 0.7538 (3) | 0.1145 (3)  | 0.0234 (5)                  |
| C4  | 0.7688 (4) | 0.5932 (3) | 0.1253 (3)  | 0.0241 (5)                  |
| C5  | 0.8169 (4) | 0.5563 (4) | 0.2709 (3)  | 0.0316 (6)                  |
| H5A | 0.8186     | 0.6386     | 0.3666      | 0.038*                      |
| C6  | 0.8610 (5) | 0.4004 (4) | 0.2722 (4)  | 0.0363 (7)                  |
| H6A | 0.8936     | 0.3779     | 0.3689      | 0.044*                      |
| C7  | 0.8573 (4) | 0.2754 (4) | 0.1295 (4)  | 0.0342 (6)                  |
| H7A | 0.8882     | 0.1702     | 0.1320      | 0.041*                      |
| C8  | 0.8084 (4) | 0.3057 (3) | -0.0152 (3) | 0.0289 (6)                  |
| H8A | 0.8052     | 0.2214     | -0.1102     | 0.035*                      |
| C9  | 0.7636 (4) | 0.4648 (3) | -0.0176 (3) | 0.0233 (5)                  |
| C10 | 0.7168 (4) | 0.8914 (3) | 0.2641 (3)  | 0.0244 (5)                  |
| N1  | 0.7143 (3) | 0.4972 (3) | -0.1615 (3) | 0.0250 (5)                  |
| H1A | 0.7072     | 0.4158     | -0.2483     | 0.030*                      |
| 01  | 0.5726 (3) | 0.8651 (3) | 0.3072 (2)  | 0.0319 (5)                  |
| O2  | 0.8452 (3) | 1.0169 (3) | 0.3306 (3)  | 0.0337 (5)                  |
| O3  | 0.6381 (3) | 0.6659 (3) | -0.3117 (2) | 0.0342 (5)                  |
| O1W | 0.2409 (3) | 1.0448 (3) | 0.3421 (3)  | 0.0331 (5)                  |
| H1  | 0.1249     | 1.0296     | 0.3471      | 0.050*                      |
| H2  | 0.2548     | 1.1369     | 0.3265      | 0.050*                      |
| O2W | 0.3413 (3) | 0.7783 (2) | 0.4826 (2)  | 0.0274 (4)                  |
| Н3  | 0.2601     | 0.8200     | 0.5308      | 0.041*                      |
| H4  | 0.4010     | 0.7217     | 0.5403      | 0.041*                      |

Atomic displacement parameters  $(Å^2)$ 

|     |             |             |             |              |              |              | - |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|---|
|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |   |
| Ni1 | 0.0210 (3)  | 0.0197 (2)  | 0.0201 (2)  | 0.00347 (17) | 0.01005 (17) | 0.00379 (17) |   |
| C1  | 0.0249 (13) | 0.0306 (14) | 0.0230 (12) | 0.0038 (10)  | 0.0085 (10)  | 0.0095 (11)  |   |
| C2  | 0.0327 (14) | 0.0266 (13) | 0.0272 (13) | 0.0085 (11)  | 0.0138 (11)  | 0.0103 (11)  |   |
| C3  | 0.0207 (12) | 0.0268 (13) | 0.0229 (12) | 0.0038 (10)  | 0.0106 (10)  | 0.0056 (10)  |   |
| C4  | 0.0230 (12) | 0.0274 (13) | 0.0232 (12) | 0.0039 (10)  | 0.0097 (10)  | 0.0085 (10)  |   |
| C5  | 0.0353 (15) | 0.0379 (16) | 0.0218 (12) | 0.0064 (12)  | 0.0103 (11)  | 0.0100 (11)  |   |
| C6  | 0.0383 (16) | 0.0423 (17) | 0.0331 (15) | 0.0042 (13)  | 0.0087 (12)  | 0.0226 (13)  |   |
| C7  | 0.0323 (15) | 0.0287 (14) | 0.0425 (16) | 0.0034 (11)  | 0.0071 (12)  | 0.0189 (13)  |   |
| C8  | 0.0274 (13) | 0.0241 (13) | 0.0306 (13) | 0.0029 (10)  | 0.0074 (11)  | 0.0059 (11)  |   |
| C9  | 0.0196 (12) | 0.0261 (13) | 0.0237 (11) | 0.0026 (10)  | 0.0070 (9)   | 0.0081 (10)  |   |
|     |             |             |             |              |              |              |   |

# supporting information

| C10 | 0.0254 (13) | 0.0264 (13) | 0.0230 (12) | 0.0083 (10) | 0.0117 (10) | 0.0070 (10) |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|
| N1  | 0.0294 (12) | 0.0237 (11) | 0.0191 (10) | 0.0037 (9)  | 0.0089 (9)  | 0.0031 (8)  |
| 01  | 0.0308 (10) | 0.0314 (11) | 0.0293 (10) | -0.0013 (8) | 0.0176 (8)  | -0.0020 (8) |
| O2  | 0.0316 (11) | 0.0295 (11) | 0.0388 (11) | -0.0002 (8) | 0.0197 (9)  | 0.0026 (9)  |
| 03  | 0.0412 (12) | 0.0395 (12) | 0.0251 (9)  | 0.0082 (9)  | 0.0111 (9)  | 0.0154 (9)  |
| O1W | 0.0257 (10) | 0.0366 (11) | 0.0390 (11) | 0.0058 (8)  | 0.0100 (8)  | 0.0165 (9)  |
| O2W | 0.0304 (10) | 0.0278 (10) | 0.0263 (9)  | 0.0055 (8)  | 0.0127 (8)  | 0.0094 (8)  |

Geometric parameters (Å, °)

| Nil-Oli                                | 2.007 (2)   | C5—H5A     | 0.9300      |
|----------------------------------------|-------------|------------|-------------|
| Nil—Ol                                 | 2.007 (2)   | C6—C7      | 1.393 (5)   |
| Ni1—O1W                                | 2.083 (2)   | C6—H6A     | 0.9300      |
| Ni1—O1W <sup>i</sup>                   | 2.083 (2)   | C7—C8      | 1.377 (4)   |
| Ni1—O2W                                | 2.117 (2)   | С7—Н7А     | 0.9300      |
| Ni1—O2W <sup>i</sup>                   | 2.117 (2)   | C8—C9      | 1.401 (4)   |
| C1—O3                                  | 1.254 (3)   | C8—H8A     | 0.9300      |
| C1—N1                                  | 1.351 (4)   | C9—N1      | 1.379 (3)   |
| C1—C2                                  | 1.447 (4)   | C10—O2     | 1.244 (3)   |
| C2—C3                                  | 1.352 (4)   | C10—O1     | 1.250 (3)   |
| C2—H2A                                 | 0.9300      | N1—H1A     | 0.8600      |
| C3—C4                                  | 1.433 (4)   | O1W—H1     | 0.8501      |
| C3—C10                                 | 1.514 (3)   | O1W—H2     | 0.8500      |
| C4—C9                                  | 1.405 (4)   | O2W—H3     | 0.8500      |
| C4—C5                                  | 1.414 (4)   | O2W—H4     | 0.8499      |
| C5—C6                                  | 1.371 (4)   |            |             |
|                                        |             |            |             |
| O1 <sup>i</sup> —Ni1—O1                | 180.0       | С6—С5—Н5А  | 119.7       |
| O1 <sup>i</sup> —Ni1—O1W               | 90.69 (10)  | С4—С5—Н5А  | 119.7       |
| O1—Ni1—O1W                             | 89.31 (10)  | C5—C6—C7   | 120.4 (3)   |
| O1 <sup>i</sup> —Ni1—O1W <sup>i</sup>  | 89.31 (9)   | С5—С6—Н6А  | 119.8       |
| O1—Ni1—O1W <sup>i</sup>                | 90.69 (10)  | С7—С6—Н6А  | 119.8       |
| O1W—Ni1—O1W <sup>i</sup>               | 180.000 (1) | C8—C7—C6   | 120.8 (3)   |
| O1 <sup>i</sup> —Ni1—O2W               | 91.65 (8)   | С8—С7—Н7А  | 119.6       |
| O1—Ni1—O2W                             | 88.35 (8)   | С6—С7—Н7А  | 119.6       |
| O1W—Ni1—O2W                            | 89.05 (9)   | C7—C8—C9   | 119.2 (3)   |
| O1W <sup>i</sup> —Ni1—O2W              | 90.95 (9)   | С7—С8—Н8А  | 120.4       |
| O1 <sup>i</sup> —Ni1—O2W <sup>i</sup>  | 88.35 (8)   | C9—C8—H8A  | 120.4       |
| O1—Ni1—O2W <sup>i</sup>                | 91.65 (8)   | N1—C9—C8   | 120.0 (2)   |
| O1W-Ni1-O2W <sup>i</sup>               | 90.95 (9)   | N1—C9—C4   | 119.1 (2)   |
| O1W <sup>i</sup> —Ni1—O2W <sup>i</sup> | 89.05 (9)   | C8—C9—C4   | 120.9 (2)   |
| O2W-Ni1-O2W <sup>i</sup>               | 180.00 (10) | O2—C10—O1  | 126.3 (2)   |
| O3—C1—N1                               | 120.0 (2)   | O2—C10—C3  | 119.9 (2)   |
| O3—C1—C2                               | 123.8 (3)   | O1—C10—C3  | 113.8 (2)   |
| N1—C1—C2                               | 116.2 (2)   | C1—N1—C9   | 124.7 (2)   |
| C3—C2—C1                               | 121.4 (3)   | C1—N1—H1A  | 117.6       |
| С3—С2—Н2А                              | 119.3       | C9—N1—H1A  | 117.6       |
| C1—C2—H2A                              | 119.3       | C10—O1—Ni1 | 129.97 (18) |

| C2—C3—C4     | 120.6 (2)  | Ni1—O1W—H1                   | 123.7       |
|--------------|------------|------------------------------|-------------|
| C2—C3—C10    | 120.3 (2)  | Ni1—O1W—H2                   | 113.0       |
| C4—C3—C10    | 119.0 (2)  | H1—O1W—H2                    | 109.1       |
| C9—C4—C5     | 118.1 (3)  | Ni1—O2W—H3                   | 100.1       |
| C9—C4—C3     | 117.9 (2)  | Ni1—O2W—H4                   | 118.4       |
| C5—C4—C3     | 124.0 (2)  | H3—O2W—H4                    | 101.2       |
| C6—C5—C4     | 120.6 (3)  |                              |             |
| O3—C1—C2—C3  | 179.5 (3)  | C5—C4—C9—C8                  | -1.2 (4)    |
| N1—C1—C2—C3  | -0.8 (4)   | C3—C4—C9—C8                  | 178.9 (2)   |
| C1—C2—C3—C4  | 2.3 (4)    | C2-C3-C10-O2                 | -69.5 (4)   |
| C1—C2—C3—C10 | -175.4 (2) | C4—C3—C10—O2                 | 112.8 (3)   |
| C2—C3—C4—C9  | -1.4 (4)   | C2-C3-C10-O1                 | 109.5 (3)   |
| C10—C3—C4—C9 | 176.2 (2)  | C4—C3—C10—O1                 | -68.2 (3)   |
| C2—C3—C4—C5  | 178.6 (3)  | O3—C1—N1—C9                  | 178.1 (2)   |
| C10—C3—C4—C5 | -3.7 (4)   | C2-C1-N1-C9                  | -1.7 (4)    |
| C9—C4—C5—C6  | 1.3 (4)    | C8—C9—N1—C1                  | -177.2 (3)  |
| C3—C4—C5—C6  | -178.7 (3) | C4—C9—N1—C1                  | 2.5 (4)     |
| C4—C5—C6—C7  | -0.6 (5)   | O2—C10—O1—Ni1                | -4.1 (4)    |
| C5—C6—C7—C8  | -0.3 (5)   | C3—C10—O1—Ni1                | 176.92 (17) |
| C6—C7—C8—C9  | 0.5 (4)    | O1W—Ni1—O1—C10               | 115.2 (3)   |
| C7—C8—C9—N1  | -180.0 (2) | O1W <sup>i</sup> —Ni1—O1—C10 | -64.8 (3)   |
| C7—C8—C9—C4  | 0.3 (4)    | O2W—Ni1—O1—C10               | -155.7 (3)  |
| C5-C4-C9-N1  | 179.1 (2)  | O2W <sup>i</sup> —Ni1—O1—C10 | 24.3 (3)    |
| C3—C4—C9—N1  | -0.9 (4)   |                              |             |
|              |            |                              |             |

Symmetry code: (i) -x+1, -y+2, -z+1.

### Hydrogen-bond geometry (Å, °)

| D H                                 | лн           | H <i>1</i> | D 1       | D H <i>1</i> |
|-------------------------------------|--------------|------------|-----------|--------------|
|                                     | <i>D</i> —11 | пл         | Д Л       |              |
| N1—H1 $A$ ···O2 $W^{ii}$            | 0.86         | 2.18       | 3.031 (3) | 173          |
| O1 <i>W</i> —H1···O2 <sup>iii</sup> | 0.85         | 1.94       | 2.783 (3) | 169          |
| O1 <i>W</i> —H2···O3 <sup>iv</sup>  | 0.85         | 1.89       | 2.722 (3) | 164          |
| O2 <i>W</i> —H3···O2 <sup>i</sup>   | 0.85         | 1.90       | 2.709 (3) | 158          |
| O2 <i>W</i> —H4···O3 <sup>v</sup>   | 0.85         | 1.98       | 2.767 (3) | 154          |

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*; (iii) *x*-1, *y*, *z*; (iv) -*x*+1, -*y*+2, -*z*; (v) *x*, *y*, *z*+1.