organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl 3'-cyano-1'-methyl-2-oxo-4'phenylspiro[acenaphthene-1,2'pyrrolidine]-3'-carboxylate

Wen-Long Yang, Zheng-Quan Zuo and Ming Li*

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China Correspondence e-mail: liming928@qust.edu.cn

Received 16 November 2007; accepted 18 December 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.005 Å; R factor = 0.041; wR factor = 0.101; data-to-parameter ratio = 8.9.

In the title compound, $C_{26}H_{22}N_2O_3$, the acenaphthen-1-one ring system is nearly planar and the pyrrolidine ring adopts a distorted envelope conformation. An intermolecular C- $H \cdots O$ hydrogen bond stabilizes the crystal structure.

Related literature

For related literature, see: Ma & Hecht (2004); Usui *et al.* (1998); Raghunathan & Suresh Babu (2004).

Experimental

Crystal data

$C_{26}H_{22}N_2O_3$	b = 14.549 (6) Å
$M_r = 410.46$	c = 19.397 (8) Å
Orthorhombic, $P2_12_12_1$	$V = 2134.7 (15) \text{ Å}^3$
a = 7.564 (3) Å	Z = 4

Mo	$K\alpha$ radiation	
$\mu =$	0.08 mm^{-1}	

Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *T*_{min} = 0.982, *T*_{max} = 0.988

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ 282 parameters $wR(F^2) = 0.101$ H-atom parameters constrainedS = 1.13 $\Delta \rho_{max} = 0.15$ e Å $^{-3}$ 2513 reflections $\Delta \rho_{min} = -0.16$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$C26 - H26B \cdots O1^{i}$	0.96	2.53	3.276 (5)	135

T = 294 (2) K $0.22 \times 0.18 \times 0.14$ mm

 $R_{\rm int} = 0.049$

12376 measured reflections

2513 independent reflections

1924 reflections with $I > 2\sigma(I)$

Symmetry code: (i) x - 1, y, z.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1999); software used to prepare material for publication: *SHELXTL*.

This project was supported by the National Science Foundation of China (No. 20572057) and the Natural Science Foundation of Shandong Province (Y2006B11) and the Doctoral Foundation of Qingdao University of Science and Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2186).

References

- Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ma, J. & Hecht, S. M. (2004). Chem. Commun. 10, 1190–1191.
- Raghunathan, R. & Suresh Babu, A. R. (2006). *Tetrahedron Lett.* 47, 9221–9225.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Usui, T., Kondoh, M., Cui, C.-B., Mayumi, T. & Osada, H. (1998). *Biochem. J.* **333**, 543–548.

supporting information

Acta Cryst. (2008). E64, o440 [doi:10.1107/S1600536807067530]

Ethyl 3'-cyano-1'-methyl-2-oxo-4'-phenylspiro[acenaphthene-1,2'pyrrolidine]-3'-carboxylate

Wen-Long Yang, Zheng-Quan Zuo and Ming Li

S1. Comment

Spiro compounds represent an important class of naturally occurring substances characterized by highly pronounced biological properties. The spirooxindole system is the core structure of many pharmacological agents and natural alkaloids (Ma & Hecht, 2004). Spirotryprostatin A, a natural alkaloid isolated from the fermentation broth of Aspergillus fumigatus, has been identified as a novel inhibitor of microtubule assembly (Usui *et al.*, 1998). Because of their synthetic and biological potential, considerable interest has been focused on the synthesis of spirooxindole derivatives *via* 1,3-dipolar cycloaddition reactions (Raghunathan & Suresh Babu, 2006). In order to develop new biological activities, we synthesized the title compound, the structure of which is reported here.

In the molecule of the title compound (Fig. 1) there is one spiro junction at atom C12. The 2*H*-acenaphthylen-1-one ring system (C1—C12) is nearly planar, with a maximum displacement of 0.081 (3) Å for atom C1. The pyrrolidine ring adopts a distorted envelope conformation, with atom C12 forming the flap of the envelope displaced by 0.288 (2) A%. The mean plane through the pyrrolidine ring is almost perpendicular to the 2*H*-acenaphthylen-1-one ring (dihedral angle 86.62 (7)°). The crystal structure (Fig. 2) is stabilized by an intermolecular C—H…O hydrogen bond (Table 1).

S2. Experimental

A mixture of acenaphthylene-1,2-dione (1 mmol, 0.182 g), sarcosine (1 mmol, 0.089 g), benzaldehyde (1 mmol, 0.106 g), cyanoacetic acid ethyl ester (1 mmol, 0.113 g), and acetonitrile (15 ml) in a 25 ml flask was stirred for 3 h under reflux and monitored by TLC). After cooling to room temperature, the solid product was filtered off. Single crystals of the title compound were obtained by slow evaporation of an ethanol solution (m.p. 458 K).

S3. Refinement

All H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å, and included in the final cycles of refinement using a riding model, with $U_{iso}(H) = 1.2 U_{eq}(C)$ or 1.5 $U_{eq}(C)$ for methyl H atoms. In the absence of significant anomalous scattering effects, Friedel pairs were merged in the final refinement.

Figure 1

The molecular structure of the title compound with 35% probability ellipsoids.

Figure 2

Packing diagram of the title compound viewed along the *b* axis. Intermolecular H bonds are shown as dashed lines.

Ethyl 3'-cyano-1'-methyl-2-oxo-4'-phenyl-spiro[acenaphthene-1,2'- pyrrolidine]-3'-carboxylate

 $D_{\rm x} = 1.277 {\rm ~Mg} {\rm ~m}^{-3}$

 $\theta = 2.5 - 22.3^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$ T = 294 K

Prism. brown

 $R_{\rm int} = 0.049$

 $h = -9 \rightarrow 7$ $k = -17 \rightarrow 18$ $l = -23 \rightarrow 24$

Melting point: 458 K

 $0.22 \times 0.18 \times 0.14 \text{ mm}$

12376 measured reflections 2513 independent reflections 1924 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 26.4^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3377 reflections

Crystal data

 $C_{26}H_{22}N_{2}O_{3}$ $M_{r} = 410.46$ Orthorhombic, $P2_{1}2_{1}2_{1}$ Hall symbol: P 2ac 2ab a = 7.564 (3) Å b = 14.549 (6) Å c = 19.397 (8) Å V = 2134.7 (15) Å³ Z = 4F(000) = 864

Data collection

Bruker SMART 100 CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.982, \ T_{\max} = 0.988$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wR(F^2) = 0.101$	neighbouring sites
<i>S</i> = 1.13	H-atom parameters constrained
2513 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0449P)^2 + 0.2087P]$
282 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.15 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	1.0623 (3)	0.94458 (13)	0.30244 (11)	0.0575 (6)	
O2	0.5975 (3)	0.73612 (15)	0.19934 (13)	0.0628 (6)	
03	0.6641 (2)	0.88028 (13)	0.22923 (11)	0.0481 (5)	
N1	1.1489 (3)	0.74780 (15)	0.28010 (11)	0.0376 (5)	
111	1.1407 (5)	0.74700 (15)	0.20010 (11)	0.0570(5)	

N2	1.0479 (4)	0.90974 (17)	0.13933 (13)	0.0585 (8)
C1	0.9708 (4)	0.88274 (18)	0.32249 (14)	0.0374 (6)
C2	0.8422 (4)	0.88321 (19)	0.37975 (13)	0.0376 (6)
C3	0.7857 (4)	0.9520 (2)	0.42294 (16)	0.0505 (8)
H3	0.8282	1.0117	0.4183	0.061*
C4	0.6623 (5)	0.9298 (3)	0.47409 (16)	0.0612 (9)
H4	0.6204	0.9760	0.5029	0.073*
C5	0.6013 (4)	0.8416 (3)	0.48296 (15)	0.0557 (9)
Н5	0.5186	0.8295	0.5173	0.067*
C6	0.6615 (4)	0.7694 (2)	0.44122 (14)	0.0423 (7)
C7	0.6195 (4)	0.6742 (2)	0.44642 (15)	0.0524 (8)
H7	0.5406	0.6539	0.4799	0.063*
C8	0.6951 (4)	0.6131 (2)	0.40222 (15)	0.0525 (8)
H8	0.6690	0.5510	0.4075	0.063*
C9	0.8115 (4)	0.63939 (19)	0.34877 (14)	0.0433 (7)
H9	0.8600	0.5955	0.3195	0.052*
C10	0.8515 (3)	0.73065 (18)	0.34083 (13)	0.0341 (6)
C11	0.7806 (3)	0.79340 (18)	0.38829 (12)	0.0338 (6)
C12	0.9724 (3)	0.78274 (17)	0.29125 (12)	0.0320 (6)
C13	1.1399 (4)	0.6722 (2)	0.23060 (15)	0.0463 (7)
H13A	1.1395	0.6136	0.2543	0.056*
H13B	1.2406	0.6740	0.1996	0.056*
C14	0.9672 (4)	0.68563 (16)	0.19040 (13)	0.0357 (6)
H14	0.8830	0.6407	0.2088	0.043*
C15	0.9028 (3)	0.78135 (17)	0.21481 (12)	0.0314 (6)
C16	1.2531 (4)	0.7268 (3)	0.34135 (17)	0.0578 (9)
H16A	1.2516	0.7786	0.3720	0.087*
H16B	1.3727	0.7136	0.3281	0.087*
H16C	1.2035	0.6743	0.3643	0.087*
C17	0.9744 (5)	0.67010 (18)	0.11349 (14)	0.0460 (8)
C18	1.1162 (6)	0.6991 (2)	0.07389 (17)	0.0716 (12)
H18	1.2091	0.7311	0.0941	0.086*
C19	1.1185 (9)	0.6799 (3)	0.0032 (2)	0.1023 (19)
H19	1.2134	0.6990	-0.0238	0.123*
C20	0.9814 (10)	0.6332 (3)	-0.0262(2)	0.107 (2)
H20	0.9847	0.6201	-0.0731	0.128*
C21	0.8409 (8)	0.6057 (3)	0.0116 (2)	0.0861 (14)
H21	0.7473	0.5750	-0.0094	0.103*
C22	0.8374 (5)	0.6235 (2)	0.08185 (16)	0.0591 (9)
H22	0.7416	0.6037	0.1080	0.071*
C23	0.9873 (4)	0.85531 (18)	0.17424 (14)	0.0365 (6)
C24	0.7021 (4)	0.79504 (19)	0.21206 (14)	0.0370 (6)
C25	0.4781 (4)	0.9068 (2)	0.2361 (2)	0.0607 (9)
H25A	0.4209	0.9062	0.1914	0.073*
H25B	0.4168	0.8639	0.2660	0.073*
C26	0.4721 (5)	0.9978 (3)	0.2651 (3)	0.0941 (14)
H26A	0.5226	0.9969	0.3105	0.141*
H26B	0.3516	1.0181	0.2677	0.141*

H26C	0.5383	1.0	391	0.2364	0.141*	
Atomic a	lisplacement para	meters ($Å^2$)				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
01	0.0665 (15)	0.0462 (12)	0.0598 (13)	-0.0230 (12)	0.0173 (12)	-0.0112 (10)
O2	0.0395 (12)	0.0543 (13)	0.0945 (18)	-0.0096 (11)	-0.0045 (12)	-0.0145 (13)
O3	0.0324 (10)	0.0414 (11)	0.0706 (14)	0.0034 (9)	0.0027 (10)	-0.0039 (10)
N1	0.0311 (11)	0.0483 (13)	0.0335 (12)	0.0031 (10)	-0.0026 (10)	-0.0012 (10)
N2	0.0741 (19)	0.0453 (15)	0.0561 (16)	-0.0064 (14)	0.0201 (15)	0.0074 (13)
C1	0.0370 (15)	0.0385 (14)	0.0365 (14)	-0.0067 (13)	-0.0005 (12)	-0.0024 (12)
C2	0.0384 (15)	0.0433 (15)	0.0312 (13)	0.0010 (13)	0.0001 (12)	-0.0016 (12)
C3	0.0575 (19)	0.0464 (17)	0.0477 (17)	0.0045 (15)	0.0032 (16)	-0.0073 (14)
C4	0.065 (2)	0.073 (2)	0.0458 (18)	0.016 (2)	0.0149 (17)	-0.0116 (17)
C5	0.0451 (19)	0.083 (3)	0.0386 (17)	0.0052 (17)	0.0114 (14)	0.0015 (16)
C6	0.0340 (15)	0.0610 (18)	0.0320 (14)	-0.0032 (15)	-0.0006 (13)	0.0070 (13)
C7	0.0482 (19)	0.071 (2)	0.0380 (17)	-0.0146 (16)	-0.0013 (14)	0.0183 (16)
C8	0.060 (2)	0.0519 (18)	0.0456 (17)	-0.0141 (17)	-0.0057 (16)	0.0170 (15)
C9	0.0525 (18)	0.0398 (16)	0.0377 (15)	-0.0043 (14)	-0.0028 (14)	0.0046 (12)
C10	0.0338 (14)	0.0377 (14)	0.0307 (14)	-0.0025 (12)	-0.0028 (11)	0.0041 (11)
C11	0.0319 (14)	0.0426 (15)	0.0269 (13)	-0.0009 (12)	-0.0054 (11)	0.0015 (11)
C12	0.0301 (13)	0.0373 (14)	0.0287 (13)	-0.0023 (11)	0.0002 (11)	-0.0005 (10)
C13	0.0448 (16)	0.0455 (16)	0.0486 (17)	0.0104 (14)	0.0008 (14)	-0.0063 (14)
C14	0.0438 (15)	0.0297 (13)	0.0336 (14)	-0.0011 (12)	0.0025 (12)	-0.0001 (11)
C15	0.0328 (13)	0.0319 (13)	0.0293 (13)	-0.0014 (11)	0.0007 (11)	0.0003 (11)
C16	0.0418 (18)	0.081 (2)	0.0503 (19)	0.0054 (17)	-0.0088 (14)	0.0014 (17)
C17	0.074 (2)	0.0295 (14)	0.0348 (15)	0.0050 (15)	0.0030 (16)	-0.0001 (11)
C18	0.120 (3)	0.0406 (17)	0.055 (2)	-0.018 (2)	0.033 (2)	-0.0067 (15)
C19	0.200 (6)	0.048 (2)	0.059 (2)	-0.013 (3)	0.060 (3)	0.0018 (19)
C20	0.228 (7)	0.055 (2)	0.038 (2)	0.008 (4)	0.001 (3)	-0.0052 (18)
C21	0.141 (4)	0.065 (2)	0.052 (2)	0.016 (3)	-0.029 (3)	-0.012 (2)
C22	0.081 (2)	0.0478 (17)	0.0484 (18)	0.0094 (19)	-0.0120 (18)	-0.0104 (15)
C23	0.0376 (16)	0.0357 (14)	0.0363 (14)	0.0031 (12)	0.0035 (13)	0.0001 (12)
C24	0.0373 (15)	0.0394 (16)	0.0343 (14)	-0.0020 (13)	0.0005 (12)	0.0038 (12)
C25	0.0289 (16)	0.065 (2)	0.089 (2)	0.0090 (15)	0.0051 (17)	-0.0028 (18)
C26	0.045 (2)	0.068 (2)	0.169 (4)	0.0164 (19)	-0.002 (3)	-0.025 (3)

Geometric parameters (Å, °)

01—C1	1.200 (3)	C13—C14	1.534 (4)	_
O2—C24	1.193 (3)	C13—H13A	0.9700	
O3—C24	1.316 (3)	C13—H13B	0.9700	
O3—C25	1.465 (4)	C14—C17	1.510 (4)	
N1-C12	1.445 (3)	C14—C15	1.550 (3)	
N1-C16	1.458 (4)	C14—H14	0.9800	
N1-C13	1.461 (3)	C15—C23	1.479 (4)	
N2-C23	1.138 (3)	C15—C24	1.532 (4)	
C1—C2	1.476 (4)	C16—H16A	0.9600	

supporting information

C1—C12	1.576 (4)	C16—H16B	0.9600
C2—C3	1.374 (4)	C16—H16C	0.9600
C2—C11	1.397 (4)	C17—C22	1.382 (4)
C3—C4	1.401 (4)	C17—C18	1.385 (5)
С3—Н3	0.9300	C18—C19	1.400 (5)
C4—C5	1.374 (5)	C18—H18	0.9300
C4—H4	0.9300	C19—C20	1.365 (8)
C5—C6	1.401 (4)	С19—Н19	0.9300
С5—Н5	0.9300	C20—C21	1.352 (7)
C6—C11	1.410 (4)	C20—H20	0.9300
C6—C7	1.425 (4)	C21—C22	1.388 (5)
C7—C8	1 362 (5)	$C_{21} = H_{21}$	0.9300
С7—Н7	0.9300	C22—H22	0.9300
C8 - C9	1413(4)	C_{25} C_{25} C_{26}	1 440 (5)
C8—H8	0.9300	C25—H25A	0.9700
C9-C10	1.371(4)	C25—H25B	0.9700
С9—Н9	0.9300	C26—H26A	0.9600
C10-C11	1403(4)	C26—H26B	0.9600
C10-C12	1.105 (1)	C_{26} H26D	0.9600
C_{12} C_{12} C_{15}	1.526(3) 1 574(3)	620 11200	0.9000
012-013	1.574 (5)		
C24—O3—C25	118.7 (2)	C13—C14—C15	103.1 (2)
C12 - N1 - C16	116.8(2)	C17—C14—H14	106.5
C12 N1- $C13$	108.7(2)	C13 - C14 - H14	106.5
C16-N1-C13	113.8 (2)	C15—C14—H14	106.5
01-C1-C2	128.3(2)	C^{23} C^{15} C^{24}	108.4(2)
01 - C1 - C12	120.3(2) 124.3(2)	C_{23} C_{15} C_{24}	100.1(2) 110.8(2)
C_{2} C_{1} C_{1} C_{1}	127.3(2) 1074(2)	C_{24} C_{15} C_{14}	110.0(2) 114.7(2)
C_{3} C_{2} C_{11}	107.4(2) 1204(3)	C_{23} C_{15} C_{14}	114.7(2) 110.3(2)
C_{3} C_{2} C_{1}	120.4(3) 131.8(3)	$C_{23} = C_{13} = C_{12}$	110.3(2)
$C_{11} - C_{2} - C_{1}$	107.7(2)	C_{14} C_{15} C_{12}	101.0(2)
$C_{2}^{-}C_{3}^{-}C_{4}^{-}$	107.7(2) 118.1(3)	N1 - C16 - H164	101.15 (15)
$C_2 = C_3 = C_4$	121.0	N1 C16 H16R	109.5
$C_2 = C_3 = H_3$	121.0	$H_{16A} = C_{16} = H_{16B}$	109.5
$C_{1} = C_{2} = H_{2}$	121.0 121.0(3)	N1 C16 H16C	109.5
$C_{5} - C_{4} - H_{4}$	121.9 (3)	H_{164} $-C_{16}$ $-H_{16C}$	109.5
$C_3 C_4 H_4$	119.0	H16R C16 H16C	109.5
C_{3}	119.0 121.2(2)	$\begin{array}{c} 1110D - 10 - 1110C \\ 1110D - 110 - 1110C \\ 1110D - 110C \\ 1100D - 100C \\ 1100D - 100C \\ 1100D - 100C \\ 1$	109.3 118.0 (3)
$C_{4} = C_{5} = C_{6}$	121.2 (3)	$C_{22} = C_{17} = C_{18}$	110.9(3)
$C_{4} = C_{5} = H_{5}$	119.4	$C_{22} = C_{17} = C_{14}$	119.0(3)
C_{0}	119.4	$C_{10} - C_{17} - C_{14}$	122.0(3)
$C_{5} = C_{6} = C_{7}$	110.3(3) 127.0(2)	C17 - C18 - C19	119.3 (4)
$C_{11} C_{6} C_{7}$	127.9(3) 115.8(3)	$C_{1}/-C_{10}$ $-\Pi_{10}$	120.3
$C_1 = C_0 = C_1$	110.8 (3)	$C_{19} = C_{10} = C_{10}$	120.0 (5)
$C^{\circ} = C^{7} = U^{7}$	119.8 (3) 120.1	$C_{20} = C_{10} = U_{10}$	120.0 (5)
C = C = H	120.1	C_{20} — C_{19} — H_{19}	120.0
$C_0 - C_1 - H_1$	120.1	C10 - C19 - H19	120.0
$C_{1} = C_{2} = C_{2}$	123.2 (3)	$C_{21} - C_{20} - C_{19}$	121.2 (4)
U/UðHð	118.4	C21-C20-H20	119.4

С9—С8—Н8	118.4	С19—С20—Н20	119.4
C10—C9—C8	118.8 (3)	C20—C21—C22	119.5 (5)
С10—С9—Н9	120.6	C20—C21—H21	120.2
С8—С9—Н9	120.6	C22—C21—H21	120.2
C9—C10—C11	118.2 (2)	C17—C22—C21	120.9 (4)
C9—C10—C12	133.1 (3)	С17—С22—Н22	119.6
C11—C10—C12	108.6 (2)	C21—C22—H22	119.6
C2-C11-C10	113.8 (2)	N2—C23—C15	175.6 (3)
C2-C11-C6	122.1 (3)	O2—C24—O3	125.8 (3)
C10—C11—C6	124.1 (3)	02-C24-C15	124.8 (3)
N1—C12—C10	118.2 (2)	Q3—C24—C15	109.3 (2)
N1—C12—C15	99.43 (19)	C26—C25—O3	107.9 (3)
C10-C12-C15	112.7 (2)	C26—C25—H25A	110.1
N1-C12-C1	112.9 (2)	03—C25—H25A	110.1
C10-C12-C1	102.2 (2)	C26—C25—H25B	110.1
$C_{15} - C_{12} - C_{1}$	111.8 (2)	03-C25-H25B	110.1
N1-C13-C14	1061(2)	$H_{25A} - C_{25} - H_{25B}$	108.4
N1—C13—H13A	110 5	C25—C26—H26A	109.5
C14— $C13$ — $H13A$	110.5	C25—C26—H26B	109.5
N1 - C13 - H13B	110.5	$H_{26} = C_{26} = H_{26} = H_{26}$	109.5
C14— $C13$ — $H13B$	110.5	C_{25} C_{26} H_{26C}	109.5
$H_{13}A - C_{13} - H_{13}B$	108.7	H_{26}^{-}	109.5
C17 - C14 - C13	116.9 (3)	$H_{26B} = C_{26} = H_{26C}$	109.5
$C_{17} = C_{14} = C_{15}$	116.5(3)	11200 020 11200	109.5
017-014-015	110.0 (2)		
O1—C1—C2—C3	3.3 (5)	C2-C1-C12-C10	-5.6 (3)
C12—C1—C2—C3	-178.0 (3)	O1—C1—C12—C15	-66.0 (3)
O1—C1—C2—C11	-174.2 (3)	C2-C1-C12-C15	115.2 (2)
C12—C1—C2—C11	4.6 (3)	C12—N1—C13—C14	21.8 (3)
C11—C2—C3—C4	-1.6 (4)	C16—N1—C13—C14	153.8 (2)
C1—C2—C3—C4	-178.8 (3)	N1—C13—C14—C17	137.8 (2)
C2—C3—C4—C5	1.7 (5)	N1—C13—C14—C15	8.5 (3)
C3—C4—C5—C6	0.5 (5)	C17—C14—C15—C23	-44.9 (3)
C4—C5—C6—C11	-2.8 (4)	C13—C14—C15—C23	84.6 (2)
C4—C5—C6—C7	176.0 (3)	C17—C14—C15—C24	78.2 (3)
C5—C6—C7—C8	-178.0 (3)	C13—C14—C15—C24	-152.3(2)
C11—C6—C7—C8	0.8 (4)	C17—C14—C15—C12	-161.9(2)
C6—C7—C8—C9	-2.1(5)	C13—C14—C15—C12	-32.4(2)
C7—C8—C9—C10	0.3 (4)	N1—C12—C15—C23	-72.4 (2)
C8—C9—C10—C11	2.7 (4)	C10—C12—C15—C23	161.5 (2)
C8-C9-C10-C12	178.2 (3)	C1—C12—C15—C23	47.1 (3)
C3-C2-C11-C10	-179.3(3)	N1—C12—C15—C24	167.3 (2)
C1—C2—C11—C10	-1.5 (3)	C10—C12—C15—C24	41.2 (3)
C3—C2—C11—C6	-0.8(4)	C1-C12-C15-C24	-73.2(3)
C1—C2—C11—C6	177.0 (2)	N1-C12-C15-C14	45.0 (2)
C9—C10—C11—C2	174.3 (3)	C10-C12-C15-C14	-81.1(2)
C12—C10—C11—C2	-2.3 (3)	C1-C12-C15-C14	164.5(2)
C9—C10—C11—C6	-4.2 (4)	C13—C14—C17—C22	138.3 (3)

C12—C10—C11—C6 C5—C6—C11—C2 C7—C6—C11—C2 C5—C6—C11—C10 C7—C6—C11—C10 C16—N1—C12—C10 C16—N1—C12—C10 C16—N1—C12—C15 C13—N1—C12—C15 C16—N1—C12—C1	179.2 (2) $3.0 (4)$ $-176.0 (3)$ $-178.7 (3)$ $2.4 (4)$ $-49.9 (3)$ $80.4 (3)$ $-172.1 (2)$ $-41.8 (2)$ $69.2 (3)$	C15—C14—C17—C22 C13—C14—C17—C18 C15—C14—C17—C18 C22—C17—C18—C19 C14—C17—C18—C19 C17—C18—C19—C20 C18—C19—C20—C21 C19—C20—C21—C22 C18—C17—C22—C21 C14—C17—C22—C21	$\begin{array}{c} -99.1 (3) \\ -40.0 (4) \\ 82.5 (4) \\ -0.6 (5) \\ 177.7 (3) \\ 0.2 (6) \\ 0.8 (7) \\ -1.4 (7) \\ 0.0 (5) \\ -178.4 (3) \end{array}$
$\begin{array}{c} C13 & -111 & -C12 & -C1 \\ C9 & -C10 & -C12 & -N1 \\ C11 & -C10 & -C12 & -N1 \\ C9 & -C10 & -C12 & -C15 \\ C11 & -C10 & -C12 & -C15 \\ C9 & -C10 & -C12 & -C1 \\ C11 & -C10 & -C12 & -C1 \\ O1 & -C1 & -C12 & -N1 \\ C2 & -C1 & -C12 & -N1 \\ O1 & -C1 & -C12 & -C10 \end{array}$	$\begin{array}{c} -46.5 (4) \\ 129.4 (2) \\ 68.7 (4) \\ -115.4 (2) \\ -171.1 (3) \\ 4.7 (3) \\ 45.1 (4) \\ -133.6 (2) \\ 173.2 (3) \end{array}$	$\begin{array}{c} C25 & -C21 & -C22 & -C17\\ C25 & -O3 & -C24 & -O2\\ C25 & -O3 & -C24 & -C15\\ C23 & -C15 & -C24 & -O2\\ C14 & -C15 & -C24 & -O2\\ C12 & -C15 & -C24 & -O3\\ C14 & -C15 & -C24 & -O3\\ C12 & -C15 & -C24 & -O3\\ C24 & -O3 & -C25 & -C26\\ \end{array}$	1.0 (0) 2.2 (5) -174.6 (3) 131.9 (3) 7.5 (4) -106.6 (3) -51.2 (3) -175.7 (2) 70.2 (3) 171.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
C26—H26 <i>B</i> ···O1 ⁱ	0.96	2.53	3.276 (5)	135

Symmetry code: (i) x-1, y, z.