

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

μ -Oxido-bis[(chloroacetato- κ O)triphenylantimony(V)]

Li Quan, Handong Yin* and Dagi Wang

School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China Correspondence e-mail: handongyin@163.com

Received 6 November 2007; accepted 8 January 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.011 Å; R factor = 0.040; wR factor = 0.110; data-to-parameter ratio = 14.8.

The Sb atom in the centrosymmetric title complex, $[Sb_2(C_6H_5)_6(C_2H_2ClO_2)_2O]$, has a distorted trigonal-bipyramidal geometry. The bridging oxide O atom occupies one of the axial sites, while the O atom of the chloroacetate ligand occupies the other.

Related literature

For related literature, see: Gibbons & Sowerby (1998).

Experimental

Crystal data

 $[Sb_2(C_6H_5)_6(C_2H_2ClO_2)_2O]$ $M_r = 909.07$ Monoclinic, $P2_1/c$ a = 10.4950 (12) Åb = 19.416 (2) Å c = 9.2584 (10) Å $\beta = 95.383 \ (2)^{\circ}$

V = 1878.3 (4) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 1.62 \text{ mm}^{-1}$ T = 298 (2) K $0.41 \times 0.18 \times 0.11 \text{ mm}$ $R_{\rm int} = 0.035$

8838 measured reflections

3305 independent reflections

2465 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.556, T_{\max} = 0.842$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	6 restraints
$wR(F^2) = 0.109$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 1.14 \text{ e} \text{ Å}^{-3}$
3305 reflections	$\Delta \rho_{\rm min} = -1.07 \text{ e } \text{\AA}^{-3}$
223 parameters	

Table 1

Selected geometric parameters (Å, °).

()
-O3-Sb1 ⁱ 180

Table 2

D

С

Hydrogen-bond geometry (Å, °).

−Н…А	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$17 - H17 \cdots Cl1^{ii}$	0.93	2.93	3.592 (8)	130
mmetry code: (ii) r –	1 v z			

Syr etry code: (ii) x 1, y, z

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 1997); software used to prepare material for publication: SHELXTL.

We acknowledge the National Natural Science Fund of China (grant No. 20771053) and the Natural Science Fund of Shandong Province (2005ZX09) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2199).

References

Gibbons, M. N. & Sowerby, D. B. (1998). J. Organomet. Chem. 555, 271-278. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2008). E64, m349 [doi:10.1107/S1600536808000676]

μ -Oxido-bis[(chloroacetato- κ O)triphenylantimony(V)]

Li Quan, Handong Yin and Daqi Wang

S1. Comment

Organoantimony esters of carboxylic acids are widely used as biocides, as fungicides and, in industry, as homogeneous catalysts. We have therefore synthesized the title compound, (I), and present its crystal structure here. The molecular structure of (I) is shown in Fig. 1. For a related structure see bis(triphenylantimony) trifluoroacetate $[Sb(C_6H_5)_3(O_2C_2F_3)]_2O$ (*M*. N. Gibbons & Sowerby, 1998).

The title compound comprises two (chloroacetyl)tris triphenylantimony units bridged by an oxygen dianion. Centrosymmetrically molecules are linked by short intermolecular C17—H17···Cl1 contacts [symmetry codes: -1 + x, +y, +z], and one-dimensional polymeric chains run parallel to the *a* axis, (Fig. 2.). The O—Sb—O angle is 176.64 (11)°. The Sb—O distances vary with the role oxygen atoms play in the structure, the terminal Sb1—O1 [2.197 (4) Å] bond being longer than bridging Sb1—O3 [1.9503 (4) Å] bond. (Table 1, Table 2,).

S2. Experimental

Chloroactic acid (0.02 g, 0.2 mmol) and sodium methoxide (0.4 ml, 0.2 mmol) was added to a stirred solution of oxygen bridged bis(chloro) tris triphenylantimony) (0.16 g, 0.2 mmol) and toluene (20 ml). The reaction mixture was stirred at room temperature for 24 h. Crystals suitable for X-ray analysis were obtained by slow evaporation of a petroleum/dichloromethane (1:2 ν/ν) solution over a period of a week (yield 85%. m.p. 470k). Anal. Calcd (%) for C₄₀H₃₄O₅Sb₂Cl₂(Mr = 909.08): C, 52.80; H, 3.72; O, 8.76; Cl, 7.76; Sb, 26.74. Found (%): C, 52.85; H, 3.77; O, 8.80; Cl, 7.80; Sb, 26.79

S3. Refinement

The H atoms bound to aryl groups were idealized with a C—H = 0.93 Å. All other H atoms were also placed in idealized positions, with C—H = 0.97 Å, and treated as riding on their parent atoms, with $U_{iso}(H) = 1.2 U_{eq}(C, O)$ or 1.5 $U_{eq}(C)$ for the methyl group.

Figure 1

The molecular structure, with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Figure 2

Crystal packing, showing a extensity polymer chain, linked by C17—H17…Cl1 hydrogen bonds (dashed lines).

μ -Oxido-bis[(chloroacetato- κ O)triphenylantimony(V)]

F(000) = 900
$D_{\rm x} = 1.607 {\rm ~Mg} {\rm ~m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 3131 reflections
$\theta = 2.1 - 24.7^{\circ}$
$\mu = 1.62 \text{ mm}^{-1}$
T = 298 K
Block, colourless
$0.41 \times 0.18 \times 0.11 \text{ mm}$

Data collection

Bruker SMART diffractometer	8838 measured reflections 3305 independent reflections
Radiation source: fine-focus sealed tube	2465 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.035$
φ and ω scans	$\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -7 \rightarrow 12$
(SADABS; Sheldrick, 1996)	$k = -23 \rightarrow 21$
$T_{\min} = 0.556, \ T_{\max} = 0.842$	$l = -10 \rightarrow 11$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from
$wR(F^2) = 0.109$	neighbouring sites
S = 1.00	H-atom parameters constrained
3305 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0489P)^2 + 4.2337P]$
223 parameters	where $P = (F_o^2 + 2F_c^2)/3$
6 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.14 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -1.07 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$
Sb1	0.14913 (3)	0.054058 (18)	0.45933 (4)	0.04187 (15)
C11	0.5107 (3)	0.17116 (18)	0.2357 (4)	0.1409 (11)
01	0.3199 (4)	0.1102 (2)	0.4046 (5)	0.0581 (11)
O2	0.2708 (6)	0.2089 (3)	0.5109 (6)	0.0856 (16)
O3	0.0000	0.0000	0.5000	0.0530 (15)
C1	0.3341 (7)	0.1745 (4)	0.4368 (8)	0.0679 (19)
C2	0.4414 (10)	0.2112 (5)	0.3674 (12)	0.127 (4)
H2A	0.5079	0.2221	0.4440	0.152*
H2B	0.4076	0.2546	0.3286	0.152*
C3	0.2216 (5)	0.0580 (3)	0.6778 (6)	0.0455 (13)
C4	0.2782 (7)	-0.0004 (4)	0.7389 (8)	0.0693 (19)
H4	0.2832	-0.0400	0.6834	0.083*
C5	0.3272 (8)	-0.0002 (4)	0.8811 (9)	0.082 (2)
Н5	0.3673	-0.0394	0.9211	0.099*
C6	0.3175 (8)	0.0574 (5)	0.9647 (8)	0.081 (2)
H6	0.3492	0.0569	1.0619	0.098*
C7	0.2617 (8)	0.1152 (4)	0.9058 (8)	0.076 (2)
H7	0.2561	0.1544	0.9625	0.092*
C8	0.2134 (7)	0.1160 (3)	0.7628 (7)	0.0642 (18)
H8	0.1751	0.1558	0.7230	0.077*
C9	0.2230 (6)	-0.0235 (3)	0.3337 (6)	0.0448 (14)
C10	0.3500 (7)	-0.0424 (4)	0.3467 (8)	0.0679 (19)
H10	0.4074	-0.0195	0.4127	0.082*
C11	0.3925 (9)	-0.0937 (4)	0.2649 (11)	0.093 (3)
H11	0.4781	-0.1067	0.2769	0.112*

C12	0.3100 (10)	-0.1264 (4)	0.1649 (10)	0.088 (3)	
H12	0.3399	-0.1609	0.1071	0.106*	
C13	0.1843 (9)	-0.1089 (4)	0.1497 (9)	0.088 (3)	
H13	0.1280	-0.1316	0.0821	0.105*	
C14	0.1402 (7)	-0.0574 (3)	0.2346 (7)	0.0609 (17)	
H14	0.0539	-0.0456	0.2247	0.073*	
C15	0.0381 (5)	0.1302 (3)	0.3458 (6)	0.0446 (13)	
C16	-0.0780 (6)	0.1476 (3)	0.3891 (7)	0.0554 (16)	
H16	-0.1081	0.1257	0.4686	0.066*	
C17	-0.1512 (7)	0.1976 (3)	0.3149 (9)	0.070 (2)	
H17	-0.2291	0.2106	0.3467	0.084*	
C18	-0.1096 (8)	0.2278 (4)	0.1957 (9)	0.074 (2)	
H18	-0.1608	0.2602	0.1441	0.088*	
C19	0.0063 (8)	0.2112 (4)	0.1511 (8)	0.074 (2)	
H19	0.0357	0.2328	0.0710	0.088*	
C20	0.0798 (7)	0.1616 (3)	0.2265 (7)	0.0619 (17)	
H20	0.1586	0.1494	0.1959	0.074*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sb1	0.0420 (2)	0.0387 (2)	0.0444 (2)	-0.00671 (18)	0.00144 (15)	-0.00121 (18)
Cl1	0.1011 (19)	0.184 (3)	0.144 (3)	-0.051 (2)	0.0457 (18)	-0.015 (2)
01	0.059 (3)	0.048 (2)	0.068 (3)	-0.019 (2)	0.011 (2)	-0.002(2)
O2	0.099 (4)	0.067 (3)	0.094 (4)	-0.022 (3)	0.029 (3)	-0.015 (3)
O3	0.041 (3)	0.052 (3)	0.066 (4)	-0.016 (3)	0.006 (3)	0.003 (3)
C1	0.062 (4)	0.068 (5)	0.075 (5)	-0.025 (4)	0.014 (4)	-0.007(4)
C2	0.125 (7)	0.114 (6)	0.152 (8)	-0.045 (6)	0.065 (6)	-0.035 (6)
C3	0.047 (3)	0.046 (3)	0.043 (3)	-0.013 (3)	0.003 (3)	-0.001 (3)
C4	0.085 (5)	0.051 (4)	0.069 (5)	-0.003 (4)	-0.011 (4)	0.003 (3)
C5	0.095 (6)	0.078 (5)	0.070 (5)	0.004 (5)	-0.018 (4)	0.023 (4)
C6	0.089 (6)	0.104 (7)	0.049 (5)	-0.023 (5)	-0.008(4)	0.007 (5)
C7	0.098 (6)	0.082 (5)	0.049 (5)	-0.007(5)	0.008 (4)	-0.015 (4)
C8	0.079 (5)	0.056 (4)	0.058 (5)	0.005 (4)	0.010 (4)	-0.003 (3)
C9	0.051 (4)	0.041 (3)	0.044 (3)	-0.009(3)	0.011 (3)	-0.003 (3)
C10	0.056 (4)	0.070 (5)	0.076 (5)	0.000 (4)	0.001 (4)	-0.010 (4)
C11	0.082 (6)	0.075 (6)	0.128 (8)	0.024 (5)	0.032 (6)	-0.006 (5)
C12	0.115 (7)	0.055 (4)	0.102 (7)	0.003 (5)	0.047 (6)	-0.018 (4)
C13	0.102 (7)	0.073 (5)	0.090 (6)	-0.029 (5)	0.020 (5)	-0.037 (5)
C14	0.059 (4)	0.060 (4)	0.064 (4)	-0.010 (3)	0.008 (3)	-0.010 (3)
C15	0.049 (3)	0.039 (3)	0.046 (4)	-0.003 (3)	-0.002(3)	-0.002(3)
C16	0.061 (4)	0.043 (3)	0.061 (4)	-0.006(3)	0.000 (3)	0.003 (3)
C17	0.065 (5)	0.059 (4)	0.083 (6)	0.013 (4)	-0.007(4)	-0.003 (4)
C18	0.089 (6)	0.055 (4)	0.072 (5)	0.011 (4)	-0.021 (4)	0.007 (4)
C19	0.095 (6)	0.069 (5)	0.055 (5)	-0.002 (4)	-0.002 (4)	0.014 (4)
C20	0.080 (5)	0.063 (4)	0.044 (4)	0.000 (4)	0.008 (3)	0.010 (3)

Geometric parameters (Å, °)

Sb1—O3	1.9503 (4)	C9—C14	1.371 (9)
Sb1—C3	2.095 (6)	C9—C10	1.377 (9)
Sb1—C9	2.095 (6)	C10—C11	1.353 (10)
Sb1—C15	2.101 (6)	C10—H10	0.9300
Sb1—O1	2.197 (4)	C11—C12	1.364 (12)
Cl1—C2	1.670 (9)	C11—H11	0.9300
01—C1	1.289 (8)	C12—C13	1.357 (11)
O2—C1	1.201 (8)	C12—H12	0.9300
O3—Sb1 ⁱ	1.9503 (4)	C13—C14	1.379 (9)
C1—C2	1.525 (10)	C13—H13	0.9300
C2—H2A	0.9700	C14—H14	0.9300
C2—H2B	0.9700	C15—C16	1.361 (8)
C3—C4	1.377 (8)	C15—C20	1.368 (8)
С3—С8	1.382 (8)	C16—C17	1.381 (9)
C4—C5	1.367 (10)	C16—H16	0.9300
C4—H4	0.9300	C17—C18	1.358 (10)
С5—С6	1.370 (11)	C17—H17	0.9300
С5—Н5	0.9300	C18—C19	1.360 (10)
C6—C7	1.357 (10)	C18—H18	0.9300
С6—Н6	0.9300	C19—C20	1.382 (9)
С7—С8	1.372 (10)	C19—H19	0.9300
С7—Н7	0.9300	C20—H20	0.9300
С8—Н8	0.9300		
O3—Sb1—C3	93.36 (15)	С3—С8—Н8	119.9
O3—Sb1—C9	93.77 (15)	C14—C9—C10	118.6 (6)
C3—Sb1—C9	116.3 (2)	C14—C9—Sb1	118.2 (5)
O3—Sb1—C15	93.31 (15)	C10—C9—Sb1	123.3 (5)
C3—Sb1—C15	126.3 (2)	C11—C10—C9	121.0 (7)
C9—Sb1—C15	116.4 (2)	C11—C10—H10	119.5
O3—Sb1—O1	176.64 (11)	C9—C10—H10	119.5
C3—Sb1—O1	88.53 (19)	C10-C11-C12	120.1 (8)
C9—Sb1—O1	82.89 (19)	C10-C11-H11	120.0
C15—Sb1—O1	87.80 (19)	C12-C11-H11	120.0
C1—O1—Sb1	120.4 (4)	C13—C12—C11	120.2 (7)
Sb1—O3—Sb1 ⁱ	180.00 (2)	C13—C12—H12	119.9
02—C1—O1	127.7 (6)	C11—C12—H12	119.9
O2—C1—C2	116.8 (7)	C12—C13—C14	119.8 (8)
01—C1—C2	115.4 (7)	C12—C13—H13	120.1
C1—C2—Cl1	118.7 (7)	C14—C13—H13	120.1
C1—C2—H2A	107.6	C9—C14—C13	120.3 (7)
Cl1—C2—H2A	107.6	C9—C14—H14	119.9
C1—C2—H2B	107.6	C13—C14—H14	119.9
Cl1—C2—H2B	107.6	C16—C15—C20	119.3 (6)
H2A—C2—H2B	107.1	C16—C15—Sb1	119.8 (4)
C4—C3—C8	119.0 (6)	C20—C15—Sb1	120.9 (5)

			120.0 (6)
C4—C3—Sb1	118.1 (5)	C15-C16-C17	120.0 (6)
C8—C3—Sb1	122.9 (5)	C15—C16—H16	120.0
C5—C4—C3	120.2 (7)	C17—C16—H16	120.0
C5—C4—H4	119.9	C18—C17—C16	120.1 (7)
C3—C4—H4	119.9	C18—C17—H17	119.9
C4—C5—C6	120.3 (7)	С16—С17—Н17	119.9
С4—С5—Н5	119.8	C17—C18—C19	120.6 (7)
С6—С5—Н5	119.8	C17—C18—H18	119.7
C7—C6—C5	120.1 (7)	C19—C18—H18	119.7
С7—С6—Н6	120.0	C18—C19—C20	119.0 (7)
С5—С6—Н6	120.0	C18—C19—H19	120.5
C6—C7—C8	120.2 (7)	С20—С19—Н19	120.5
С6—С7—Н7	119.9	C15—C20—C19	120.9 (7)
С8—С7—Н7	119.9	С15—С20—Н20	119.6
C7—C8—C3	120.2 (7)	С19—С20—Н20	119.6
С7—С8—Н8	119.9		

Symmetry code: (i) -x, -y, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
C17—H17····Cl1 ⁱⁱ	0.93	2.93	3.592 (8)	130

Symmetry code: (ii) x-1, y, z.