Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

l-Glutamic acid hydrochloride at 153 K

Yi Jian Zhang, ${ }^{\text {a }}$ Zhan Shu, ${ }^{\text {b }}$ Wei Xu, ${ }^{\text {b }}$ Gang Chen ${ }^{\text {b }}$ and Zu-Guang Li ${ }^{\text {© }}$
${ }^{\text {a }}$ College of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, People's Republic of China, ${ }^{\text {b }}$ College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and ${ }^{\mathrm{c}}$ College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China Correspondence e-mail: zgdlzg@sina.com

Received 16 November 2007; accepted 27 December 2007
Key indicators: single-crystal X-ray study; $T=153 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.020 ; w R$ factor $=0.056$; data-to-parameter ratio $=17.8$.

The title compound [systematic name: (S)-1,3-dicarboxypropanaminium chloride], $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}_{4}{ }^{+} \cdot \mathrm{Cl}^{-}$, has been investigated previously by Dawson [Acta Cryst. (1953). 6, 81-83], with $R=0.106$ and without the location of H atoms, and then by Sequeira, Rajagopal \& Chidambaram [Acta Cryst. (1972). B28, 2514-2519] using neutron diffraction with $R=0.043$. The present determination at 153 K has $R=0.017$ and all the H atoms are located. There are obvious differences in some C C bond lengths between the present and previous studies. In the present structure, l-glutamic acid is protonated and is linked to the Cl^{-}anion by an $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond. The crystal structure is established by a three-dimensional network of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds.

Related literature

For related literature, see: Delfino et al. (1978); Kirfel \& Wallrafen (1985). For previous structure determinations, see: Dawson (1953) [Cambridge Structural Database (CSD; Version 5.26; Allen, 2002) refcode LGLUTA01]; Sequeira et al. (1972) (refcode LGLUTA).

Experimental

Crystal data
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}_{4}{ }^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=183.59$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$V=786.73(4) \AA^{3}$
$Z=4$
$a=5.1016$ (1) A
$b=11.6386$ (4) \AA
Mo $K \alpha$ radiation
$\mu=0.45 \mathrm{~mm}^{-1}$
$c=13.2500$ (3) A
$T=153$ (2) K
$0.49 \times 0.48 \times 0.35 \mathrm{~mm}$

Data collection

Siemens P4 diffractometer Absorption correction: ψ scan (SHELXTL; Bruker, 1998)
$T_{\text {min }}=0.808, T_{\text {max }}=0.858$
7742 measured reflections 1798 independent reflections 1775 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.016$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.055$
$S=1.15$
1798 reflections
101 parameters
H -atom parameters constrained
$\Delta \rho_{\max }=0.29 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.25 \mathrm{e}^{-3}$
Absolute structure: Flack (1983), 725 Friedel pairs
Flack parameter: 0.02 (4)

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 1$	0.91	2.29	$3.1406(10)$	157
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{Cl}^{\mathrm{i}}$	0.91	2.34	$3.1890(10)$	155
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{O}^{\mathrm{iii}}$	0.91	2.04	$2.8700(13)$	151
$\mathrm{O}_{1}-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{iii}}$	0.84	1.79	$2.6208(13)$	170
$\mathrm{O}^{\mathrm{iv}}-\mathrm{H} 4 \cdots \mathrm{Cl}^{\text {iv }}$	0.84	2.21	$3.0389(9)$	168

Symmetry codes: (i) $x-1, y, z$; (ii) $x+\frac{1}{2},-y+\frac{3}{2},-z$; (iii) $-x+\frac{1}{2},-y+1, z-\frac{1}{2}$; (iv)
$x-\frac{1}{2},-y+\frac{3}{2},-z+1$.
Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2055).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (1998). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Dawson, B. (1953). Acta Cryst. 6, 81-87.
Delfino, M., Loiacono, G. M. \& Nicolosi, J. A. (1978). J. Solid State Chem. 23, 289-296.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Kirfel, A. \& Wallrafen, F. (1985). Z. Kristallogr. 171, 121-126.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, The Woodlands, Texas, USA.
Sequeira, A., Rajagopal, H. \& Chidambaram, R. (1972). Acta Cryst. B28, 2514-2519.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, o446 [doi:10.1107/S1600536807068560]

l-Glutamic acid hydrochloride at 153 K

Yi Jian Zhang, Zhan Shu, Wei Xu, Gang Chen and Zu-Guang Li

S1. Comment

The crystal structure of the title compound has been investigated by Dawson (1953) using the multiple-film technique for $h 0 l$ and $0 k l$ intensity data collection, then by Sequeira et al. (1972) using neutron diffraction. Besides, the L-glutamic acid (LGA) halogen acid salts of LGA hydroiodide (Kirfel \& Wallrafen, 1985), LGA HBr and LGA HCl HBr (Delfino et al., 1978) have been reported before. Recently we have made a structure determination of the title compound at 153 K and make comparisons with Dawson's and Sequeira's studies, hereby.
The unit-cell parameters and space group of the title compound (see crystal data) and the respective values in Dawson's structure $[\mathrm{a}=5.16(1), \mathrm{b}=11.80(2), \mathrm{c}=13.30(2) \AA$] and Sequeira's structure $[\mathrm{a}=5.151(6), \mathrm{b}=11.789(19), \mathrm{c}=$ $13.347(20) \AA]$ demonstrate the high quality of modern X-ray diffractometer and software. The final R value of the present case [0.0171] is much smaller than that of Dawson's [0.106] and Sequeira's [0.043]. The hydrogen atoms were not determined in Dawson's study, due to the incompleteness of the estimated intensity data.

The C4—C5 [1.5066 (15) \AA] bond length intermediates Dawson's [1.54 \AA] and Sequeira's [1.475 (7) \AA] (Table 1). The $\mathrm{C} 2-\mathrm{C} 3$ distance $[1.5312(15) \AA$] differs from that of Dawson's $[1.55 \AA$], the $\mathrm{C} 1 — \mathrm{C} 2[1.5156(16) \AA]$ deviates from that of Sequeira's $[1.535(7) \AA$]. The $\mathrm{C}-\mathrm{O}, \mathrm{C}-\mathrm{N}$ and the other $\mathrm{C}-\mathrm{C}$ bond lengths of these three cases have little distinctions respectively. Between the present and Dawson's study, the major distinctions of bond angles lie in $\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$ and C 3 - $\mathrm{C} 2-\mathrm{N} 1$ [108.02 (9) and $111.94(9)^{\circ}$ for present, 111 and 110° for Dawson's case, respectively]. The torsion angles of the main skeleton are finely coherent with those in Sequeira's study, respectively (Table 1). But, some torsion angles related to H atoms that are involed in hydrogen bonds are deviated greatly from those in Sequeira's study, respectively [H1C—N1—C2-C1 (-60.0, $\left.-48.0^{\circ}\right), \mathrm{H} 1 \mathrm{~B}-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1\left(60.0,73.2^{\circ}\right)$ and H1A-N1—C2-C1(-180.0, $\left.-165.1^{\circ}\right)$; H1 $-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2\left(179.8,168.9^{\circ}\right)$, the former and latter values for the present (Table 1) and Sequeira's study, repectively]. In the title compound, L-glutamic acid is protonated and is linked with the Cl^{-}anion by a $\mathrm{O}-\mathrm{H}=\mathrm{Cl}$ hydrogen bond (Fig. 1, Table 2). The crystal structure is established by a three-dimensional network of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H}^{\cdots} \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ classic hydrogen bonds (Fig. 2, Table 2).

S2. Experimental

L-Glutamic acid and hydrochloric acid in equal molar ratio were mixed together with enough water, and heated to a temperatur where clear solution was obtained. The solution were layed in a ventilative place. Colorless single crystals of the title compound were obtained from the solution by slow volatilization of water at room temperature for 7 days.

S3. Refinement

All hydrogen atoms were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.99 (methylene), 1.00 (methine), $0.91 \AA(\mathrm{~N}-\mathrm{H}), 0.84 \AA(\mathrm{O}-\mathrm{H})$, with $U_{\text {iso }}(\mathrm{H})$ values $1.2-1.5$ times $U_{\text {eq }}$ of the parent atoms.

Figure 1
A view of the title compound showing with 40% probability displacement ellipsoids. Hydrogen bonds are indicated by thin lines.

Figure 2
The packing diagram of the title compound viewed down along the a axis. Hydrogen bonds are indicated by thin lines.

(S)-1,3-dicarboxypropanaminium chloride

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}_{4}{ }^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=183.59$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2ac 2ab
$a=5.1016$ (1) \AA
$b=11.6386$ (4) \AA
$c=13.2500(3) \AA$
$V=786.73$ (4) \AA^{3}
$Z=4$

Data collection

Siemens P4
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: ψ scan
(SHELXTL; Bruker, 1998)
$T_{\text {min }}=0.809, T_{\text {max }}=0.858$
$F(000)=384$
$D_{\mathrm{x}}=1.550 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 7746 reflections
$\theta=3.1-27.5^{\circ}$
$\mu=0.45 \mathrm{~mm}^{-1}$
$T=153 \mathrm{~K}$
Block, colorless
$0.49 \times 0.48 \times 0.35 \mathrm{~mm}$

772 measured reflections
1798 independent reflections
1775 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=3.1^{\circ}$
$h=-6 \rightarrow 6$
$k=-15 \rightarrow 15$
$l=-15 \rightarrow 16$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.055$
$S=1.15$
1798 reflections
101 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0313 P)^{2}+0.1681 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.29 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.25$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 1997), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.058 (4)
Absolute structure: Flack (1983), 725 Friedel pairs
Absolute structure parameter: 0.02 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors $(\mathrm{gt}) \mathrm{etc}$. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\mathrm{eq}}$
C11	$1.05471(5)$	$0.93130(2)$	$0.26203(2)$	$0.01395(9)$
O1	$0.4387(2)$	$0.53632(7)$	$0.07337(7)$	$0.0205(2)$
H1	0.3341	0.5102	0.0301	0.031^{*}
O2	$0.20701(18)$	$0.69846(7)$	$0.05162(7)$	$0.0161(2)$
O3	$0.4214(2)$	$0.55251(8)$	$0.45585(6)$	$0.0204(2)$
O4	$0.70041(18)$	$0.67059(8)$	$0.53439(6)$	$0.0167(2)$
H4	0.6454	0.6361	0.5859	0.025^{*}
N1	$0.5606(2)$	$0.82410(8)$	$0.15658(7)$	$0.0120(2)$
H1A	0.6701	0.8569	0.2025	0.018^{*}
H1B	0.3939	0.8490	0.1676	0.018^{*}
H1C	0.6117	0.8442	0.0932	0.018^{*}
C1	$0.3864(2)$	$0.64491(10)$	$0.08985(9)$	$0.0116(2)$
C2	$0.5705(2)$	$0.69659(9)$	$0.16728(8)$	$0.0102(2)$
H2	0.7532	0.6689	0.1547	0.012^{*}
C3	$0.4798(2)$	$0.65720(10)$	$0.27187(8)$	$0.0115(2)$
H3A	0.3074	0.6926	0.2863	0.014^{*}
H3B	0.4550	0.5728	0.2705	0.014^{*}
C4	$0.6668(2)$	$0.68690(10)$	$0.35714(8)$	$0.0124(2)$
H4A	0.8458	0.6610	0.3395	0.015^{*}
H4B	0.6712	0.7713	0.3666	0.015^{*}
C5	$0.5815(3)$	$0.63012(9)$	$0.45392(8)$	$0.0119(2)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.01329(14)$	$0.01559(13)$	$0.01296(14)$	$-0.00183(11)$	$-0.00097(10)$	$0.00137(10)$
O1	$0.0232(4)$	$0.0145(4)$	$0.0238(4)$	$0.0019(4)$	$-0.0111(4)$	$-0.0082(3)$
O2	$0.0166(4)$	$0.0164(4)$	$0.0153(4)$	$0.0004(3)$	$-0.0052(3)$	$0.0000(3)$
O3	$0.0284(5)$	$0.0194(5)$	$0.0134(4)$	$-0.0119(4)$	$0.0021(4)$	$0.0018(3)$
O4	$0.0214(5)$	$0.0196(4)$	$0.0089(4)$	$-0.0053(4)$	$-0.0014(4)$	$0.0029(3)$
N1	$0.0134(4)$	$0.0119(4)$	$0.0105(4)$	$-0.0028(4)$	$-0.0012(4)$	$0.0014(3)$
C1	$0.0119(6)$	$0.0148(5)$	$0.0081(5)$	$-0.0022(4)$	$0.0004(4)$	$0.0006(4)$
C2	$0.0107(5)$	$0.0100(5)$	$0.0101(5)$	$-0.0009(5)$	$-0.0006(5)$	$-0.0006(4)$
C3	$0.0121(5)$	$0.0128(5)$	$0.0096(5)$	$-0.0025(4)$	$0.0006(4)$	$0.0016(4)$
C4	$0.0138(5)$	$0.0146(5)$	$0.0089(5)$	$-0.0039(5)$	$0.0011(4)$	$0.0014(4)$
C5	$0.0139(6)$	$0.0114(5)$	$0.0105(5)$	$0.0002(4)$	$0.0007(5)$	$0.0005(4)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

O1-C1	1.3101 (15)	C1-C2	1.5156 (16)
$\mathrm{O} 1-\mathrm{H} 1$	0.8400	C2-C3	1.5312 (15)
O2- C_{1}	1.2176 (15)	C2-H2	1.0000
O3-C5	1.2183 (15)	C3-C4	1.5184 (16)
O4-C5	1.3139 (14)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9900
O4-H4	0.8400	C3-H3B	0.9900
$\mathrm{N} 1-\mathrm{C} 2$	1.4916 (14)	$\mathrm{C} 4-\mathrm{C} 5$	1.5066 (15)
N1-H1A	0.9100	C4-H4A	0.9900
N1-H1B	0.9100	C4-H4B	0.9900
N1-H1C	0.9100		
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{H} 1$	109.5	C3-C2-H2	109.7
C5-O4-H4	109.5	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	114.55 (9)
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	109.5	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	108.6
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	108.6
H1A-N1-H1B	109.5	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	108.6
C2-N1-H1C	109.5	C2-C3-H3B	108.6
H1A-N1-H1C	109.5	H3A-C3-H3B	107.6
H1B-N1-H1C	109.5	C5-C4-C3	110.63 (10)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	125.29 (11)	C5-C4-H4A	109.5
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	122.99 (10)	C3-C4-H4A	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	111.67 (10)	C5-C4-H4B	109.5
N1-C2-C1	108.02 (9)	C3-C4-H4B	109.5
N1-C2-C3	111.94 (9)	H4A-C4-H4B	108.1
C1-C2-C3	107.85 (9)	$\mathrm{O} 3-\mathrm{C} 5-\mathrm{O} 4$	123.93 (10)
N1-C2-H2	109.7	O3-C5-C4	122.46 (10)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	109.7	O4-C5-C4	113.59 (10)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	-21.37 (15)	C3-C4-C5-O3	14.84 (16)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	161.21 (10)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 4$	-166.61 (10)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	99.80 (13)	$\mathrm{H} 1 \mathrm{C}-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	-60.0

$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-77.62(12)$	$\mathrm{H} 1 \mathrm{~B}-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	60.0
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-69.92(13)$	$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	-180.0
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$171.39(9)$	$\mathrm{H} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	179.8
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-171.71(9)$		

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	D - H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 A^{\cdots} \mathrm{Cl} 1$	0.91	2.29	3.1406 (10)	157
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.91	2.34	3.1890 (10)	155
$\mathrm{N} 1-\mathrm{H} 1 C \cdots \mathrm{O} 2^{\text {ii }}$	0.91	2.04	2.8700 (13)	151
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 3^{\text {iii }}$	0.84	1.79	2.6208 (13)	170
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{Cl1}{ }^{\text {iv }}$	0.84	2.21	3.0389 (9)	168

Symmetry codes: (i) $x-1, y, z$; (ii) $x+1 / 2,-y+3 / 2,-z$; (iii) $-x+1 / 2,-y+1, z-1 / 2$; (iv) $x-1 / 2,-y+3 / 2,-z+1$.

