metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[(2-quinolyl)methanediol- $\kappa^2 N$,O]-(sulfato- κ O)copper(II) dihydrate

Nuno D. Martins,^a Joana A. Silva,^b Manuela Ramos Silva,^a* Ana Matos Beja^a and Abilio J. F. N. Sobral^b

^aCEMDRX, Physics Department, University of Coimbra, P-3004-516 Coimbra, Portugal, and ^bChemistry Department, University of Coimbra, P-3004-516 Coimbra, Portugal

Correspondence e-mail: manuela@pollux.fis.uc.pt

Received 19 December 2007; accepted 18 January 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.038; wR factor = 0.091; data-to-parameter ratio = 16.0.

In the title compound, $[Cu(SO_4)(C_{10}H_9NO_2)_2]\cdot 2H_2O$, the Cu^{II} ion is chelated by two (2-quinolyl)methanediol ligands and coordinated by a monodentate sulfate ligand in a distorted trigonal-bipyramidal environment, with O atoms occupying the equatorial sites and N atoms in the axial sites. The dihedral angle between the two essentially planar quinoline ring systems is 45.02 (9)°. In the crystal structure, an extensive $O-H \cdots O$ hydrogen-bonding network forms layers parallel to the *ab* plane.

Related literature

For related literature, see: Zurowska et al. (2007); Dobrzynska et al. (2005); Kumar & Gandotra (1980); Catterick et al. (1974).

Experimental

 Crystal data

 $[Cu(SO_4)(C_{10}H_9NO_2)_2]\cdot 2H_2O$ $\gamma = 111.30$
 $M_r = 546.00$ V = 1077.

 Triclinic, $P\overline{1}$ Z = 2

 a = 7.6065 (3) Å
 Mo K α ra

 b = 8.8747 (4) Å
 $\mu = 1.17 n$

 c = 17.5035 (9) Å
 T = 293 ($\alpha = 98.561$ (3)°

 $\beta = 94.324$ (3)°
 0.24×0.19

 $\gamma = 111.305 (2)^{\circ}$ $V = 1077.76 (9) Å^{3}$ Z = 2Mo Ka radiation $\mu = 1.17 \text{ mm}^{-1}$ T = 293 (2) K $0.24 \times 0.15 \times 0.12 \text{ mm}$

Data collection

Bruker APEX CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
$T_{\min} = 0.810, \ T_{\max} = 0.864$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.090$ S = 1.00 5289 reflections 331 parameters8 restraints 18073 measured reflections 5289 independent reflections 3972 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.037$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

Table 1 Selected bond lengths (Å).

Cu1-O5	1.9589 (16)	Cu1-O3	2.0258 (17)
Cu1-N1	1.9938 (19)	Cu1-O1	2.1080 (19)
Cu1-N2	1.9969 (19)		

lable 2			
Hydrogen-bond	geometry	(Å,	°).

$\overline{D-\mathrm{H}\cdot\cdot A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
01 H14 O6 ⁱ	0.70(2)	1 77 (2)	2554(2)	174 (4)
$O3-H3A\cdots O10$	0.83 (3)	1.69 (3)	2.510 (3)	174(4) 169(3)
$O4-H4A\cdots O6^{ii}$	0.83 (3)	2.46 (4)	2.992 (3)	123 (3)
$O4-H4A\cdots O7^{ii}$	0.83 (3)	2.06 (4)	2.874 (3)	169 (5)
O9−H91···O2 ⁱⁱⁱ	0.86 (4)	2.00 (4)	2.810 (4)	157 (3)
O9−H92···O4	0.89 (4)	2.00 (4)	2.879 (5)	178 (6)
$O10-H101\cdots O9^{i}$	0.86 (4)	1.91 (4)	2.746 (4)	164 (4)
$O10-H102\cdots O8^{i}$	0.84 (3)	2.04 (3)	2.883 (3)	174 (4)

Symmetry codes: (i) x - 1, y, z; (ii) x, y + 1, z; (iii) x + 1, y + 1, z.

Data collection: *SMART* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 2003); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

This work was supported by Fundação para a Ciência e a Tecnologia (FCT) under project POCI/FIS/57876/2004.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2587).

References

- Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Catterick, J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). Chem. Commun. pp. 843–844.
- Dobrzynska, D., Jerzykiewicz, L. B., Jezierska, J. & Duczmal, M. (2005). Cryst. Growth Des. 5, 1945–1951.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kumar, N. & Gandotra, A. K. (1980). Transition Met. Chem. 5, 365-367.
- Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zurowska, B., Mrozinski, J. & Ciunik, Z. (2007). Polyhedron, 26, 3085-3091.

supporting information

Acta Cryst. (2008). E64, m394 [doi:10.1107/S1600536808001980]

Bis[(2-quinolyl)methanediol- $\kappa^2 N$,O](sulfato- κO)copper(II) dihydrate

Nuno D. Martins, Joana A. Silva, Manuela Ramos Silva, Ana Matos Beja and Abilio J. F. N. Sobral

S1. Comment

Seeking new compounds with low dimensional elements (such as dimers or chains) that may exhibit interesting magnetic properties, we have obtained the title compound, $[Cu(C_{10}H_9NO_2)(SO_4)].2H_2O$, Fig. 1. There are some examples in literature, where quinoline derivatives ligands were successfully used in the synthesis of compounds with magnetic interactions (Zurowska *et al.*, 2007; Dobrzynska *et al.*, 2005; Kumar & Gandotra, 1980; Catterick *et al.*, 1974). In the title compound, the Cu^{II} ion is surrounded by 5 atoms, 3 oxygen atoms in equatorial positions and two nitrogen atoms in the axial positions delineating a distorted bipyramidal coordination geometry. In the equatorial plane, two of the oxygen atoms are supplied by the hydroxy groups of two symmetry independent quinoline derivatives. The remaining equatorial O atom belongs to a sulfato dinegative ion. The two quinoline derivatives are similar, with the chelating hydroxy groups approximmately sharing the ring plane $[O1-C1-C2-N1 - 12.5 (3), O2-C1-C2-N1 109.7 (2)^\circ$, and O3-C11-C12-N2 - 1.9 (3), O4-C11-C12-N2 119.0 (2)°]. There is an extensive network of hydrogen bonds forming layers parallel to the *ab* plane (Fig.2 & Fig. 3). The two solvent water molecules are essential in the network formation since they exhaust their capacity of donating and accepting protons. Each pair of water molecules aggregates 3 metal complexes.

S2. Experimental

Approximately 0.13 mmol of 2-quinolinecarboxaldehyde (Sigma, 97%) were dissolved in 2 ml of dichloromethane and then 0.13 mmol of copper sulfate were added to the solution. After one month, single crystals of suitable quality were grown from the solution.

S3. Refinement

All H-atoms could be located in a Fourier difference map. Aromatic H atoms were positioned geometrically and refined using a riding- model with C—H = 0.93 Å, $U_{iso}(H) = 1.2U_{eq}(C)$. Hydroxy and water hydrogen atoms were refined with a distance restraint to their parent O atoms (0.82 and 0.85 Å, respectively), starting from the difference map coordinates and with $U_{iso}(H) = 1.5U_{eq}(O)$. There is a short intermolecular contact (H3A …H101 2.01 Å).

Figure 1

The molecular structure with displacement ellipsoids drawn at the 50% level.

Figure 2

A portion of the H-bond network viewed along the c axis. The hydrohen bonds are depicted as dashed lines.

Figure 3

Packing of the title compound, viewed along the *a* axis. The hydrogen bonds are depicted as dashed lines.

Bis[(2-quinolyl)methanediol- $\kappa^2 N$,O](sulfato- κ O)copper(II) dihydrate

Crystal data	
$[Cu(SO_4)(C_{10}H_9NO_2)_2] \cdot 2H_2O$	$\gamma = 111.305 (2)^{\circ}$
$M_r = 546.00$ Triclinic, $P1$	$V = 10 / / 6 (9) A^{3}$ Z = 2
Hall symbol: -P 1	F(000) = 562
a = 7.6065 (3) Å	$D_{\rm x} = 1.682 \text{ Mg m}^{-3}$
b = 8.8/4/(4) A c = 175035(0) Å	Mo K α radiation, $\lambda = 0.71073$ A Cell parameters from 4808 reflections
$\alpha = 98.561 (3)^{\circ}$	$\theta = 2.4-27.5^{\circ}$
$\beta = 94.324(3)^{\circ}$	$\mu = 1.17 \text{ mm}^{-1}$

T = 293 KBlock, green

Data collection

Bruker APEX CCD area-detector diffractometer	18073 measured reflections 5289 independent reflections
Radiation source: fine-focus sealed tube	3972 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.037$
φ and ω scans	$\theta_{\rm max} = 28.4^\circ, \theta_{\rm min} = 2.4^\circ$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(SADABS; Sheldrick, 2000)	$k = -11 \rightarrow 11$
$T_{\min} = 0.810, \ T_{\max} = 0.864$	$l = -23 \rightarrow 22$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fo
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from
$wR(F^2) = 0.090$	neighbouring sites
S = 1.00	H atoms treated by a mixture of independent

 S = 1.00
 H

 5289 reflections
 331 parameters

 331 parameters
 w

 8 restraints
 Primary atom site location: structure-invariant

 direct methods
 Δ

$0.24 \times 0.15 \times 0.12 \text{ mm}$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0404P)^2 + 0.5543P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.36$ e Å⁻³ $\Delta\rho_{min} = -0.34$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cu1	0.34983 (4)	0.15697 (4)	0.247112 (17)	0.02622 (9)	
S1	0.62616 (8)	-0.03258 (7)	0.26884 (3)	0.02588 (14)	
01	0.0893 (2)	-0.0211 (3)	0.26309 (11)	0.0385 (4)	
H1A	-0.017 (3)	-0.040(4)	0.2454 (19)	0.058*	
O2	0.1228 (3)	-0.2200 (3)	0.32675 (13)	0.0452 (5)	
H2A	0.233 (3)	-0.201 (4)	0.315 (2)	0.068*	
03	0.3080 (3)	0.3702 (2)	0.24886 (10)	0.0349 (4)	
H3A	0.198 (3)	0.362 (4)	0.2561 (18)	0.052*	
04	0.4924 (4)	0.5501 (3)	0.17828 (14)	0.0576 (6)	
H4A	0.499 (6)	0.631 (4)	0.2102 (19)	0.086*	
05	0.5547 (3)	0.0768 (2)	0.22997 (10)	0.0365 (4)	
06	0.7384 (2)	-0.0907 (2)	0.21500 (10)	0.0350 (4)	
07	0.4641 (3)	-0.1762 (2)	0.27989 (12)	0.0427 (5)	

08	0.7444 (3)	0.0593 (2)	0.34206 (10)	0.0378 (4)
N1	0.3830 (3)	0.1802 (3)	0.36291 (11)	0.0264 (4)
N2	0.2914 (3)	0.1435 (2)	0.13256 (11)	0.0262 (4)
C1	0.0981 (4)	-0.0705 (3)	0.33518 (15)	0.0336 (6)
H1	-0.0220	-0.0846	0.3558	0.040*
C2	0.2594 (3)	0.0620 (3)	0.39163 (14)	0.0297 (5)
C3	0.2741 (4)	0.0530 (4)	0.47104 (16)	0.0374 (6)
H3	0.1860	-0.0336	0.4888	0.045*
C4	0.4189 (4)	0.1726 (4)	0.52174 (15)	0.0389 (6)
H4	0.4306	0.1684	0.5746	0.047*
C5	0.5511 (4)	0.3028 (3)	0.49378 (14)	0.0316 (6)
C6	0.5303 (3)	0.3033 (3)	0.41296 (14)	0.0272 (5)
C7	0.6616 (4)	0.4320 (3)	0.38398 (15)	0.0338 (6)
H7	0.6501	0.4327	0.3308	0.041*
C8	0.8053 (4)	0.5555 (4)	0.43358 (17)	0.0399 (6)
H8	0.8911	0.6401	0.4138	0.048*
С9	0.8259 (4)	0.5572 (4)	0.51402 (17)	0.0424 (7)
H9	0.9242	0.6428	0.5472	0.051*
C10	0.7021 (4)	0.4336 (4)	0.54333 (16)	0.0399 (7)
H10	0.7168	0.4350	0.5967	0.048*
C11	0.3207 (4)	0.4235 (3)	0.17647 (15)	0.0356 (6)
H11	0.2168	0.4609	0.1651	0.043*
C12	0.3067 (3)	0.2843 (3)	0.11182 (14)	0.0292 (5)
C13	0.3066 (4)	0.3061 (3)	0.03416 (15)	0.0380 (6)
H13	0.3209	0.4079	0.0219	0.046*
C14	0.2855 (4)	0.1769 (4)	-0.02309 (15)	0.0403 (7)
H14	0.2884	0.1905	-0.0747	0.048*
C15	0.2594 (4)	0.0225 (3)	-0.00399 (15)	0.0333 (6)
C16	0.2611 (3)	0.0077 (3)	0.07554 (14)	0.0275 (5)
C17	0.2298 (4)	-0.1460 (3)	0.09590 (16)	0.0365 (6)
H17	0.2320	-0.1566	0.1480	0.044*
C18	0.1964 (4)	-0.2788 (4)	0.03934 (18)	0.0449 (7)
H18	0.1718	-0.3809	0.0532	0.054*
C19	0.1977 (4)	-0.2669 (4)	-0.03936 (18)	0.0472 (7)
H19	0.1777	-0.3595	-0.0769	0.057*
C20	0.2283 (4)	-0.1192 (4)	-0.06075 (16)	0.0432 (7)
H20	0.2288	-0.1113	-0.1131	0.052*
O9	0.8632 (4)	0.5358 (4)	0.20715 (17)	0.0759 (8)
H91	0.935 (6)	0.628 (4)	0.236 (2)	0.114*
H92	0.750 (4)	0.541 (6)	0.197 (3)	0.114*
O10	-0.0100 (3)	0.3450 (3)	0.28886 (17)	0.0614 (6)
H101	-0.053 (6)	0.390 (5)	0.256 (2)	0.092*
H102	-0.088 (5)	0.264 (4)	0.304 (2)	0.092*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Cu1	0.03079 (17)	0.03437 (18)	0.01980 (15)	0.01816 (14)	0.00474 (12)	0.00847 (12)

S 1	0.0268 (3)	0.0326 (3)	0.0227 (3)	0.0163 (3)	0.0031 (2)	0.0060 (2)
01	0.0246 (9)	0.0599 (13)	0.0313 (10)	0.0131 (9)	0.0024 (8)	0.0180 (9)
02	0.0360 (11)	0.0419 (11)	0.0577 (13)	0.0124 (9)	0.0078 (10)	0.0147 (10)
03	0.0468 (11)	0.0420 (11)	0.0265 (9)	0.0280 (10)	0.0062 (8)	0.0085 (8)
O4	0.0752 (16)	0.0319 (12)	0.0560 (15)	0.0091 (12)	0.0173 (13)	0.0046 (10)
05	0.0427 (10)	0.0520 (12)	0.0331 (10)	0.0338 (9)	0.0136 (8)	0.0185 (9)
06	0.0350 (10)	0.0490 (11)	0.0279 (9)	0.0267 (9)	0.0036 (8)	0.0009 (8)
O7	0.0376 (10)	0.0382 (11)	0.0514 (12)	0.0114 (9)	0.0109 (9)	0.0109 (9)
08	0.0420 (10)	0.0446 (11)	0.0263 (10)	0.0200 (9)	-0.0020 (8)	-0.0007 (8)
N1	0.0295 (10)	0.0361 (12)	0.0212 (10)	0.0189 (9)	0.0077 (8)	0.0098 (9)
N2	0.0284 (10)	0.0299 (11)	0.0232 (10)	0.0138 (9)	0.0033 (8)	0.0073 (9)
C1	0.0284 (13)	0.0435 (16)	0.0345 (14)	0.0155 (12)	0.0105 (11)	0.0164 (12)
C2	0.0320 (13)	0.0385 (14)	0.0273 (13)	0.0203 (12)	0.0089 (11)	0.0118 (11)
C3	0.0447 (16)	0.0439 (16)	0.0328 (15)	0.0210 (13)	0.0145 (13)	0.0204 (13)
C4	0.0539 (17)	0.0504 (17)	0.0229 (13)	0.0291 (15)	0.0084 (12)	0.0133 (13)
C5	0.0387 (14)	0.0424 (15)	0.0229 (12)	0.0255 (13)	0.0052 (11)	0.0071 (11)
C6	0.0290 (12)	0.0372 (14)	0.0220 (12)	0.0201 (11)	0.0063 (10)	0.0052 (11)
C7	0.0369 (14)	0.0427 (15)	0.0261 (13)	0.0182 (12)	0.0105 (11)	0.0085 (12)
C8	0.0355 (14)	0.0413 (16)	0.0426 (16)	0.0140 (13)	0.0085 (13)	0.0078 (13)
C9	0.0399 (16)	0.0475 (17)	0.0391 (16)	0.0216 (14)	-0.0015 (13)	-0.0037 (14)
C10	0.0467 (16)	0.0537 (18)	0.0256 (14)	0.0299 (15)	-0.0012 (12)	0.0018 (13)
C11	0.0486 (16)	0.0365 (15)	0.0318 (14)	0.0248 (13)	0.0079 (12)	0.0135 (12)
C12	0.0319 (13)	0.0347 (14)	0.0264 (13)	0.0176 (11)	0.0042 (10)	0.0088 (11)
C13	0.0501 (16)	0.0392 (15)	0.0312 (14)	0.0204 (13)	0.0085 (12)	0.0160 (12)
C14	0.0501 (17)	0.0518 (18)	0.0219 (13)	0.0197 (14)	0.0080 (12)	0.0135 (13)
C15	0.0326 (13)	0.0415 (15)	0.0243 (13)	0.0133 (12)	0.0022 (10)	0.0045 (11)
C16	0.0272 (12)	0.0334 (13)	0.0225 (12)	0.0135 (11)	0.0013 (10)	0.0034 (10)
C17	0.0467 (16)	0.0333 (14)	0.0299 (14)	0.0162 (13)	0.0008 (12)	0.0066 (12)
C18	0.0548 (18)	0.0315 (15)	0.0453 (18)	0.0158 (14)	0.0011 (14)	0.0028 (13)
C19	0.0548 (19)	0.0419 (17)	0.0369 (16)	0.0170 (15)	-0.0004 (14)	-0.0092 (14)
C20	0.0490 (17)	0.0507 (18)	0.0245 (14)	0.0165 (15)	0.0019 (12)	-0.0013 (13)
09	0.080 (2)	0.0642 (17)	0.0698 (19)	0.0223 (16)	-0.0045 (16)	-0.0083 (14)
O10	0.0448 (13)	0.0588 (16)	0.0801 (19)	0.0174 (12)	0.0190 (13)	0.0126 (14)

Geometric parameters (Å, °)

Cu1—O5	1.9589 (16)	C6—C7	1.407 (3)	
Cu1—N1	1.9938 (19)	C7—C8	1.361 (4)	
Cu1—N2	1.9969 (19)	С7—Н7	0.9300	
Cu1—O3	2.0258 (17)	C8—C9	1.402 (4)	
Cu1—O1	2.1080 (19)	C8—H8	0.9300	
S1—O8	1.4486 (19)	C9—C10	1.357 (4)	
S1—O7	1.4664 (19)	С9—Н9	0.9300	
S1—O6	1.4766 (17)	C10—H10	0.9300	
S1—O5	1.4914 (17)	C11—C12	1.512 (4)	
01—C1	1.401 (3)	C11—H11	0.9800	
O1—H1A	0.79 (2)	C12—C13	1.401 (3)	
O2—C1	1.394 (3)	C13—C14	1.358 (4)	

O2 H2A	0.84(2)	C13 H13	0.0300
02—112A	0.64(2)		0.9300
	1.413(3)	C14—C13	1.407 (4)
U3—H3A	0.83 (2)		0.9300
04	1.3/3 (3)	C15—C20	1.414 (4)
O4—H4A	0.83 (2)	C15—C16	1.417 (3)
N1—C2	1.322 (3)	C16—C17	1.402 (3)
N1—C6	1.376 (3)	C17—C18	1.353 (4)
N2—C12	1.320 (3)	С17—Н17	0.9300
N2—C16	1.381 (3)	C18—C19	1.398 (4)
C1—C2	1.512 (4)	C18—H18	0.9300
C1—H1	0.9800	C19—C20	1.360 (4)
C2—C3	1.402 (3)	С19—Н19	0.9300
C3—C4	1.360 (4)	C20—H20	0.9300
С3—Н3	0.9300	09—Н91	0.86(2)
C4—C5	1 409 (4)	09—H92	0.89(2)
C4—H4	0.9300	010 - H101	0.85(2)
C_{5} C_{6}	1 /12 (3)	O10 H102	0.00(2)
$C_{5} = C_{10}$	1.412(3)	010—11102	0.84 (2)
C3-C10	1.414 (4)		
05 Cu1 N1	06.10(7)	N1 C6 C5	120.6(2)
$O_5 = C_{11} = N_2$	90.19(7)	NI = C0 = C5	120.0(2)
O_{3} —Cu1—N2	90.00 (7)	C^{-}	119.2 (2)
NI = CuI = N2	1/3.14 (8)		120.2 (2)
05—Cu1—O3	137.56 (8)	C8—C7—H7	119.9
N1—Cu1—O3	94.29 (7)	С6—С7—Н7	119.9
N2—Cu1—O3	80.56 (7)	C7—C8—C9	121.0 (3)
O5—Cu1—O1	115.59 (8)	С7—С8—Н8	119.5
N1—Cu1—O1	79.02 (8)	С9—С8—Н8	119.5
N2—Cu1—O1	98.05 (8)	С10—С9—С8	119.9 (3)
O3—Cu1—O1	106.76 (8)	С10—С9—Н9	120.1
O8—S1—O7	111.92 (12)	С8—С9—Н9	120.1
O8—S1—O6	110.54 (10)	C9—C10—C5	120.9 (3)
O7—S1—O6	108.23 (11)	C9—C10—H10	119.6
08—S1—05	109.74 (11)	C5-C10-H10	119.6
07-81-05	109 44 (11)	04-C11-03	110.7(2)
06-100	106.82 (10)	04-C11-C12	107.5(2)
C1 - O1 - Cu1	112 67 (15)	03-C11-C12	107.5(2)
$C_1 = O_1 = C_{11}$	112.07(13)	04 C11 H11	100.4
C_{1} O_{1} H_{1}	111(2) 121(2)	O_{4} C_{11} H_{11}	109.4
	131(2)		109.4
CI = O2 = HZA	100(3)		109.4
	113.40 (14)	N2	122.8 (2)
С11—03—НЗА	101 (2)	N2—C12—C11	116.6 (2)
Cu1—O3—H3A	113 (2)	C13—C12—C11	120.6 (2)
C11—O4—H4A	110 (3)	C14—C13—C12	119.4 (2)
S1—O5—Cu1	132.80 (11)	C14—C13—H13	120.3
C2—N1—C6	119.1 (2)	C12—C13—H13	120.3
C2—N1—Cu1	116.29 (17)	C13—C14—C15	119.7 (2)
C6—N1—Cu1	124.51 (16)	C13—C14—H14	120.1
C12—N2—C16	119.3 (2)	C15—C14—H14	120.1

C12—N2—Cu1	114.79 (16)	C14—C15—C20	122.9 (2)
C16—N2—Cu1	125.41 (15)	C14—C15—C16	118.5 (2)
O2—C1—O1	110.8 (2)	C20—C15—C16	118.6 (2)
O2—C1—C2	110.6 (2)	N2—C16—C17	120.2 (2)
O1—C1—C2	109.4 (2)	N2-C16-C15	120.2 (2)
02—C1—H1	108.7	C17—C16—C15	119.6 (2)
O1—C1—H1	108.7	C18—C17—C16	119.6 (3)
С2—С1—Н1	108.7	С18—С17—Н17	120.2
N1—C2—C3	123.0 (2)	С16—С17—Н17	120.2
N1—C2—C1	117.7 (2)	C17—C18—C19	121.9 (3)
C3—C2—C1	119.2 (2)	C17—C18—H18	119.1
C4—C3—C2	119.2 (3)	C19—C18—H18	119.1
C4—C3—H3	120.4	C_{20} C_{19} C_{18}	119.7 (3)
C2-C3-H3	120.4	C20-C19-H19	120.1
C_{3} $-C_{4}$ $-C_{5}$	119.6 (2)	C18—C19—H19	120.1
C3—C4—H4	120.2	C19 - C20 - C15	120.5(3)
C5-C4-H4	120.2	C19 - C20 - H20	119.7
C4-C5-C6	118 5 (2)	C15 - C20 - H20	119.7
C4-C5-C10	1227(2)	H91H92	107 (4)
C_{6} C_{5} C_{10}	122.7(2) 118.8(2)	$H_{101} - 010 - H_{102}$	107(4) 118(4)
N1 - C6 - C7	1201(2)		110(1)
	12011 (2)		
O5—Cu1—O1—C1	71.43 (18)	C2—N1—C6—C5	0.8 (3)
N1—Cu1—O1—C1	-20.23 (17)	Cu1—N1—C6—C5	-174.93 (16)
N2—Cu1—O1—C1	166.06 (17)	C4—C5—C6—N1	0.7 (3)
O3—Cu1—O1—C1	-111.44 (17)	C10—C5—C6—N1	-178.7 (2)
O5—Cu1—O3—C11	62.2 (2)	C4—C5—C6—C7	-179.7(2)
N1—Cu1—O3—C11	166.21 (18)	C10—C5—C6—C7	0.9 (3)
N2—Cu1—O3—C11	-18.35 (18)	N1—C6—C7—C8	178.8 (2)
O1—Cu1—O3—C11	-113.98(18)	C5—C6—C7—C8	-0.8(3)
08—S1—05—Cu1	-78.16 (18)	C6-C7-C8-C9	0.1 (4)
07—S1—O5—Cu1	45.01 (19)	C7—C8—C9—C10	0.5 (4)
06—S1—O5—Cu1	161.97 (15)	C8-C9-C10-C5	-0.4(4)
N1-Cu1-O5-S1	35.82 (18)	C4—C5—C10—C9	-179.7(2)
N2-Cu1-O5-S1	-144.19(17)	C6-C5-C10-C9	-0.4(4)
03-Cu1-05-S1	139.14 (15)	Cu1 - 03 - C11 - 04	-103.0(2)
01-Cu1-05-81	-44.94 (19)	Cu1 - O3 - C11 - C12	16.0 (3)
05-Cu1-N1-C2	$-101\ 70\ (17)$	$C_{16} N_{2} C_{12} C_{13}$	-45(4)
O_3 — C_{u1} — N_1 — C_2	119 48 (17)	Cu1 - N2 - C12 - C13	167.7 (2)
01— $Cu1$ — $N1$ — $C2$	13.22 (16)	$C_{16} N_{2} C_{12} C_{11}$	174.3 (2)
05-Cu1-N1-C6	74 10 (18)	Cu1 - N2 - C12 - C11	-135(3)
O_3 — C_{11} — N_1 — C_6	-6471(18)	04-C11-C12-N2	119.0(2)
O1-Cu1-N1-C6	-170.97(18)	03-C11-C12-N2	-1.9(3)
$05-Cu1-N^2-C1^2$	-12078(17)	04-C11-C12-C13	-62.2(3)
$O_3 = C_{11} = N_2 = C_{12}$	17 49 (17)	03-C11-C12-C13	176 9 (2)
01 - Cu1 - N2 - C12	1/17 (17)	N_{2} C_{12} C_{13} C_{14}	16(4)
05 - Cu1 - N2 - C12	50.87 (19)	$C_{11} = C_{12} = C_{13} = C_{14}$	-1771(3)
$O_3 = Cu_1 = N_2 = C_{10}$	-170.0(19)	$C_{12} = C_{12} = C_{13} = C_{14}$	16(4)
03	1/0.9 (2)	012-013-014-013	1.0 (+)

C2-N1-C6-C7 -178.8 (2) C16-C15-C20-C19 1.0 (4) Cul N1 C6 C7 $55(3)$	$\begin{array}{c} 01 - Cu1 - N2 - C16\\ Cu1 - 01 - C1 - 02\\ Cu1 - 01 - C1 - C2\\ C6 - N1 - C2 - C3\\ Cu1 - N1 - C2 - C3\\ C6 - N1 - C2 - C1\\ Cu1 - N1 - C2 - C1\\ 02 - C1 - C2 - N1\\ 01 - C1 - C2 - N1\\ 02 - C1 - C2 - N1\\ 02 - C1 - C2 - C3\\ 01 - C1 - C2 - C3\\ N1 - C2 - C3 - C4\\ C1 - C2 - C3 - C4\\ C1 - C2 - C3 - C4\\ C2 - C3 - C4 - C5\\ C3 - C4 - C5 - C6\\ C3 - C4 - C5 - C10\\ C2 - N1 - C6 - C7\\ Cu1 - N1 - C6 - C7\\ \end{array}$	$\begin{array}{c} -65.10 (19) \\ -99.7 (2) \\ 22.5 (2) \\ -1.9 (3) \\ 174.13 (18) \\ 179.38 (19) \\ -4.6 (3) \\ 109.7 (2) \\ -12.5 (3) \\ -69.0 (3) \\ 168.7 (2) \\ 1.6 (4) \\ -179.8 (2) \\ 0.0 (4) \\ -1.1 (4) \\ 178.3 (2) \\ -178.8 (2) \\ 5.5 (2) \end{array}$	C13—C14—C15—C20 C13—C14—C15—C16 C12—N2—C16—C17 Cu1—N2—C16—C17 Cu1—N2—C16—C15 Cu1—N2—C16—C15 Cu4—C15—C16—N2 C20—C15—C16—N2 C14—C15—C16—C17 N2—C16—C17—C18 C15—C16—C17—C18 C15—C16—C17—C18 C16—C17—C18—C19 C17—C18—C19—C20 C18—C19—C20—C15 C14—C15—C20—C19 C16—C15—C20—C19	$177.2 (3) \\ -1.7 (4) \\ -175.1 (2) \\ 13.6 (3) \\ 4.2 (3) \\ -167.07 (17) \\ -1.2 (4) \\ 179.9 (2) \\ 178.1 (2) \\ -0.8 (4) \\ 178.6 (2) \\ -0.7 (4) \\ 2.0 (5) \\ -1.8 (5) \\ 0.2 (5) \\ -177.9 (3) \\ 1.0 (4) \\ $
--	--	---	--	--

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
01—H1A···O6 ⁱ	0.79 (3)	1.77 (3)	2.554 (2)	174 (4)
O3—H3A…O10	0.83 (3)	1.69 (3)	2.510 (3)	169 (3)
O4—H4A···O6 ⁱⁱ	0.83 (3)	2.46 (4)	2.992 (3)	123 (3)
O4—H4A····O7 ⁱⁱ	0.83 (3)	2.06 (4)	2.874 (3)	169 (5)
O9—H91…O2 ⁱⁱⁱ	0.86 (4)	2.00 (4)	2.810 (4)	157 (3)
O9—H92…O4	0.89 (4)	2.00 (4)	2.879 (5)	178 (6)
O10—H101…O9 ⁱ	0.86 (4)	1.91 (4)	2.746 (4)	164 (4)
O10—H102…O8 ⁱ	0.84 (3)	2.04 (3)	2.883 (3)	174 (4)

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*, *y*+1, *z*; (iii) *x*+1, *y*+1, *z*.