

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diisopropylammonium 3,5,6-trichloropyridin-2-olate

Zhi Yan Hu,^a Hui Zheng^b and Dan Qian Xu^{b*}

^aSchool of Science, Zhejiang Forestry University, Linan, Hangzhou 311300, People's Republic of China, and ^bState Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China

Correspondence e-mail: zhenghui86@gmail.com

Received 7 January 2008; accepted 22 January 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.082; data-to-parameter ratio = 21.7.

In the title salt, $C_6H_{16}N^+ \cdot C_5HCl_3NO^-$, the cation links to the anion, which is almost planar, through an N-H···O hydrogen bond. Intermolecular hydrogen bonds link two cations and two anions into a centrosymmetric cluster. The atoms involved in the hydrogen bonding form a planar octagonal arrangement in the crystal structure.

Related literature

For related literature, see: Fox et al. (2002); Baughman (1989); Fakhraian et al. (2004); Zheng, Liu, Li et al. (2006); Zheng, Liu, Xu et al. (2006a,b).

Experimental

Crystal data

C₆H₁₆N⁺·C₅HCl₃NO⁻ $M_r = 299.63$ Monoclinic, $P2_1/c$ a = 8.087 (3) Å b = 11.066 (3) Å c = 16.389(5) Å $\beta = 94.540 \ (15)^{\circ}$

V = 1462.1 (8) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.61 \text{ mm}^{-1}$ T = 298 (1) K $0.39\times0.18\times0.16~\text{mm}$ 14096 measured reflections

 $R_{\rm int} = 0.027$

3357 independent reflections 2081 reflections with $F^2 > 2\sigma(F^2)$

Data collection

Rigaku R-AXIS RAPID

diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\rm min} = 0.794, \ T_{\rm max} = 0.907$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	155 parameters
$wR(F^2) = 0.081$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.29 \text{ e } \text{\AA}^{-3}$
3357 reflections	$\Delta \rho_{\min} = -0.31 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N2-H201···O1	0.96	1.94	2.8803 (15)	166
N2-H201···N1	0.96	2.53	3.2556 (16)	133
$N2-H202\cdots O1^{i}$	0.96	1.85	2.7424 (16)	152

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WK2076).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Baughman, R. G. (1989). J. Agric. Food Chem. 37, 1505-1507.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. L., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Fakhraian, H., Moghimi, A., Ghadiri, H., Dehnavi, M. A. & Sadeghi, M. (2004). Org. Process Res. Dev. 8, 680-684.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fox, A. M., Haller, W. T., Getsinger, K. D. & Petty, D. G. (2002). Pest Manag. Sci. 58, 677-686.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2004). CrystalStructure. Version 3.7.0. Rigaku/MSC, The Woodlands, Texas, USA.
- Zheng, H., Liu, Y. K., Li, Y. B., Xiao, L. & Xu, Z. Y. (2006). Chin. J. Pest. Sci. 9, 215-219
- Zheng, H., Liu, Y.-K., Xu, D.-Q. & Xu, Z.-Y. (2006a). Acta Cryst. E62, 01532-01533
- Zheng, H., Liu, Y.-K., Xu, D.-Q. & Xu, Z.-Y. (2006b). Acta Cryst. E62, 03101o3102.

supporting information

Acta Cryst. (2008). E64, o537 [doi:10.1107/S1600536808002389]

Diisopropylammonium 3,5,6-trichloropyridin-2-olate

Zhi Yan Hu, Hui Zheng and Dan Qian Xu

S1. Comment

Many compounds containing the 3,5,6-trichloro-pyridin-2-ol group have potential bioactivity (Fakhraian *et al.*, 2004; Baughman, 1989; Fox *et al.*, 2002). Similar compounds has been synthesized in our laboratory and some bioactive compounds have been found (Zheng *et al.*, 2006). In a continuation of our work into structure–activity relationships (Zheng, Liu, Xu & Xu, 2006*a*,b), we obtained a colorless crystalline compound, (I), by mixing sodium 3,5,6-trichloropyridin-2-olate with diisopropylammonium chloride, which was crystallized from diethyl ether. In the crystal structure, there are two independent structural units. The diisopropylammonium cation has an N2—C10 distance of 1.5009 (19)Å and a C10—N2—C7 angle of 117.47 (11)° (Table 1). The 3,5,6-trichloropyridin-2-olate anion has a C1—O1 distance of 1.2716 (18) Å, which is shorter than normal C—O distance for a smallar covalent radius with C*sp*². The interesting feature of the crystal structure is the intermolecular hydrogen bonds N2—H201…O1 and N2—H202…O1ⁱ, which link two cations and two anions into a centrosymmetric cluster and form a planar octagon (Table 2 and Fig. 1).

S2. Experimental

Sodium 3,5,6-trichloropyridin-2-olate (2.2 g, 10 mmol) was dissolved in the distilled water (30 ml) at 370 K, cooled to room temperature, and diisopropylammonium chloride, which was generated from diisopropylamine (1.8 ml, 12 mmol) with HCl (36%) (2 ml), was added dropwise with stirring for 0.5 h. The solution was extracted with diethyl ether 2×15 ml. and dried over anhydrous magnesium sulfate. Suitable crystals (m.p. 442–443 K) were obtained from a diethyl ether solution.

S3. Refinement

All H atoms were placed in calculated positions, with C—H distances in the range 0.93–0.98 Å and N—H distance of 0.96 Å. All H atoms were refined using a riding model, with $U_{iso}(H)=1.2U_{eq}$.

Figure 1

The centrosymmetric hydrogen-bonded (dashed lines) cluster in (I), showing the atom-numbering scheme and 40% probability displacement ellipsoids. [Symmetry code: (i) -x + 1, -y + 1, -z + 1.]

F(000) = 624.00

 $\theta = 3.1 - 27.5^{\circ}$

 $\mu = 0.61 \text{ mm}^{-1}$

Block, colorless

 $0.39 \times 0.18 \times 0.16 \text{ mm}$

T = 298 K

 $D_{\rm x} = 1.361 {\rm Mg m^{-3}}$

Melting point: 443 K

Mo *K* α radiation, $\lambda = 0.71075$ Å

Cell parameters from 10937 reflections

Diisopropylammonium 3,5,6-trichloropyridin-2-olate

Crystal data $C_6H_{16}N^+ \cdot C_5HCl_3NO^ M_r = 299.63$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.087 (3) Åb = 11.066 (3) Å *c* = 16.389 (5) Å $\beta = 94.540 \ (15)^{\circ}$ V = 1462.1 (8) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPID	3357 independent reflections
diffractometer	2081 reflections with $F^2 > 2\sigma(F^2)$
Detector resolution: 10.00 pixels mm ⁻¹	$R_{\rm int} = 0.027$
ω scans	$\theta_{\rm max} = 27.5^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 10$
(ABSCOR; Higashi, 1995)	$k = -14 \rightarrow 14$
$T_{\min} = 0.794, \ T_{\max} = 0.907$	$l = -21 \rightarrow 21$
14096 measured reflections	
Refinement	
Refinement on F^2	$wR(F^2) = 0.081$
$R[F^2 > 2\sigma(F^2)] = 0.035$	S = 1.05

3357 reflections 155 parameters H-atom parameters constrained $w = 1/[0.0002F_o^2 + \sigma(F_o^2)]/(4F_o^2)$ $(\Delta/\sigma)_{max} < 0.001$
$$\begin{split} &\Delta\rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3} \\ &\Delta\rho_{\rm min} = -0.31 \ {\rm e} \ {\rm \AA}^{-3} \\ & {\rm Extinction \ correction: \ Larson \ (1970), \ equation \ 22} \\ & {\rm Extinction \ coefficient: \ 143 \ (15)} \end{split}$$

Special details

Refinement. Refinement using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
Cl1	0.39967 (6)	0.13293 (4)	0.40436 (3)	0.08518 (18)	
Cl2	0.05102 (6)	-0.02373 (5)	0.65045 (3)	0.08680 (17)	
C13	0.06254 (8)	0.24633 (5)	0.71793 (4)	0.1034 (2)	
01	0.36820 (13)	0.36964 (9)	0.49068 (6)	0.0604 (3)	
N1	0.22849 (16)	0.29782 (11)	0.59411 (9)	0.0566 (4)	
N2	0.37423 (14)	0.57219 (10)	0.60126 (6)	0.0469 (3)	
C1	0.30288 (18)	0.28003 (12)	0.52456 (10)	0.0498 (4)	
C2	0.30287 (19)	0.16000 (13)	0.49307 (10)	0.0529 (4)	
C3	0.2269 (2)	0.06825 (13)	0.53135 (11)	0.0595 (5)	
C4	0.1497 (2)	0.09140 (13)	0.60194 (10)	0.0573 (4)	
C5	0.1557 (2)	0.20776 (14)	0.62985 (10)	0.0573 (5)	
C6	0.5796 (2)	0.46023 (17)	0.68652 (12)	0.0771 (6)	
C7	0.4207 (2)	0.53190 (13)	0.68790 (9)	0.0561 (4)	
C8	0.4384 (2)	0.63777 (17)	0.74638 (11)	0.0780 (6)	
C9	0.0708 (2)	0.58893 (18)	0.60955 (12)	0.0764 (6)	
C10	0.2255 (2)	0.65272 (13)	0.58681 (10)	0.0570 (4)	
C11	0.2132 (2)	0.69139 (17)	0.49810 (11)	0.0742 (6)	
H3	0.2274	-0.0097	0.5101	0.071*	
H7	0.3333	0.4784	0.7051	0.067*	
H10	0.2433	0.7245	0.6214	0.068*	
H61	0.6635	0.5111	0.6664	0.091*	
H62	0.5625	0.3911	0.6515	0.092*	
H63	0.6146	0.4340	0.7410	0.092*	
H81	0.3347	0.6800	0.7466	0.093*	
H82	0.4713	0.6094	0.8006	0.093*	
H83	0.5216	0.6914	0.7286	0.093*	
H91	-0.0234	0.6409	0.5988	0.093*	
H92	0.0557	0.5167	0.5774	0.092*	
H93	0.0819	0.5681	0.6666	0.093*	
H111	0.1926	0.6214	0.4642	0.088*	
H112	0.3152	0.7287	0.4854	0.088*	
H113	0.1237	0.7479	0.4883	0.088*	
H201	0.3549	0.5015	0.5680	0.056*	
H202	0.4689	0.6125	0.5820	0.057*	

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.1051 (4)	0.0724 (3)	0.0820 (3)	-0.0167 (2)	0.0323 (2)	-0.0223 (2)
Cl2	0.1076 (4)	0.0690 (3)	0.0828 (3)	-0.0353 (2)	0.0014 (2)	0.0219 (2)
C13	0.1362 (5)	0.0953 (4)	0.0860 (4)	-0.0262 (3)	0.0534 (3)	-0.0126 (2)
01	0.0653 (7)	0.0426 (5)	0.0749 (7)	-0.0111 (5)	0.0165 (5)	0.0024 (5)
N1	0.0615 (8)	0.0436 (7)	0.0654 (9)	-0.0082 (6)	0.0109 (6)	-0.0044 (6)
N2	0.0512 (7)	0.0390 (6)	0.0509 (7)	-0.0053 (5)	0.0052 (5)	-0.0037 (5)
C1	0.0464 (8)	0.0419 (8)	0.0603 (10)	-0.0055 (6)	-0.0003 (7)	0.0006 (7)
C2	0.0559 (9)	0.0458 (8)	0.0570 (9)	-0.0060 (7)	0.0036 (7)	-0.0039 (7)
C3	0.0691 (10)	0.0399 (8)	0.0675 (11)	-0.0095 (7)	-0.0064 (8)	-0.0031 (7)
C4	0.0622 (10)	0.0498 (9)	0.0582 (10)	-0.0147 (7)	-0.0059 (8)	0.0108 (8)
C5	0.0611 (10)	0.0559 (9)	0.0552 (10)	-0.0084 (8)	0.0063 (8)	0.0022 (7)
C6	0.0878 (13)	0.0710 (11)	0.0703 (12)	0.0083 (10)	-0.0086 (10)	0.0142 (10)
C7	0.0666 (10)	0.0507 (8)	0.0511 (9)	-0.0089 (7)	0.0052 (7)	0.0077 (7)
C8	0.1041 (15)	0.0719 (12)	0.0562 (10)	-0.0103 (10)	-0.0058 (10)	-0.0070 (9)
C9	0.0577 (11)	0.0899 (13)	0.0834 (13)	0.0033 (9)	0.0158 (9)	-0.0142 (11)
C10	0.0581 (9)	0.0469 (8)	0.0652 (10)	0.0045 (7)	-0.0003 (8)	-0.0107 (7)
C11	0.0690 (12)	0.0679 (11)	0.0833 (13)	0.0045 (9)	-0.0092 (10)	0.0105 (10)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Cl1—C2	1.7310 (17)	С6—Н62	0.960
Cl2—C4	1.7297 (17)	С6—Н63	0.960
Cl3—C5	1.7337 (18)	C7—C8	1.513 (2)
01—C1	1.2716 (18)	С7—Н7	0.980
N1C1	1.345 (2)	C8—H81	0.960
N1C5	1.318 (2)	C8—H82	0.960
N2—C7	1.5072 (18)	C8—H83	0.960
N2—C10	1.5009 (19)	C9—C10	1.508 (2)
N2—H201	0.959	С9—Н91	0.960
N2—H202	0.961	С9—Н92	0.960
C1—C2	1.425 (2)	С9—Н93	0.960
C2—C3	1.365 (2)	C10—C11	1.511 (2)
C3—C4	1.382 (2)	C10—H10	0.980
С3—Н3	0.930	C11—H111	0.960
C4—C5	1.366 (2)	C11—H112	0.960
С6—С7	1.512 (2)	C11—H113	0.960
С6—Н61	0.960		
C1—N1—C5	120.76 (13)	N2—C7—C8	111.82 (12)
C7—N2—C10	117.47 (11)	N2—C7—H7	108.5
C7—N2—H201	108.2	C6—C7—C8	112.20 (14)
C7—N2—H202	107.5	С6—С7—Н7	108.7
C10-N2-H201	107.6	С8—С7—Н7	108.6
C10—N2—H202	108.8	C7—C8—H81	109.9
H201—N2—H202	106.8	C7—C8—H82	109.8

O1—C1—N1	119.02 (13)	С7—С8—Н83	108.7
O1—C1—C2	123.84 (14)	H81—C8—H82	109.5
N1—C1—C2	117.14 (13)	H81—C8—H83	109.5
Cl1—C2—C1	118.58 (12)	H82—C8—H83	109.5
Cl1—C2—C3	120.48 (12)	С10—С9—Н91	109.7
C1—C2—C3	120.93 (15)	С10—С9—Н92	109.0
C2—C3—C4	119.79 (14)	С10—С9—Н93	109.7
С2—С3—Н3	120.1	H91—C9—H92	109.5
С4—С3—Н3	120.1	Н91—С9—Н93	109.5
Cl2—C4—C3	120.26 (12)	Н92—С9—Н93	109.5
Cl2—C4—C5	123.09 (13)	N2—C10—C9	110.68 (12)
C3—C4—C5	116.66 (14)	N2—C10—C11	108.09 (13)
Cl3—C5—N1	115.00 (12)	N2—C10—H10	108.1
Cl3—C5—C4	120.30 (13)	C9—C10—C11	112.20 (14)
N1—C5—C4	124.70 (15)	C9—C10—H10	108.9
С7—С6—Н61	108.8	C11—C10—H10	108.8
С7—С6—Н62	110.2	C10—C11—H111	108.9
С7—С6—Н63	109.4	C10—C11—H112	109.8
H61—C6—H62	109.5	C10-C11-H113	109.7
H61—C6—H63	109.5	H111—C11—H112	109.5
H62—C6—H63	109.5	H111—C11—H113	109.5
N2—C7—C6	106.86 (13)	H112—C11—H113	109.5
C1—N1—C5—Cl3	-178.90 (11)	N1—C1—C2—C11	-179.19 (11)
C1—N1—C5—C4	0.7 (2)	N1—C1—C2—C3	1.5 (2)
C5—N1—C1—O1	178.24 (13)	Cl1—C2—C3—C4	-179.77 (12)
C5—N1—C1—C2	-1.6 (2)	C1—C2—C3—C4	-0.4 (2)
C7—N2—C10—C9	-62.42 (16)	C2—C3—C4—Cl2	179.30 (12)
C7—N2—C10—C11	174.34 (12)	C2—C3—C4—C5	-0.5 (2)
C10—N2—C7—C6	-176.04 (12)	Cl2—C4—C5—Cl3	0.2 (2)
C10—N2—C7—C8	-52.90 (18)	Cl2—C4—C5—N1	-179.41 (12)
O1—C1—C2—Cl1	1.0 (2)	C3—C4—C5—Cl3	179.98 (9)
O1—C1—C2—C3	-178.36 (14)	C3—C4—C5—N1	0.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N2—H201…O1	0.96	1.94	2.8803 (15)	166
N2—H201…N1	0.96	2.53	3.2556 (16)	133
N2—H202…O1 ⁱ	0.96	1.86	2.7424 (16)	152

Symmetry code: (i) -x+1, -y+1, -z+1.