organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Morpholinium perchlorate

Mikhail S. Grigoriev,* Konstantin E. German and Alesia Ya. Maruk

A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky prospekt, 119991 Moscow, Russian Federation Correspondence e-mail: grigoriev@ipc.rssi.ru

Received 11 December 2007; accepted 21 December 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; *R* factor = 0.026; *wR* factor = 0.062; data-to-parameter ratio = 20.0.

In the title salt, $C_4H_{10}NO^+ \cdot ClO_4^-$, which has three independent formula units, the cations are linked into chains along [100] by $N-H \cdots O$ hydrogen bonds. Each cation acts both as a donor and as an acceptor, and every cation makes one $N-H \cdots O$ hydrogen bond with a ClO_4^- anion. The crystal studied was an inversion twin.

Related literature

See Grigoriev *et al.* (2007) for the structure of morpholinium tetraoxidorhenate(VII).

Experimental

Crystal data

$C_4H_{10}NO^+ \cdot ClO_4^-$
$M_r = 187.58$
Orthorhombic, P212121
a = 8.1515 (3) Å
b = 9.5435 (4) Å
c = 28.9022 (12) Å

 $V = 2248.41 (16) Å^{3}$ Z = 12Mo K\alpha radiation $\mu = 0.49 \text{ mm}^{-1}$ T = 100 (2) K $0.24 \times 0.20 \times 0.16 \text{ mm}$

Data collection

Bruker Kappa APEXII area-detector diffractometer Absorption correction: none 31159 measured reflections

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.025\\ wR(F^2) &= 0.062\\ S &= 1.03\\ 6453 \text{ reflections}\\ 323 \text{ parameters}\\ 6 \text{ restraints} \end{split}$$

6453 independent reflections 5928 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.038$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.32 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 2793 Friedel pairs Flack parameter: 0.42 (3)

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1C \cdots O2$ $N1 - H1D \cdots O15^{i}$	0.877(9) 0.871(9)	2.051 (13)	2.7872 (16)	141.0 (15) 164.7 (16)
$N2 - H2C \cdot \cdot \cdot O14^{ii}$	0.884(9)	1.980(10)	2.8441 (14)	164.7 (10) 165.5 (16) 154.1 (15)
$N2 - H2D \cdots O8$ $N3 - H3C \cdots O13^{i}$ $N3 - H3D \cdots O9$	0.889(9) 0.878(9) 0.870(9)	2.020(11) 2.004(10) 2.039(13)	2.8465 (15) 2.8690 (15) 2.7895 (17)	154.1 (15) 168.0 (17) 143.9 (16)

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (ii) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1$.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT-Plus* (Bruker, 1998); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2409).

References

- Bruker (1998). SAINT-Plus. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Grigoriev, M. S., German, K. E. & Maruk, A. Y. (2007). Acta Cryst. E63, m2355.
- Sheldrick, G. M. (1997*a*). *SHELXS97* and *SHELXL97*. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2008). E64, o390 [doi:10.1107/S1600536807068134]

Morpholinium perchlorate

Mikhail S. Grigoriev, Konstantin E. German and Alesia Ya. Maruk

S1. Comment

The title compound, (I) (Fig. 1), contains slightly distorted tetrahedral ClO_4^- anions with Cl—O distances from 1.4353 (11) to 1.4496 (10) Å. Morpholinium cations have chair conformation.

The structure of (I) can be described as alternating cationic and anionic layers parallel to the (013) plane (Fig. 2).

Every morpholinium cation acts as proton donor in two hydrogen bonds, acceptors being O atoms of another morpholinium cation and ClO_4^- anion (Fig. 3, Table 1).

Morpholinium tetraoxidochlorate(VII) contains three independent formula units, which make two different types of zigzag chains in the [100] direction by N—H···O hydrogen bonds between cations (Fig. 3). The first type is formed by one formula unit and the second type is formed by two remaining formula units. As it is nseen in Fig. 3, two types of chains have different orientation of ClO_4^- anions.

The structure of morpholinium tetraoxidorhenate(VII) (Grigoriev *et al.*, 2007) also contains alternating cationic and anionic layers with hydrogen bonds in perpendicular direction. But in contrast to (I), O atoms of morpholinium in $(C_4H_{10}NO)[ReO_4]$ do not participate in hydrogen-bonding.

S2. Experimental

Synthesis of (I) was carried out as a neutralization reaction by dissolution of stoichiometric quantity of morpholine under intensive stirring in 0.92 M water solution of HClO₄ at room temperature, followed by evaporation of the resulting solution at temperature 323 K.

S3. Refinement

The H atoms of CH₂ groups were refined in idealized geometrical positions with displacement parameters being equal to 1.2 times U_{eq} of the attached C atoms. The H atoms of NH₂ were located on difference Fourier map and refined with displacement parameters being equal to 1.2 times U_{eq} of the attached N atoms and N—H distances restrained to 0.88 (1) Å.

The Flack parameter was explicitly refined. The absolute structure was selected on the basis of the lower Flack parameter; the structure is a racemic twin.

Figure 1

A view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size. Dashed lines indicate the hydrogen-bonding interaction.

Figure 2 The unit cell of (I).

Figure 3

The comparison of two different types of chains.

Morpholinium perchlorate

Crystal data

C₄H₁₀NO^{+.}ClO₄⁻ $M_r = 187.58$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 8.1515 (3) Å b = 9.5435 (4) Å c = 28.9022 (12) Å V = 2248.41 (16) Å³ Z = 12

Data collection

Bruker KappaAPEXII area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans 31159 measured reflections 6453 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.062$ S = 1.036453 reflections 323 parameters 6 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 1176 $D_x = 1.662 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7054 reflections $\theta = 2.3-30.0^{\circ}$ $\mu = 0.49 \text{ mm}^{-1}$ T = 100 KFragment, colourless $0.24 \times 0.20 \times 0.16 \text{ mm}$

5928 reflections with $I > 2\sigma(I)$ $R_{int} = 0.038$ $\theta_{max} = 30.0^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -11 \rightarrow 11$ $k = -13 \rightarrow 13$ $l = -40 \rightarrow 40$

Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0368P)^2 + 0.1234P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.30 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.32 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack (1983), 2793 Friedel pairs Absolute structure parameter: 0.42 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ Zх v C11 0.01229 (6) 0.57617 (4) -0.38371(3)0.659062 (11) C12 0.37184(4)0.16395 (3) 0.506534 (10) 0.01225 (6) Cl3 0.57257 (4) -0.35661(3)0.339378 (11) 0.01296 (7) 01 0.68287 (14) -0.37350(14)0.69869(4)0.0261 (3) 02 0.53026(15) -0.24599(12)0.64345(5)0.0297(3)O3 0.43207 (14) -0.46173(11)0.67131 (4) 0.0207(2)04 0.66220(12) -0.45314(11)0.62201 (3) 0.0157 (2) 05 0.34519 (14) 0.23379 (12) 0.46318 (4) 0.0237(2)06 0.22474 (13) 0.09516(12) 0.52183 (4) 0.0246(2)07 0.50191 (4) 0.50117 (12) 0.06236(11) 0.0248(2)08 0.41766 (13) 0.26762 (11) 0.54084(4)0.0189(2)09 0.53099 (16) -0.22094(13)0.35767(5)0.0342(3)O10 0.67421 (14) -0.34228(16)0.29901 (4) 0.0321(3)011 0.42568 (14) -0.43179(12)0.32752(4)0.0236(2)O12 0.66235 (13) -0.43202(11)0.37422(3)0.0168(2)013 0.69481 (11) 0.24689 (11) 0.67280(4) 0.0155(2) O14 0.22067 (11) 0.76837(11) 0.49220(3)0.0171(2)O15 0.69469 (12) 0.27281 (11) 0.32867 (4) 0.0165(2)N1 0.45845 (14) 0.02905 (12) 0.66878 (4) 0.0119(2) -0.0603(10)H1C 0.434(2)0.6668 (6) 0.014* H1D 0.3666 (14) 0.0755 (16) 0.6699 (6) 0.014* N2 0.44656(13) 0.54724 (12) 0.50755 (4) 0.0135 (2) H₂C 0.5419 (14) 0.5912 (16) 0.5086(6) 0.016* H2D 0.462(2)0.4558 (10) 0.5114 (6) 0.016* N3 0.45865 (14) 0.05497 (12) 0.33319 (4) 0.0122(2)0.015* H₃C 0.3684 (15) 0.1049 (17) 0.3313 (6) H3D 0.440(2)0.015* -0.0347(10)0.3344(6)C1 0.55582 (18) 0.05548 (15) 0.71163(5)0.0144(3)H1A 0.0284 (19) 0.017* 0.492(2)0.7388 (6) H1B 0.646(2)0.0006 (19) 0.017* 0.7113 (6) C2 0.60347 (17) 0.20873 (15) 0.71312 (5) 0.0164(3)H2A 0.020* 0.5033 0.2671 0.7151 H2B 0.6705 0.2268 0.7411 0.020* C3 0.59875 (17) 0.22590(15) 0.63150 (5) 0.0143 (3) H3A 0.6628 0.2556 0.6041 0.017*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H3B	0.4981	0.2838	0.6330	0.017*
C4	0.55258 (18)	0.07310 (14)	0.62683 (5)	0.0144 (3)
H4A	0.4847	0.0594	0.5988	0.017*
H4B	0.6528	0.0153	0.6237	0.017*
C5	0.33638 (17)	0.60033 (17)	0.54496 (5)	0.0167 (3)
H5A	0.3905	0.5894	0.5754	0.020*
H5B	0.2331	0.5458	0.5453	0.020*
C6	0.29959 (18)	0.75241 (16)	0.53623 (5)	0.0188 (3)
H6A	0.2273	0.7889	0.5610	0.023*
H6B	0.4028	0.8070	0.5367	0.023*
C7	0.32779 (17)	0.72437 (16)	0.45577 (5)	0.0164 (3)
H7A	0.4293	0.7813	0.4564	0.020*
H7B	0.2736	0.7395	0.4255	0.020*
C8	0.37108 (18)	0.57105 (15)	0.46105 (4)	0.0148 (3)
H8A	0.2710	0.5131	0.4578	0.018*
H8B	0.4492	0.5431	0.4365	0.018*
C9	0.55216 (18)	0.10032 (15)	0.37512 (4)	0.0150 (3)
H9A	0.6521	0.0423	0.3786	0.018*
H9B	0.4837	0.0879	0.4031	0.018*
C10	0.59916 (17)	0.25284 (15)	0.36984 (5)	0.0162 (3)
H10A	0.4988	0.3110	0.3682	0.019*
H10B	0.6634	0.2832	0.3971	0.019*
C11	0.60345 (17)	0.23347 (15)	0.28832 (5)	0.0168 (3)
H11A	0.6704	0.2510	0.2603	0.020*
H11B	0.5029	0.2913	0.2862	0.020*
C12	0.55698 (18)	0.07970 (14)	0.29050 (5)	0.0146 (3)
H12A	0.4920	0.0539	0.2629	0.018*
H12B	0.6572	0.0211	0.2911	0.018*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.01222 (14)	0.01077 (13)	0.01386 (13)	-0.00072 (11)	0.00049 (11)	-0.00074 (11)
Cl2	0.01095 (11)	0.01167 (13)	0.01412 (13)	0.00027 (10)	-0.00132 (11)	-0.00073 (11)
C13	0.01248 (14)	0.01263 (14)	0.01377 (13)	-0.00160 (11)	-0.00006 (11)	0.00151 (11)
O1	0.0178 (5)	0.0441 (8)	0.0165 (5)	-0.0076 (5)	-0.0015 (4)	-0.0063 (5)
O2	0.0395 (7)	0.0108 (5)	0.0389 (7)	0.0094 (5)	0.0117 (5)	0.0024 (5)
O3	0.0130 (4)	0.0230 (5)	0.0262 (5)	-0.0054 (4)	0.0027 (4)	0.0000 (4)
O4	0.0170 (5)	0.0146 (5)	0.0155 (4)	0.0036 (4)	0.0009 (4)	-0.0010 (4)
O5	0.0302 (6)	0.0260 (6)	0.0150 (5)	0.0064 (5)	-0.0028 (4)	0.0020 (4)
O6	0.0154 (5)	0.0216 (6)	0.0368 (6)	-0.0073 (4)	0.0043 (4)	-0.0036 (5)
O7	0.0189 (5)	0.0193 (5)	0.0361 (6)	0.0093 (4)	0.0022 (5)	0.0007 (5)
08	0.0271 (5)	0.0143 (5)	0.0153 (5)	-0.0058 (4)	-0.0048 (4)	-0.0006 (4)
09	0.0453 (8)	0.0124 (5)	0.0449 (8)	0.0121 (5)	-0.0133 (6)	-0.0033 (5)
O10	0.0233 (6)	0.0579 (9)	0.0150 (5)	-0.0133 (6)	0.0023 (4)	0.0081 (6)
O11	0.0126 (5)	0.0272 (6)	0.0311 (6)	-0.0067 (4)	-0.0034 (4)	0.0013 (5)
O12	0.0195 (5)	0.0152 (5)	0.0158 (4)	0.0042 (4)	-0.0018 (4)	0.0001 (4)
013	0.0128 (4)	0.0172 (5)	0.0166 (5)	-0.0049 (4)	-0.0022 (4)	0.0006 (4)

O14	0.0143 (4)	0.0174 (5)	0.0196 (5)	0.0057 (4)	-0.0010 (4)	-0.0015 (4)
015	0.0129 (5)	0.0185 (5)	0.0181 (5)	-0.0061 (4)	0.0007 (4)	-0.0014 (4)
N1	0.0104 (5)	0.0102 (5)	0.0152 (5)	0.0001 (4)	-0.0003 (4)	-0.0012 (4)
N2	0.0108 (5)	0.0101 (5)	0.0195 (6)	0.0003 (4)	-0.0001 (4)	0.0018 (4)
N3	0.0115 (6)	0.0092 (5)	0.0159 (5)	0.0000 (4)	0.0008 (4)	0.0014 (4)
C1	0.0158 (7)	0.0162 (7)	0.0112 (6)	-0.0004 (5)	-0.0004 (5)	0.0012 (5)
C2	0.0180 (7)	0.0167 (7)	0.0145 (6)	-0.0036 (5)	-0.0015 (5)	-0.0027 (5)
C3	0.0163 (7)	0.0131 (6)	0.0133 (6)	-0.0010 (5)	-0.0013 (5)	0.0009 (5)
C4	0.0187 (7)	0.0127 (6)	0.0118 (6)	0.0001 (5)	-0.0002 (5)	-0.0013 (5)
C5	0.0146 (6)	0.0244 (7)	0.0109 (5)	-0.0002 (5)	0.0002 (5)	0.0009 (5)
C6	0.0183 (7)	0.0210 (8)	0.0170 (7)	0.0030 (5)	-0.0020 (5)	-0.0072 (6)
C7	0.0159 (6)	0.0181 (7)	0.0152 (6)	0.0024 (5)	0.0017 (5)	0.0045 (5)
C8	0.0166 (6)	0.0156 (7)	0.0123 (6)	0.0012 (5)	0.0026 (5)	-0.0010 (5)
C9	0.0174 (7)	0.0180 (7)	0.0097 (5)	0.0004 (5)	0.0004 (5)	0.0014 (5)
C10	0.0169 (7)	0.0156 (7)	0.0161 (6)	-0.0014 (5)	0.0009 (5)	-0.0024 (5)
C11	0.0169 (7)	0.0185 (7)	0.0150 (6)	-0.0038 (5)	0.0000 (5)	0.0031 (5)
C12	0.0156 (6)	0.0167 (7)	0.0116 (6)	-0.0013 (5)	0.0011 (5)	-0.0009 (5)

Geometric parameters (Å, °)

Cl1—O3	1.4351 (11)	C1—C2	1.514 (2)
Cl1—O2	1.4391 (12)	C1—H1A	0.975 (18)
Cl104	1.4415 (10)	C1—H1B	0.900 (18)
Cl101	1.4415 (11)	C2—H2A	0.9900
Cl2—O5	1.4359 (11)	C2—H2B	0.9900
Cl2—O6	1.4367 (11)	C3—C4	1.5121 (19)
Cl2—07	1.4385 (10)	С3—НЗА	0.9900
Cl2—O8	1.4496 (10)	С3—Н3В	0.9900
Cl3—011	1.4374 (11)	C4—H4A	0.9900
Cl3—O10	1.4376 (11)	C4—H4B	0.9900
Cl3—O12	1.4379 (10)	C5—C6	1.503 (2)
Cl3—09	1.4390 (13)	С5—Н5А	0.9900
O13—C2	1.4301 (17)	С5—Н5В	0.9900
O13—C3	1.4415 (16)	С6—Н6А	0.9900
O14—C7	1.4308 (16)	С6—Н6В	0.9900
O14—C6	1.4342 (17)	С7—С8	1.513 (2)
O15—C11	1.4333 (17)	С7—Н7А	0.9900
O15—C10	1.4349 (17)	С7—Н7В	0.9900
N1—C1	1.4926 (17)	C8—H8A	0.9900
N1C4	1.4951 (17)	C8—H8B	0.9900
N1—H1C	0.877 (9)	C9—C10	1.513 (2)
N1—H1D	0.871 (9)	С9—Н9А	0.9900
N2—C5	1.4943 (18)	С9—Н9В	0.9900
N2—C8	1.4955 (17)	C10—H10A	0.9900
N2—H2C	0.884 (9)	C10—H10B	0.9900
N2—H2D	0.889 (9)	C11—C12	1.5169 (19)
N3—C12	1.4903 (17)	C11—H11A	0.9900
N3—C9	1.4956 (18)	C11—H11B	0.9900

N3—H3D0.870 (9)C12—H12B0.9900O3—C11—O2109.78 (7)H3A—C3—H3B108.2O3—C11—O4110.06 (6)N1—C4—C3109.05 (11)O2—C11—O4108.26 (7)N1—C4—H4A109.9O3—C11—O1109.45 (7)C3—C4—H4A109.9O3—C11—O1109.14 (7)C3—C4—H4B109.9O4—C11—O1109.14 (7)C3—C4—H4B109.9O5—C12—O6110.75 (7)H4A—C4—H4B108.3O5—C12—O7110.04 (7)N2—C5—C6109.01 (12)O6—C12—O8108.60 (7)C6—C5—H5A109.9O5—C12—O8108.60 (7)C6—C5—H5B109.9O5—C12—O8108.45 (7)N2—C5—H5B109.9O7—C12—O8109.55 (7)C6—C5—H5B109.9O11—C13—O10109.51 (7)H5A—C5—H5B109.7O11—C13—O12109.94 (7)O14—C6—H6A109.7O11—C13—O9109.91 (8)C5—C6—H6A109.7O11—C13—O9109.91 (8)C5—C6—H6B109.7O12—C13—O9108.24 (7)C5—C6—H6B109.7O12—C13—O9108.24 (7)C5—C6—H6B108.2C7—O14—C6110.37 (10)O14—C7—H7A109.5C1—N1—H1C109.7 (11)O14—C7—H7B109.5C1—N1—H1C109.6 (11)C8—C7—H7B109.5C1—N1—H1D109.2 (11)N2—C8—C7109.49 (1)H1C—N1—H1D109.2 (11)N2—C8—H8A109.8	N3—H3C	0.878 (9)	C12—H12A	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—H3D	0.870 (9)	C12—H12B	0.9900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—C11—O2	109.78 (7)	НЗА—СЗ—НЗВ	108.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—Cl1—O4	110.06 (6)	N1—C4—C3	109.05 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2—Cl1—O4	108.26 (7)	N1—C4—H4A	109.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O3—Cl1—O1	109.45 (7)	C3—C4—H4A	109.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O2—Cl1—O1	110.14 (8)	N1—C4—H4B	109.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O4—Cl1—O1	109.14 (7)	C3—C4—H4B	109.9
05Cl207 110.04 (7) $N2C5C6$ 109.01 (12) $06Cl207$ 109.41 (7) $N2C5H5A$ 109.9 $05Cl208$ 108.60 (7) $C6C5H5A$ 109.9 $06Cl208$ 108.45 (7) $N2C5H5B$ 109.9 $07Cl208$ 109.55 (7) $C6C5H5B$ 109.9 $011Cl3010$ 109.51 (7) $H5AC5H5B$ 108.3 $011Cl3012$ 109.94 (7) $014C6C5$ 109.94 (12) $010Cl3012$ 109.94 (7) $014C6H6A$ 109.7 $011Cl309$ 109.91 (8) $C5C6H6A$ 109.7 $010Cl309$ 109.91 (8) $C5C6H6B$ 109.7 $012Cl309$ 108.24 (7) $C5C6H6B$ 109.7 $012Cl309$ 108.24 (7) $C5C6H6B$ 109.7 $012Cl309$ 108.24 (7) $C5C6H6B$ 108.2 $C7014C6$ 110.37 (10) $014C7C8$ 110.61 (11) $C11015C10$ 111.00 (10) $014C7H7B$ 109.5 $C1N1H1C$ 109.7 (11) $014C7H7B$ 109.5 $C1N1H1D$ 109.9 (11) $H7AC7H7B$ 108.1 $C4N1H1D$ 109.2 (11) $N2C8C7$ 109.49 (11) $H1CN1H1D$ 107.8 (16) $N2C8H8A$ 109.8	O5—Cl2—O6	110.75 (7)	H4A—C4—H4B	108.3
06-Cl2-07 109.41 (7) $N2-C5-H5A$ 109.9 $05-Cl2-08$ 108.60 (7) $C6-C5-H5A$ 109.9 $06-Cl2-08$ 108.45 (7) $N2-C5-H5B$ 109.9 $07-Cl2-08$ 109.55 (7) $C6-C5-H5B$ 109.9 $011-Cl3-010$ 109.51 (7) $H5A-C5-H5B$ 108.3 $011-Cl3-012$ 109.94 (7) $014-C6-C5$ 109.94 (12) $010-Cl3-012$ 108.83 (7) $014-C6-H6A$ 109.7 $011-Cl3-09$ 109.91 (8) $C5-C6-H6A$ 109.7 $010-Cl3-09$ 109.91 (8) $C5-C6-H6B$ 109.7 $012-Cl3-09$ 108.24 (7) $C5-C6-H6B$ 109.7 $012-Cl3-09$ 108.24 (7) $C5-C6-H6B$ 108.2 $C7-014-C6$ 110.37 (10) $014-C7-C8$ 110.61 (11) $C11-015-Cl0$ 111.00 (10) $014-C7-H7A$ 109.5 $C1-N1-H1C$ 109.7 (11) $014-C7-H7B$ 109.5 $C1-N1-H1C$ 109.6 (11) $C8-C7-H7B$ 109.5 $C1-N1-H1D$ 109.9 (11) $H7A-C7-H7B$ 109.49 (11) $H1C-N1-H1D$ 109.2 (11) $N2-C8-C7$ 109.49 (11) $H1C-N1-H1D$ 107.8 (16) $N2-C8-H8A$ 109.8	O5—Cl2—O7	110.04 (7)	N2—C5—C6	109.01 (12)
05Cl208 108.60 (7) $C6C5H5A$ 109.9 $06Cl208$ 108.45 (7) $N2C5H5B$ 109.9 $07Cl208$ 109.55 (7) $C6C5H5B$ 109.9 $011Cl3010$ 109.51 (7) $H5AC5H5B$ 108.3 $011Cl3012$ 109.94 (7) $014C6C5$ 109.94 (12) $010Cl3012$ 108.83 (7) $014C6H6A$ 109.7 $011Cl309$ 109.91 (8) $C5C6H6A$ 109.7 $012Cl309$ 108.24 (7) $C5C6H6B$ 109.7 $012Cl309$ 108.24 (7) $C5C6H6B$ 109.7 $C2013C3$ 110.89 (10) $H6AC6H6B$ 108.2 $C7014C6$ 110.37 (10) $014C7C8$ 110.61 (11) $C11015C10$ 111.00 (10) $O14C7H7A$ 109.5 $C1N1H1C$ 109.7 (11) $O14C7H7B$ 109.5 $C1N1H1C$ 109.6 (11) $C8C7H7B$ 109.5 $C1N1H1D$ 109.9 (11) $H7AC7H7B$ 109.49 (11) $H1CN1H1D$ 109.2 (11) $N2C8C7$ 109.49 (11) $H1CN1H1D$ 107.8 (16) $N2C8H8A$ 109.8	O6—Cl2—O7	109.41 (7)	N2—C5—H5A	109.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O5—Cl2—O8	108.60 (7)	С6—С5—Н5А	109.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O6—Cl2—O8	108.45 (7)	N2—C5—H5B	109.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O7—Cl2—O8	109.55 (7)	С6—С5—Н5В	109.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O11—Cl3—O10	109.51 (7)	H5A—C5—H5B	108.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O11—Cl3—O12	109.94 (7)	O14—C6—C5	109.94 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O10-Cl3-O12	108.83 (7)	O14—C6—H6A	109.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O11—Cl3—O9	109.91 (8)	С5—С6—Н6А	109.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O10—Cl3—O9	110.39 (9)	O14—C6—H6B	109.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O12—Cl3—O9	108.24 (7)	С5—С6—Н6В	109.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—O13—C3	110.89 (10)	H6A—C6—H6B	108.2
C11—O15—C10111.00 (10)O14—C7—H7A109.5C1—N1—C4110.64 (10)C8—C7—H7A109.5C1—N1—H1C109.7 (11)O14—C7—H7B109.5C4—N1—H1C109.6 (11)C8—C7—H7B109.5C1—N1—H1D109.9 (11)H7A—C7—H7B108.1C4—N1—H1D109.2 (11)N2—C8—C7109.49 (11)H1C—N1—H1D107.8 (16)N2—C8—H8A109.8C5—N2—C8110.58 (10)C7—C8—H8A109.8	C7—O14—C6	110.37 (10)	O14—C7—C8	110.61 (11)
C1—N1—C4 110.64 (10) C8—C7—H7A 109.5 C1—N1—H1C 109.7 (11) O14—C7—H7B 109.5 C4—N1—H1C 109.6 (11) C8—C7—H7B 109.5 C1—N1—H1D 109.9 (11) H7A—C7—H7B 108.1 C4—N1—H1D 109.2 (11) N2—C8—C7 109.49 (11) H1C—N1—H1D 107.8 (16) N2—C8—H8A 109.8 C5—N2—C8 110.58 (10) C7—C8—H8A 109.8	C11—O15—C10	111.00 (10)	O14—C7—H7A	109.5
C1—N1—H1C109.7 (11)O14—C7—H7B109.5C4—N1—H1C109.6 (11)C8—C7—H7B109.5C1—N1—H1D109.9 (11)H7A—C7—H7B108.1C4—N1—H1D109.2 (11)N2—C8—C7109.49 (11)H1C—N1—H1D107.8 (16)N2—C8—H8A109.8C5—N2—C8110.58 (10)C7—C8—H8A109.8	C1—N1—C4	110.64 (10)	С8—С7—Н7А	109.5
C4—N1—H1C109.6 (11)C8—C7—H7B109.5C1—N1—H1D109.9 (11)H7A—C7—H7B108.1C4—N1—H1D109.2 (11)N2—C8—C7109.49 (11)H1C—N1—H1D107.8 (16)N2—C8—H8A109.8C5—N2—C8110.58 (10)C7—C8—H8A109.8	C1—N1—H1C	109.7 (11)	O14—C7—H7B	109.5
C1—N1—H1D109.9 (11)H7A—C7—H7B108.1C4—N1—H1D109.2 (11)N2—C8—C7109.49 (11)H1C—N1—H1D107.8 (16)N2—C8—H8A109.8C5—N2—C8110.58 (10)C7—C8—H8A109.8	C4—N1—H1C	109.6 (11)	С8—С7—Н7В	109.5
C4—N1—H1D109.2 (11)N2—C8—C7109.49 (11)H1C—N1—H1D107.8 (16)N2—C8—H8A109.8C5—N2—C8110.58 (10)C7—C8—H8A109.8	C1—N1—H1D	109.9 (11)	H7A—C7—H7B	108.1
H1C—N1—H1D107.8 (16)N2—C8—H8A109.8C5—N2—C8110.58 (10)C7—C8—H8A109.8	C4—N1—H1D	109.2 (11)	N2—C8—C7	109.49 (11)
C5—N2—C8 110.58 (10) C7—C8—H8A 109.8	H1C—N1—H1D	107.8 (16)	N2—C8—H8A	109.8
· · · · · · · · · · · · · · · · · · ·	C5—N2—C8	110.58 (10)	С7—С8—Н8А	109.8
C5—N2—H2C 110.1 (11) N2—C8—H8B 109.8	C5—N2—H2C	110.1 (11)	N2—C8—H8B	109.8
C8—N2—H2C 108.7 (11) C7—C8—H8B 109.8	C8—N2—H2C	108.7 (11)	С7—С8—Н8В	109.8
C5—N2—H2D 109.2 (11) H8A—C8—H8B 108.2	C5—N2—H2D	109.2 (11)	H8A—C8—H8B	108.2
C8—N2—H2D 108.7 (11) N3—C9—C10 109.02 (11)	C8—N2—H2D	108.7 (11)	N3—C9—C10	109.02 (11)
H2C—N2—H2D 109.6 (15) N3—C9—H9A 109.9	H2C—N2—H2D	109.6 (15)	N3—C9—H9A	109.9
C12—N3—C9 110.54 (11) C10—C9—H9A 109.9	C12—N3—C9	110.54 (11)	С10—С9—Н9А	109.9
C12—N3—H3C 108.1 (11) N3—C9—H9B 109.9	C12—N3—H3C	108.1 (11)	N3—C9—H9B	109.9
C9—N3—H3C 108.8 (11) C10—C9—H9B 109.9	C9—N3—H3C	108.8 (11)	С10—С9—Н9В	109.9
C12—N3—H3D 106.5 (11) H9A—C9—H9B 108.3	C12—N3—H3D	106.5 (11)	H9A—C9—H9B	108.3
C9—N3—H3D 109.9 (12) 015—C10—C9 110.41 (11)	C9—N3—H3D	109.9 (12)	O15—C10—C9	110.41 (11)
H3C—N3—H3D 113.0 (17) O15—C10—H10A 109.6	H3C—N3—H3D	113.0 (17)	O15—C10—H10A	109.6
N1-C1-C2 108.86 (11) C9-C10-H10A 109.6	N1—C1—C2	108.86 (11)	C9—C10—H10A	109.6
N1—C1—H1A 109.9 (10) O15—C10—H10B 109.6	N1—C1—H1A	109.9 (10)	O15—C10—H10B	109.6
C2—C1—H1A 111.7 (11) C9—C10—H10B 109.6	C2—C1—H1A	111.7 (11)	C9—C10—H10B	109.6
N1—C1—H1B 109.0 (11) H10A—C10—H10B 108.1	N1—C1—H1B	109.0 (11)	H10A—C10—H10B	108.1
C2—C1—H1B 110.8 (12) O15—C11—C12 110.44 (12)	C2—C1—H1B	110.8 (12)	O15—C11—C12	110.44 (12)
H1A—C1—H1B 106.5 (15) 015—C11—H11A 109.6	H1A—C1—H1B	106.5 (15)	O15—C11—H11A	109.6

O13—C2—C1	110.88 (11)	C12—C11—H11A	109.6
O13—C2—H2A	109.5	O15—C11—H11B	109.6
C1—C2—H2A	109.5	C12—C11—H11B	109.6
O13—C2—H2B	109.5	H11A—C11—H11B	108.1
C1—C2—H2B	109.5	N3—C12—C11	108.78 (11)
H2A—C2—H2B	108.1	N3—C12—H12A	109.9
O13—C3—C4	110.07 (11)	C11—C12—H12A	109.9
O13—C3—H3A	109.6	N3—C12—H12B	109.9
C4—C3—H3A	109.6	C11—C12—H12B	109.9
O13—C3—H3B	109.6	H12A—C12—H12B	109.9
C4—N1—C1—C2	56.08 (15)	C6—O14—C7—C8	61.45 (14)
C3—O13—C2—C1	60.92 (15)	C5—N2—C8—C7	54.51 (14)
N1—C1—C2—O13	-57.76 (15)	O14—C7—C8—N2	-56.81 (14)
C2—O13—C3—C4	-61.05 (15)	C12—N3—C9—C10	56.67 (14)
C1—N1—C4—C3	-56.79 (15)	C11—O15—C10—C9	60.83 (14)
O13—C3—C4—N1	58.36 (14)	N3—C9—C10—O15	-57.92 (14)
C8—N2—C5—C6	-56.06 (14)	C10—O15—C11—C12	-61.04 (14)
C7—O14—C6—C5	-62.99 (15)	C9—N3—C12—C11	-56.71 (15)
N2—C5—C6—O14	59.76 (15)	O15—C11—C12—N3	58.34 (15)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N1—H1C…O2	0.88 (1)	2.05 (1)	2.7872 (16)	141 (2)
N1— $H1D$ ···O15 ⁱ	0.87(1)	2.02 (1)	2.8642 (15)	165 (2)
N2—H2 <i>C</i> ···O14 ⁱⁱ	0.88(1)	1.98 (1)	2.8441 (14)	166 (2)
N2—H2 <i>D</i> ···O8	0.89(1)	2.02 (1)	2.8465 (15)	154 (2)
N3—H3 <i>C</i> ···O13 ⁱ	0.88(1)	2.00(1)	2.8690 (15)	168 (2)
N3—H3 <i>D</i> ···O9	0.87 (1)	2.04 (1)	2.7895 (17)	144 (2)

Symmetry codes: (i) x-1/2, -y+1/2, -z+1; (ii) x+1/2, -y+3/2, -z+1.