organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-Benzylimidazolium hexafluorophosphate-1-benzylimidazole (1/1)

Yan Zang,^a Xiu-Mei Wu,^a Zhan-Ying Zheng,^b Hai-Bin Song^b and Qing-Xiang Liu^a*

^aKey Laboratory of Molecular Structure and Materials Performance, College of Chemistry and Life Science, Tianjin Normal University, Tianjin 300387, People's Republic of China, and ^bState Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China Correspondence e-mail: tjnulqx@163.com

Received 16 November 2007; accepted 20 November 2007

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; disorder in solvent or counterion; R factor = 0.037; wR factor = 0.117; data-to-parameter ratio = 11.2.

In the title compound, $C_{10}H_{11}N_2^{+}\cdot PF_6^{-}\cdot C_{10}H_{10}N_2$, the H atom involved in protonation is disordered equally between the cation and the neutral molecule. The dihedral angle between the phenyl and imidazole rings is 82.6 (2)°. In the crystal structure, there are head-to-tail $\pi - \pi$ stacking interactions between imidazole rings; the interplanar separation is 3.295 (1) Å and the centroid–centroid separation is 3.448 (3) Å. In the centrosymmetric anion, two F atoms are disordered over two positions; the refined site-occupancy factors are 0.855 (11) and 0.145 (11).

Related literature

For background to the chemistry of imidazolium compounds, see: Hunter & Sanders (1990); Sundberg & Martin (1974); Kurdziel & Glowiak (2000). For related literature, see: Liu *et al.* (2003).

Experimental

Crystal data

 $C_{10}H_{11}N_2^+ \cdot PF_6^- \cdot C_{10}H_{10}N_2$ $M_r = 462.38$ Monoclinic, $P2_1/n$ a = 6.6459 (4) Å b = 6.9825 (4) Å c = 22.3558 (12) Å $\beta = 97.109$ (1)°

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.951, T_{\rm max} = 0.957$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.116$ S = 1.051820 reflections 162 parameters $V = 1029.45 (10) \text{ Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 0.20 \text{ mm}^{-1}$ T = 296 (2) K $0.25 \times 0.24 \times 0.22 \text{ mm}$

5057 measured reflections 1820 independent reflections 1585 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.014$

 $\begin{array}{l} \text{2 restraints} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.23 \text{ e } \text{\AA}^{-3} \\ \Delta \rho_{min} = -0.46 \text{ e } \text{\AA}^{-3} \end{array}$

Data collection: *APEX2* (Bruker, 2003); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This project was supported by the National Science Foundation of China (Project Grant No. 20672081) and the Natural Science Foundation of Tianjin (07JCYBJC00300).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2226).

References

- Bruker (1998). SAINT. Version 7.34A. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2003). APEX2. Version 2.1-0. Bruker AXS Inc., Madison, Wisconsin, USA.

Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5528. Kurdziel, K. & Glowiak, T. (2000). Polyhedron, 19, 2183–2188.

- Liu, Q. X., Xu, F. B., Li, Q. S., Zeng, X. S., Leng, X. B., Chou, Y. L. & Zhang, Z. Z. (2003). Organometallics, 22, 309–314.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sundberg, R. J. & Martin, R. B. (1974). Chem. Rev. 74, 471-482.

supporting information

Acta Cryst. (2008). E64, o478 [doi:10.1107/S1600536807061259]

1-Benzylimidazolium hexafluorophosphate-1-benzylimidazole (1/1)

Yan Zang, Xiu-Mei Wu, Zhan-Ying Zheng, Hai-Bin Song and Qing-Xiang Liu

S1. Comment

Some weak interactions in crystal engineering, such as π - π stacking interactions (Hunter & Sanders, 1990), often affect the structure of complexes, and they can link discrete sub-units or low-dimensional entities into high-dimensional supramolecular networks. The imidazole ring is a structural component of many compounds occurring in living organisms (Sundberg & Martin, 1974). In the mechanisms of the majority of enzymatic reactions, an important role is played by the formation of coordination compounds with ions (Kurdziel & Glowiak, 2000.). We are interested in imidazole compounds with π - π stacking interactions and here report the synthesis and crystal structure of 1-benzyl-imidazolium hexafluoridophosphate.

In the title compound, $C_{10}H_{10}N_2$. $C_{10}H_{11}N_2^+$. F_6P^- , atom H2 is disordered equally between the cation and neutral molecule. The dihedral angle between the phenyl and imidazole rings is 82.6 (2)° (Fig. 1). The N1A—C1A, N1A—C3A, N2A— C1A and N2A—C2A bond distances are 1.312 (2), 1.368 (3), 1.308 (3) and 1.355 (3) Å, respectively, and the N1A—C1A —N2A bond angle is 108.78 (18)°; these values are similar to those observed in 1-(9-anthracenylmethyl)-3-ethylimidazolium iodide (Liu *et al.*, 2003).

In the crystal structure of the title compound (Fig. 2), there are head-to-tail π - π stacking interactions between imidazole rings; the interplanar separation is 3.295 (1) Å and the centroid-to-centroid separation is 3.448 (3) Å.

S2. Experimental

A 1,4-dioxane solution (20 ml) of imidazole (1.420 g, 20.8 mmol) was added to a suspension of oil-free sodium hydride (0.500 g, 20.8 mmol) in 1,4-dioxane (20 ml) and stirred for 1 h at 90°C. A 1,4-dioxane (20 ml) solution of benzyl bromide (3.240 g, 19 mmol) was then added dropwise to the above solution. The mixture was stirred for 22 h at 90°C, and a brown solution was obtained. The solvent was removed with a rotary evaporator and H₂O (50 ml) was added to the residue. The solution was then extracted with CH_2Cl_2 (50 ml), and the solution was dried with anhydrous MgSO₄. After removing CH_2Cl_2 , 1-benzylimidazole, as a pale yellow liquid was obtained yield: 2.7 g (89.7%).

1-Benzylimidazole (2.000 g, 12.6 mmol) was reacted with hydrochloric acid (8 ml, 6 mol l^{-1}) to afford 1-benzylimidazolium chloride as a pale yellow solid (2.618 g, 94%). NH₄PF₆ (5.050 g, 31 mmol) was added to a methanol solution (50 ml) of 1-benzylimidazolium chloride (2.000 g, 10.3 mmol). A pale yellow precipitate formed immediately, which was collected by filtration, washed with small portions of methanol, and dried in a vacuum to give 1-benzylimidazolium hexafluoridophosphate as a pale yellow powder (3.3 g, 95%). m.p. 202–204°C. Crystals suitable for X-ray diffraction were obtained by evaporating slowly a CH₃OH solution at room temperature.

S3. Refinement

All H atoms were initially located in a difference Fourier map. They were then placed in geometrically idealized positions and constrained to ride on their parent atoms, with Csp^3 —H = 0.97 Å, Csp^2 —H = 0.93 Å and N—H = 0.86 Å and U_{iso} (H) = $1.2U_{eq}(C,N)$. In the centrosymmetric anion, atoms F2 and F3 are disordered over two positions; the refined site occupancy factors are 0.855 (11) and 0.145 (11). Atom H2 is disordered equally between the cation and the neutral molecule.

Figure 1

Perspective view of the title compound, with displacement ellipsoids drawn at the 30% probability level. The organic moiety with A atom labels is the cation; that with B atom labels is the centrosymmetrically related neutral molecule. In the centrosymmetric anion, only one disorder component is shown.

Figure 2

The π - π stacking interaction between imidazole rings in the title compound.

1-Benzylimidazolium hexafluorophosphate-1-benzylimidazole (1/1)

Crystal data	
$C_{10}H_{11}N_2^+ PF_6 - C_{10}H_{10}N_2$	F(000) = 476
$M_r = 462.38$	$D_{\rm x} = 1.492 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/n$	Mo K α radiation, $\lambda = 0.71073$ Å
a = 6.6459 (4) Å	Cell parameters from 3167 reflections
b = 6.9825 (4) Å	$\theta = 3.1 - 27.8^{\circ}$
c = 22.3558 (12) Å	$\mu = 0.20 \text{ mm}^{-1}$
$\beta = 97.109 (1)^{\circ}$	T = 296 K
$V = 1029.45 (10) Å^3$	Block, colorless
Z = 2	$0.25 \times 0.24 \times 0.22 \text{ mm}$
Data collection	
Bruker APEXII CCD area-detector	Absorption correction: multi-scan
diffractometer	(SADABS; Sheldrick, 1996)
Radiation source: fine-focus sealed tube	$T_{\rm min} = 0.951, T_{\rm max} = 0.957$
Graphite monochromator	5057 measured reflections
φ and ω scans	1820 independent reflections
•	1585 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.014$	
$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 1.8$	0
$h = -6 \rightarrow 7$	

Refinement

пејтетет	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.116$	$w = 1/[\sigma^2(F_o^2) + (0.0633P)^2 + 0.4527P]$
S = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
1820 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
162 parameters	$\Delta \rho_{\rm max} = 0.23 \text{ e} \text{ Å}^{-3}$
2 restraints	$\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.013 (3)
map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $k = -8 \longrightarrow 8$ $l = -26 \longrightarrow 21$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
P1	0.5000	0.5000	0.0000	0.0381 (3)	
F1	0.25151 (17)	0.51481 (17)	0.00618 (6)	0.0514 (4)	
F2	0.5364 (5)	0.4064 (5)	0.06870 (9)	0.0695 (10)	0.855 (11)
F3	0.5370 (4)	0.7209 (3)	0.02900 (16)	0.0629 (9)	0.855 (11)
F2′	0.553 (3)	0.310 (5)	0.042 (2)	0.152 (18)	0.145 (11)
F3′	0.542 (3)	0.648 (6)	0.0573 (15)	0.160 (17)	0.145 (11)
N1	0.0699 (2)	0.1368 (2)	0.09486 (6)	0.0371 (4)	
N2	0.1897 (3)	-0.1141 (3)	0.05810 (8)	0.0527 (5)	
H2	0.2730	-0.1922	0.0444	0.063*	0.50
C1	0.2320 (3)	0.0610 (3)	0.07629 (9)	0.0445 (5)	
H1	0.3564	0.1218	0.0761	0.053*	
C2	-0.0066 (4)	-0.1526 (3)	0.06429 (9)	0.0550 (6)	
H2A	-0.0753	-0.2664	0.0543	0.066*	
C3	-0.0827 (3)	0.0043 (3)	0.08755 (10)	0.0479 (5)	
H3	-0.2141	0.0202	0.0969	0.058*	
C4	0.0549 (4)	0.3309 (3)	0.11951 (9)	0.0549 (6)	
H4A	-0.0577	0.3979	0.0969	0.066*	
H4B	0.1780	0.4014	0.1152	0.066*	
C5	0.0237 (3)	0.3236 (3)	0.18532 (9)	0.0456 (5)	
C6	-0.1565 (4)	0.3843 (3)	0.20279 (10)	0.0594 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

H6	-0.2584	0.4301	0.1741	0.071*
C7	-0.1878 (4)	0.3780 (4)	0.26278 (11)	0.0674 (7)
H7	-0.3096	0.4214	0.2743	0.081*
C8	-0.0405 (4)	0.3081 (4)	0.30527 (10)	0.0619 (7)
H8	-0.0632	0.3011	0.3454	0.074*
C9	0.1401 (4)	0.2487 (3)	0.28843 (10)	0.0637 (7)
H9	0.2413	0.2030	0.3174	0.076*
C10	0.1734 (4)	0.2560 (3)	0.22857 (10)	0.0566 (6)
H10	0.2967	0.2154	0.2174	0.068*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0353 (4)	0.0392 (4)	0.0410 (4)	-0.0034 (3)	0.0103 (3)	-0.0044 (3)
F1	0.0343 (7)	0.0547 (7)	0.0675 (8)	-0.0048 (5)	0.0155 (5)	-0.0146 (6)
F2	0.0586 (14)	0.100 (2)	0.0487 (13)	-0.0140 (13)	0.0031 (8)	0.0211 (12)
F3	0.0463 (10)	0.0459 (13)	0.101 (2)	-0.0107 (7)	0.0257 (14)	-0.0320 (11)
F2′	0.055 (8)	0.13 (2)	0.28 (4)	0.032 (11)	0.052 (16)	0.16 (3)
F3′	0.059 (8)	0.31 (4)	0.117 (19)	-0.061 (17)	0.031 (11)	-0.17 (2)
N1	0.0446 (9)	0.0352 (8)	0.0325 (8)	-0.0022 (7)	0.0089 (6)	-0.0015 (6)
N2	0.0710 (13)	0.0487 (11)	0.0388 (9)	0.0183 (9)	0.0087 (8)	-0.0018 (8)
C1	0.0425 (11)	0.0539 (12)	0.0380 (10)	0.0016 (9)	0.0091 (8)	0.0034 (9)
C2	0.0813 (17)	0.0370 (11)	0.0422 (11)	-0.0110 (11)	-0.0107 (10)	0.0007 (9)
C3	0.0407 (11)	0.0527 (13)	0.0506 (12)	-0.0064 (9)	0.0067 (9)	0.0048 (9)
C4	0.0907 (17)	0.0326 (10)	0.0429 (11)	0.0006 (10)	0.0152 (11)	-0.0022 (9)
C5	0.0699 (14)	0.0296 (9)	0.0378 (10)	0.0031 (9)	0.0084 (9)	-0.0033 (8)
C6	0.0710 (15)	0.0586 (14)	0.0474 (12)	0.0162 (12)	0.0026 (10)	-0.0073 (10)
C7	0.0746 (17)	0.0755 (17)	0.0541 (14)	0.0086 (13)	0.0162 (12)	-0.0162 (12)
C8	0.0926 (19)	0.0541 (13)	0.0402 (11)	-0.0015 (12)	0.0132 (11)	-0.0085 (10)
C9	0.0926 (19)	0.0507 (13)	0.0441 (12)	0.0114 (12)	-0.0068 (12)	-0.0023 (10)
C10	0.0686 (15)	0.0487 (12)	0.0522 (12)	0.0126 (11)	0.0068 (11)	-0.0071 (10)

Geometric parameters (Å, °)

P1—F2' ⁱ	1.636 (8)	C2—C3	1.338 (3)
P1—F2′	1.636 (9)	C2—H2A	0.9300
P1—F3′	1.641 (9)	С3—Н3	0.9300
P1—F3' ⁱ	1.641 (9)	C4—C5	1.512 (3)
$P1-F2^{i}$	1.659 (2)	C4—H4A	0.9700
P1—F2	1.659 (2)	C4—H4B	0.9700
P1—F1	1.6773 (11)	C5—C6	1.372 (3)
P1—F1 ⁱ	1.6773 (11)	C5—C10	1.382 (3)
P1—F3	1.679 (2)	C6—C7	1.383 (3)
P1—F3 ⁱ	1.679 (2)	С6—Н6	0.9300
N1—C1	1.312 (2)	C7—C8	1.367 (4)
N1—C3	1.368 (3)	С7—Н7	0.9300
N1-C4	1.471 (3)	С8—С9	1.366 (4)
N2C1	1.308 (3)	С8—Н8	0.9300

N2—C2	1.355 (3)	С9—С10	1.384 (3)
N2—H2	0.8600	С9—Н9	0.9300
C1—H1	0.9300	C10—H10	0.9300
F2' ⁱ —P1—F2'	180.0 (16)	$F1 - F3^{i}$	89.41 (10)
F2' ⁱ —P1—F3'	86.7 (15)	$F1^{i}$ $P1$ $F3^{i}$	90.59 (10)
F2'—P1—F3'	93.3 (15)	F3—P1—F3 ⁱ	180.0 (2)
F2'i—P1—F3'i	93.3 (15)	C1—N1—C3	108.37 (18)
F2′—P1—F3′ ⁱ	86.7 (15)	C1—N1—C4	125.90 (19)
F3'—P1—F3' ⁱ	180.0 (11)	C3—N1—C4	125.74 (18)
$F2'^{i}$ — $P1$ — $F2^{i}$	32 (2)	C1—N2—C2	109.05 (17)
$F2' - P1 - F2^{i}$	148 (2)	C1—N2—H2	125.5
$F3' - P1 - F2^{i}$	117.8 (19)	C2—N2—H2	125.5
$F3'^{i}$ P1 - $F2^{i}$	62.2 (19)	N2-C1-N1	108.78 (18)
$F2'^{i}$ _P1_F2	148 (2)	N2-C1-H1	125.6
F2′—P1—F2	32(2)	N1—C1—H1	125.6
$F_{2}' = P_{1} = F_{2}$	52(2)	$C_3 C_2 N_2$	106.97 (19)
$F_{3}^{i} = P_{1} = F_{2}^{i}$	117.8(19)	$C_3 = C_2 = H_2 \Delta$	126.5
\mathbf{F}_{2}^{i} \mathbf{P}_{1} \mathbf{F}_{2}^{i}	117.0(1)	$N_2 C_2 H_2 \Lambda$	126.5
12 - 11 - 12 $E2'_{1} D1 E1$	180.0 (2) 81.6 (6)	$N_2 = C_2 = M_1^2 $	120.3 106.84 (10)
$F_2 \longrightarrow F_1 \longrightarrow F_1$ $F_2' \longrightarrow F_1$	01.0(0)	$C_2 = C_3 = H_2$	100.64 (19)
$F_2 \longrightarrow F_1 \longrightarrow F_1$	90.4 (0)	C2—C3—H3	120.0
$\begin{array}{c} \Gamma 5 \longrightarrow \Gamma 1 \longrightarrow \Gamma 1 \\ \Gamma 2 1 \longrightarrow \Gamma 1 \\ \Gamma 2 1 \longrightarrow \Gamma 1 \end{array}$	00.5 (7)	NI-C3-H3	120.0
$F3^{}PI - FI$	91.7(7)		110.92 (16)
F2 - P1 - F1	91.13 (12)	NI—C4—H4A	109.5
F2—P1—F1	88.87 (12)	C5—C4—H4A	109.5
$F2^n$ —P1—F1	98.4 (6)	N1—C4—H4B	109.5
$F2'$ — $P1$ — $F1^{1}$	81.6 (6)	C5—C4—H4B	109.5
$F3'$ — $P1$ — $F1^{1}$	91.7 (7)	H4A—C4—H4B	108.0
$F3'^{i}$ P1 $F1^{i}$	88.3 (7)	C6—C5—C10	119.0 (2)
$F2^{i}$ — $P1$ — $F1^{i}$	88.87 (12)	C6—C5—C4	119.8 (2)
$F2 - P1 - F1^i$	91.13 (12)	C10—C5—C4	121.3 (2)
$F1 - P1 - F1^i$	180.00 (9)	C5—C6—C7	120.5 (2)
F2′ ⁱ —P1—F3	59 (2)	С5—С6—Н6	119.8
F2'—P1—F3	121 (2)	С7—С6—Н6	119.8
F3'—P1—F3	28.2 (18)	C8—C7—C6	120.3 (2)
F3'i—P1—F3	151.8 (18)	С8—С7—Н7	119.8
F2 ⁱ —P1—F3	89.61 (12)	С6—С7—Н7	119.8
F2—P1—F3	90.39 (12)	C9—C8—C7	119.7 (2)
F1—P1—F3	90.59 (10)	С9—С8—Н8	120.2
$F1^{i}$ $P1$ $F3$	89.41 (10)	С7—С8—Н8	120.2
$F2'^{i}$ —P1—F3 ⁱ	121 (2)	C8—C9—C10	120.4 (2)
F2'	59 (2)	С8—С9—Н9	119.8
F3'—P1—F3 ⁱ	151.8 (18)	С10—С9—Н9	119.8
F3′ ⁱ —P1—F3 ⁱ	28.2 (18)	С5—С10—С9	120.1 (2)
$F2^{i}$ $P1$ $F3^{i}$	90.39 (12)	C5-C10-H10	119.9
$F2 - P1 - F3^{i}$	89 61 (12)	C9-C10-H10	119.9
			,
C2—N2—C1—N1	0.8 (2)	N1—C4—C5—C10	66.8 (3)

C3—N1—C1—N2	-0.6 (2)	C10—C5—C6—C7	0.0 (4)	
C4—N1—C1—N2	179.22 (17)	C4—C5—C6—C7	179.8 (2)	
C1—N2—C2—C3	-0.7 (2)	C5—C6—C7—C8	-1.0 (4)	
N2—C2—C3—N1	0.3 (2)	C6—C7—C8—C9	1.6 (4)	
C1—N1—C3—C2	0.2 (2)	C7—C8—C9—C10	-1.0 (4)	
C4—N1—C3—C2	-179.65 (18)	C6—C5—C10—C9	0.6 (3)	
C1—N1—C4—C5	-113.5 (2)	C4—C5—C10—C9	-179.3 (2)	
C3—N1—C4—C5	66.3 (3)	C8—C9—C10—C5	0.0 (4)	
N1—C4—C5—C6	-113.0 (2)			

Symmetry code: (i) -x+1, -y+1, -z.