# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 10-Methyl-9-(2-nitrophenoxycarbonyl)acridinium trifluoromethanesulfonate

#### Artur Sikorski,<sup>a</sup> Agnieszka Niziołek,<sup>a</sup> Karol Krzymiński,<sup>a</sup> Tadeusz Lis<sup>b</sup> and Jerzy Błażejowski<sup>a</sup>\*

<sup>a</sup>Faculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland, and <sup>b</sup>Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland

Correspondence e-mail: bla@chem.univ.gda.pl

Received 18 November 2007; accepted 21 December 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.064; wR factor = 0.130; data-to-parameter ratio = 10.0.

The crystal structure of the title compound, C<sub>21</sub>H<sub>15</sub>N<sub>2</sub>O<sub>4</sub><sup>+</sup>.- $CF_3O_3S^-$ , is stabilized by  $C-H\cdots O$  and  $C-H\cdots F$  hydrogen bonds, by C-F··· $\pi$ , N-O··· $\pi$  and S-O··· $\pi$  interactions, and by  $O \cdots O [2.70 (4) Å]$  and  $O \cdots F [2.85 (1) \text{ or } 2.92 (1) Å]$ contacts;  $\pi - \pi$  interactions are also present. In the packing of the molecules, acridine units are either parallel or inclined at an angle of  $12.5 (1)^{\circ}$ . The nitrophenoxycarbonyl unit is disordered over two position; the site occupancy factors are 0.89 and 0.11.

#### **Related literature**

For general background, see: Adamczyk et al. (2004); Becker et al. (1999); Rak et al. (1999); Razavi & McCapra (2000a,b); Roda et al. (2003); Zomer & Jacquemijns (2001). For related structures, see: Bianchi et al. (2004); Butcher et al. (2004); Dorn et al. (2005); Hunter & Sanders (1990); Kaafarani et al. (2003); Lyssenko & Antipin (2004); Sato (1996); Sikorski et al. (2007); Sridhar et al. (2006); Steiner (1999). For analysis of intermolecular interactions, see: Spek (2003).



#### **Experimental**

#### Crystal data

| $C_{21}H_{15}N_2O_4^+ \cdot CF_3O_3S^-$ |  |
|-----------------------------------------|--|
| $M_r = 508.42$                          |  |
| Monoclinic, $P2_1/c$                    |  |
| a = 12.459 (4) Å                        |  |
| b = 21.361 (6) Å                        |  |
| c = 8.123 (3) Å                         |  |
| $\beta = 108.42 \ (3)^{\circ}$          |  |

#### Data collection

Kuma KM-4 CCD κ-geometry diffractometer Absorption correction: none 22835 measured reflections

#### Refinement

R

| $R[F^2 > 2\sigma(F^2)] = 0.064$ | 21 restraints                                              |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.130$               | H-atom parameters constrained                              |
| S = 1.20                        | $\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$  |
| 3671 reflections                | $\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$ |
| 366 parameters                  |                                                            |

Z = 4

Mo  $K\alpha$  radiation  $\mu = 0.24 \text{ mm}^{-1}$ 

3671 independent reflections

2959 reflections with  $I > 2\sigma(I)$ 

T = 100 (2) K  $0.40 \times 0.10 \times 0.02 \text{ mm}$ 

 $R_{\rm int} = 0.079$ 

#### Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$             | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------------------|------|-------------------------|--------------|--------------------------------------|
| $C2-H2\cdots O30^{i}$                   | 0.95 | 2.39                    | 3.111 (4)    | 132                                  |
| $C3-H3\cdots O25^{i}$                   | 0.95 | 2.59                    | 3.268 (10)   | 129                                  |
| $C5-H5\cdots F34^{ii}$                  | 0.95 | 2.55                    | 3.339 (4)    | 141                                  |
| C6-H6···O31                             | 0.95 | 2.44                    | 3.196 (4)    | 136                                  |
| $C20-H20\cdots O29^{i}$                 | 0.95 | 2.59                    | 3.273 (9)    | 129                                  |
| $C27 - H27A \cdots O29^{iii}$           | 0.98 | 2.57                    | 3.246 (4)    | 126                                  |
| $C27 - H27C \cdot \cdot \cdot O30^{ii}$ | 0.98 | 2.56                    | 3.508 (4)    | 162                                  |

Symmetry codes: (i) -x + 1,  $y - \frac{1}{2}$ ,  $-z + \frac{3}{2}$ ; (ii) x,  $-y + \frac{3}{2}$ ,  $z - \frac{1}{2}$ ; (iii) x,  $-y + \frac{3}{2}$ ,  $z + \frac{1}{2}$ .

Table 2  $C-F\cdots\pi$ ,  $N-O\cdots\pi$  and  $S-O\cdots\pi$  interactions (Å,°).

| X    | Ι    | J           | $I \cdot \cdot \cdot J$ | $X \cdots J$ | $X - I \cdots J$ |
|------|------|-------------|-------------------------|--------------|------------------|
| C32  | F33  | $Cg4^{iv}$  | 3.690 (4)               | 4.002 (5)    | 93.6 (2)         |
| C32  | F33  | $Cg4A^{iv}$ | 3.949 (18)              | 4.31 (2)     | 96.6 (3)         |
| C32  | F34  | $Cg4^{iv}$  | 3.356 (4)               | 4.002 (5)    | 109.3 (2)        |
| C32  | F34  | $Cg4A^{iv}$ | 3.663 (18)              | 4.31 (2)     | 110.3 (3)        |
| N24  | O25  | $Cg4^{ii}$  | 3.443 (9)               | 3.710 (5)    | 92.7 (5)         |
| N24  | O25  | $Cg4A^{ii}$ | 3.13 (2)                | 3.45 (2)     | 94.8 (6)         |
| N24A | O25A | $Cg4^{ii}$  | 3.41 (4)                | 4.19 (3)     | 126 (3)          |
| N24A | O25A | $Cg4A^{ii}$ | 3.10 (4)                | 3.91 (3)     | 128 (3)          |
| S28  | O30  | $Cg1^{ii}$  | 3.810 (3)               | 3.707 (2)    | 74.9(1)          |
| S28  | O31  | $Cg1^{ii}$  | 3.529 (3)               | 3.707 (2)    | 85.6 (1)         |
| S28  | O31  | $Cg3^{ii}$  | 3.205 (3)               | 4.221 (2)    | 126.7 (1)        |

Symmetry codes: (ii)  $x, -y + \frac{3}{2}, z - \frac{1}{2}$ ; (iv)  $x - 1, -y + \frac{3}{2}, z - \frac{1}{2}$ . Notes: Cg represents the centroid of each ring, as follows: Cg1 ring C9/C11/C12/N10/C14/C13, Cg3 ring C5-C8/ C13/C14, Cg4 ring C18-C23 and Cg4A ring C18A-C23A.

 Table 3

  $\pi-\pi$  interactions (Å,°).

| CgI | CgJ     | $Cg \cdots Cg$ | Dihedral angle | Interplanar distance | Offset   |
|-----|---------|----------------|----------------|----------------------|----------|
| 1   | $2^{v}$ | 3.547 (2)      | 3.4            | 3.504 (3)            | 0.556 (3 |
| 2   | $2^{v}$ | 3.981 (2)      | 0.0            | 3.504 (3)            | 1.891 (3 |

Symmetry codes: (v) -x + 1, -y + 1, -z + 1. Notes: Cg represents the centroid of each ring, as follows: Cg1 ring C9/C11/C12/N10/C14/C13 and Cg2 ring C1–C4/C12/C11. Cg···Cg is the distance between ring centroids. The dihedral angle is that between the planes of the rings CgI and CgJ. The interplanar distance is the perpendicular distance of CgI from ring J. The offset is the perpendicular distance of ring I from ring J.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2003); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2003); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2003).

This study was financed by the State Funds for Scientific Research (grant No. N204 123 32/3143, contract No. 3143/H03/ 2007/32) for the period 2007–2010.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2382).

#### References

- Adamczyk, M., Fino, J. R., Mattingly, P. G., Moore, J. A. & Pan, Y. (2004). Bioorg. Med. Chem. Lett. 14, 2313–2317.
- Becker, M., Lerum, V., Dickson, S., Nelson, N. C. & Matsuda, E. (1999). Biochemistry, 38, 5601–5611.
- Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559-568.
- Butcher, R. J., Evans, R. & Gilardi, R. (2004). Acta Cryst. E60, o1376-o1378.
- Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633-641.
- Hunter, C. A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525-5534.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kaafarani, B. R., Wex, B., Oliver, A. G., Krause Bauer, J. A. & Neckers, D. C. (2003). Acta Cryst. E59, 0227–0229.
- Lyssenko, K. A. & Antipin, M. Y. (2004). Russ. Chem. Bull. Int. Ed. 53, 10-17.
- Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Version 1.171. Oxford Diffraction Ltd, Wrocław, Poland.
- Rak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem. 64, 3002-3008.
- Razavi, Z. & McCapra, F. (2000a). Luminescence, 15, 239-245.
- Razavi, Z. & McCapra, F. (2000b). Luminescence, 15, 245-249.
- Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. A75, 462–470.
- Sato, N. (1996). Tetrahedron Lett. 37, 8519-8522.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sikorski, A., Krzymiński, K., Malecha, P., Lis, T. & Błażejowski, J. (2007). Acta Cryst. E63, 04484–04485.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Sridhar, B., Ravikumar, K. & Sadanandam, Y. S. (2006). Acta Cryst. C62, 0687– 0690.
- Steiner, T. (1999). Chem. Commun. pp. 313-314.
- Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529– 549. New York: Marcel Dekker.

# supporting information

Acta Cryst. (2008). E64, o372-o373 [doi:10.1107/S1600536807068109]

# 10-Methyl-9-(2-nitrophenoxycarbonyl)acridinium trifluoromethanesulfonate

## Artur Sikorski, Agnieszka Niziołek, Karol Krzymiński, Tadeusz Lis and Jerzy Błażejowski

### S1. Comment

Phenyl 10-alkylacridinium-9-carboxylates are known to be chemiluminescent indicators or chemiluminogenic fragments of chemiluminescent labels, which have found numerous applications in assays of biologically and environmentally important entities (Becker *et al.*, 1999; Adamczyk *et al.*, 2004). The reaction of the above-mentioned cations with hydrogen peroxide in alkaline media produces light, and the determination of its intensity enables labeled entities or entities present in the medium to be assayed quantitatively, even at the attomole level (Roda *et al.*, 2003). Investigations have revealed that oxidation of these cations is accompanied by the removal of the phenoxycarbonyl fragment and conversion of the rest of the molecule to electronically excited, light-emitting 10-alkyl-9-acridinones (Rak *et al.*, 1999; Razavi & McCapra, 2000*a*,b; Zomer & Jacquemijns, 2001). It may thus be expected that the efficiency of chemiluminescence is affected by changes in the structure of the phenyl fragment. In order to find out whether this actually takes place, investigations were undertaken on phenyl 10-methylacridinium-9-carboxylates differently substituted in the phenyl fragment. Here, the crystal structure of the NO<sub>2</sub>-phenyl-substituted derivative is presented. The compound was synthesized and investigated since the strongly electron attracting NO<sub>2</sub> group present in the phenyl fragment may be expected to substantially influence its stability and chemiluminogenic ability.

Parameters characterizing the geometry of the acridine ring are typical of acridine-based derivatives (Sikorski *et al.*, 2007).

Cations are disordered within the nitrophenoxycarbonyl fragment and occupy two positions, with occupancy factors of 0.886 (4) and 0.114 (4) for C15/O16/O17/C18/C19/H19/C20/H20/C21/H21/C22/H22/C23/N24/O25/O26 and C15A/O16A/O17A/C18A/C19A/H19A/C20A/H20A/C21A/H21A/C22A/H22A/C23A/ N24A/O25A/O26A, respectively. The dihedral angles between the mean planes delineated by atoms C9/C15/O16/O17 and C9/C15A/O16A/O17A, C23/N24/O25/O26 and C23A/N24A/O25A/O26A, and C18—C23 and C18A—C23A are 47.4 (3)°, 42.2 (3)° and 12.8 (3)°, respectively. They reflect the mutual arrangement of the disordered structures. This is the first case of disorder to be reported in 9-(phenoxycarbonyl)-acridines or 9-(phenoxycarbonyl)-10-methylacridinium salts.

With respective average deviations from planarity of 0.027 and 0.009 Å or 0.033 Å, the acridine and benzene (C18—C23 or C18A—C23A) ring systems in the cation are oriented at  $3.0 (1)^{\circ}$  or  $11.1 (4)^{\circ}$  to each other (Fig. 1). The carboxyl group (C15/O16/O17 or C15A/O16A/O17A) is twisted at an angle of 65.8 (1)° or 113.0 (4)° relative to the acridine skeleton. The mean planes of the acridine moieties lie either parallel or are inclined at an angle of 12.5 (1)° in the lattice. The benzene rings are either parallel or inclined at an angle of 15.7 (1)° or 23.0 (4)°.

All the O and F atoms of the trifluoromethanesulfonate anions are involved in weak multidirectional C–H···O and C–H···O and C–H···O and S (Table 1 and Figs. 2 and 3), and C–F··· $\pi$  (phenyl), S–O··· $\pi$  (acridine) interactions (Table 2 and Figs. 2 and 3), as well as O···F contacts [O25···F35 = 2.85 (1) Å or O25A···F35A = 2.92 (4) Å (symmetry code: (vi) x + 1, y, z + 1); Figs. 2 and 4] with cations. The cations are involved in weak C–H···O (nitro) (Table 1 and Fig. 2). N–O (nitro)··· $\pi$  (phenyl) (Table 2 and Figs. 2, 3 and 4) and  $\pi$ - $\pi$  (acridine) (Table 3 and Fig. 4) interactions, as well as O

(carbonyl)···O (nitro) contacts [O17A···O25A = 2.70 (4) Å (symmetry code: (ii) x, -y + 3/2, z - 1/2); Fig. 2].

All the interactions demonstrated were found by *PLATON* (Spek, 2003). The C–H···O (Bianchi *et al.*, 2004; Steiner, 1999) and C–H···F (Bianchi *et al.*, 2004; Lyssenko & Antipin, 2004) interactions exhibit a hydrogen-bond-type nature. The C–F··· $\pi$  (phenyl) and S–O··· $\pi$  (acridine) interactions (Dorn *et al.*, 2005), and also N–O (nitro)···F interactions, the latter identified as O···F contacts (Lyssenko & Antipin, 2004), should be of an attractive nature. Such an attractive nature is also exhibited by  $\pi$ - $\pi$  interactions (Hunter & Sanders, 1990), N–O (nitro)··· $\pi$  (phenyl) (Kaafarani *et al.*, 2003) interactions and O (carbonyl)···O (nitro) (Butcher *et al.*, 2004) contacts have been disclosed in crystals of other compounds.

The crystal structure is stabilized by a network of the aforementioned short-range interactions, as well as by long-range electrostatic interactions between ions.

#### **S2. Experimental**

9-(2-Nitrophenoxycarbonyl)-10-methylacridinium trifluoromethanesulfonate was synthesized by treating 2-nitrophenyl acridine-9-carboxylate [obtained in the same way as described elsewhere (Sato, 1996; Sikorski *et al.*, 2007)], dissolved in anhydrous dichloromethane, with a fivefold molar excess of methyl trifluoromethanesulfonate, dissolved in the same solvent, under an Ar atmosphere at room temperature for 4 h. The crude salt was dissolved in small amount of ethanol, filtered and precipitated with 25 v/v excess of diethyl ether (yield 63%). Yellow crystals suitable for X-ray investigations were grown from absolute ethanol solution.

#### **S3. Refinement**

All H atoms were positioned geometrically and refined using a riding model, with C—H distances of 0.95 Å and with  $U_{iso}(H) = 1.2U_{eq}(C)$ , or C—H = 0.98 Å and  $U_{iso}(H) = 1.5U_{eq}(C)$  for the methyl group. The geometries of the disordered nitrophenoxycarbonyl fragment were refined anisotropically assuming C—C distances in the C18A—C23A benzene ring equal to 1.39 Å (Sridhar *et al.*, 2006).



The molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Cg1, Cg2, Cg3, Cg4 and Cg4 A denote the ring centroids.



The arrangement of the ions in the unit cell, viewed along the *c* axis. The O…F contacts, and C—H…O interactions are represented by dashed lines, and C—F… $\pi$ , N—O… $\pi$  and S—O… $\pi$  interactions by dotted lines. Disordered C15A/O16A/O17A/C18A/C19A/H19A/C20A/H20A/C21A/H21A/C22A/H22A/C23A/ N24A/O25A/O26A atoms and H atoms not involved in interactions have been omitted. [Symmetry codes: (i) -*x* + 1, *y* - 1/2, -*z* + 3/2; (ii) *x*, -*y* + 3/2, *z* - 1/2; (iv) *x* - 1, -*y* + 3/2, *z* - 1/2; (vi) *x* + 1, *y*, *z* + 1.]



The arrangement of the ions in the unit cell. The O···O contacts, and C—H···O and C—H···F interactions are represented by dashed lines and C—F··· $\pi$  and N–O··· $\pi$  interactions by dotted lines. Disordered C15/O16/O17/C18/C19/H19/C20/H20/C21/H21/C22/H22/C23/N24/O25/O26 atoms and H atoms not involved in

interactions have been omitted. [Symmetry codes: (i) -x + 1, y - 1/2, -z + 3/2; (ii) x, -y + 3/2, z - 1/2; (iii) x, -y + 3/2, z + 1/2; (iv) x - 1, -y + 3/2, z - 1/2.]



The arrangement of the ions in the unit cell, viewed approximately along the *a* axis. The O…F contacts are represented by dashed lines, and N–O… $\pi$  and  $\pi$ - $\pi$  interactions by dotted lines. H atoms have been omitted. [Symmetry codes: (ii) *x*, -*y* + 3/2, *z* - 1/2; (v) -*x* + 1, -*y* + 1, -*z* + 1; (vi) *x* + 1, *y*, *z* + 1.]

### 10-Methyl-9-(2-nitrophenoxycarbonyl)acridinium trifluoromethanesulfonate

| Crystal data                            |                                                       |
|-----------------------------------------|-------------------------------------------------------|
| $C_{21}H_{15}N_2O_4^+ \cdot CF_3O_3S^-$ | $\beta = 108.42 \ (3)^{\circ}$                        |
| $M_r = 508.42$                          | $V = 2051.1 (12) \text{ Å}^3$                         |
| Monoclinic, $P2_1/c$                    | Z = 4                                                 |
| Hall symbol: -P 2ybc                    | F(000) = 1040                                         |
| a = 12.459 (4)  Å                       | $D_{\rm x} = 1.646 {\rm ~Mg} {\rm ~m}^{-3}$           |
| b = 21.361 (6)  Å                       | Melting point: 500-502 K K                            |
| c = 8.123 (3)  Å                        | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
|                                         |                                                       |

Cell parameters from 22931 reflections  $\theta = 4.6-32.0^{\circ}$  $\mu = 0.24 \text{ mm}^{-1}$ 

#### Data collection

| Kuma KM4 CCD к-geometry                  | 2959 reflections with $I > 2\sigma(I)$                          |
|------------------------------------------|-----------------------------------------------------------------|
| diffractometer                           | $R_{\rm int} = 0.079$                                           |
| Radiation source: fine-focus sealed tube | $\theta_{\rm max} = 25.3^\circ, \ \theta_{\rm min} = 4.6^\circ$ |
| Graphite monochromator                   | $h = -14 \rightarrow 14$                                        |
| $\omega$ scans                           | $k = -25 \longrightarrow 25$                                    |
| 22835 measured reflections               | $l = -9 \rightarrow 9$                                          |
| 3671 independent reflections             |                                                                 |
|                                          |                                                                 |

#### Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier           |
|-------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                      | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.064$                 | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.130$                               | neighbouring sites                                         |
| S = 1.20                                        | H-atom parameters constrained                              |
| 3671 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0574P)^2]$                    |
| 366 parameters                                  | where $P = (F_o^2 + 2F_c^2)/3$                             |
| 21 restraints                                   | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| Primary atom site location: structure-invariant | $\Delta  ho_{ m max} = 0.27 \ { m e} \ { m \AA}^{-3}$      |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$ |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

T = 100 K

Plate, yellow

 $0.40 \times 0.10 \times 0.02 \text{ mm}$ 

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|    | x          | У            | Ζ          | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|----|------------|--------------|------------|-----------------------------|-----------|
| C1 | 0.5397 (2) | 0.49641 (14) | 0.8189 (4) | 0.0232 (7)                  |           |
| H1 | 0.6035     | 0.5134       | 0.9052     | 0.028*                      |           |
| C2 | 0.5215 (2) | 0.43405 (14) | 0.8152 (4) | 0.0244 (7)                  |           |
| H2 | 0.5736     | 0.4074       | 0.8954     | 0.029*                      |           |
| C3 | 0.4250 (2) | 0.40863 (14) | 0.6920 (4) | 0.0256 (7)                  |           |
| Н3 | 0.4112     | 0.3649       | 0.6926     | 0.031*                      |           |
| C4 | 0.3514 (3) | 0.44534 (14) | 0.5727 (4) | 0.0270 (7)                  |           |
| H4 | 0.2861     | 0.4272       | 0.4923     | 0.032*                      |           |
| C5 | 0.2406 (3) | 0.64981 (14) | 0.3137 (4) | 0.0259 (7)                  |           |
| Н5 | 0.1804     | 0.6312       | 0.2244     | 0.031*                      |           |
| C6 | 0.2548 (3) | 0.71290 (15) | 0.3180 (4) | 0.0270 (7)                  |           |
| H6 | 0.2043     | 0.7379       | 0.2307     | 0.032*                      |           |
| C7 | 0.3419 (3) | 0.74185 (14) | 0.4480 (4) | 0.0276 (7)                  |           |
| H7 | 0.3494     | 0.7861       | 0.4485     | 0.033*                      |           |
| C8 | 0.4158 (3) | 0.70724 (14) | 0.5734 (4) | 0.0259 (7)                  |           |
| H8 | 0.4750     | 0.7274       | 0.6608     | 0.031*                      |           |
| C9 | 0.4804 (2) | 0.60253 (14) | 0.6994 (4) | 0.0228 (7)                  |           |

| N10  | 0.30150 (19) | 0.54800 (11) | 0.4416 (3)  | 0.0202 (6)  |           |
|------|--------------|--------------|-------------|-------------|-----------|
| C11  | 0.4655 (2)   | 0.53731 (14) | 0.6964 (3)  | 0.0198 (7)  |           |
| C12  | 0.3708 (2)   | 0.51042 (13) | 0.5666 (3)  | 0.0197 (7)  |           |
| C13  | 0.4053 (2)   | 0.64062 (14) | 0.5748 (3)  | 0.0217 (7)  |           |
| C14  | 0.3153 (2)   | 0.61197 (14) | 0.4420 (4)  | 0.0214 (7)  |           |
| C15  | 0.5682 (3)   | 0.63250 (16) | 0.8509 (5)  | 0.0203 (8)  | 0.886 (4) |
| 016  | 0.6746 (2)   | 0.61632 (10) | 0.8552 (3)  | 0.0228 (6)  | 0.886 (4) |
| O17  | 0.54773 (18) | 0.66490 (10) | 0.9577 (3)  | 0.0233 (6)  | 0.886 (4) |
| C18  | 0.7648 (3)   | 0.63594 (16) | 1.0013 (5)  | 0.0214 (8)  | 0.886 (4) |
| C19  | 0.8199 (4)   | 0.5892 (2)   | 1.1130 (6)  | 0.0238 (11) | 0.886 (4) |
| H19  | 0.7951       | 0.5471       | 1.0913      | 0.029*      | 0.886 (4) |
| C20  | 0.9110 (6)   | 0.6034 (4)   | 1.2562 (16) | 0.024 (3)   | 0.886 (4) |
| H20  | 0.9488       | 0.5717       | 1.3352      | 0.028*      | 0.886 (4) |
| C21  | 0.9461 (6)   | 0.6656 (4)   | 1.2820 (10) | 0.0287 (19) | 0.886 (4) |
| H21  | 1.0091       | 0.6757       | 1.3801      | 0.034*      | 0.886 (4) |
| C22  | 0.8935 (5)   | 0.7129 (3)   | 1.1712 (8)  | 0.0236 (16) | 0.886 (4) |
| H22  | 0.9202       | 0.7548       | 1.1900      | 0.028*      | 0.886 (4) |
| C23  | 0.8005 (4)   | 0.69750 (19) | 1.0318 (7)  | 0.0237 (13) | 0.886 (4) |
| N24  | 0.7429 (3)   | 0.74990 (16) | 0.9243 (5)  | 0.0288 (8)  | 0.886 (4) |
| O25  | 0.7664 (7)   | 0.8028 (5)   | 0.9836 (11) | 0.054 (3)   | 0.886 (4) |
| O26  | 0.6766 (2)   | 0.73880 (12) | 0.7809 (3)  | 0.0415 (8)  | 0.886 (4) |
| C15A | 0.612 (2)    | 0.6275 (10)  | 0.776 (3)   | 0.016 (5)*  | 0.114 (4) |
| 016A | 0.6247 (17)  | 0.6231 (8)   | 0.943 (3)   | 0.022 (5)*  | 0.114 (4) |
| 017A | 0.6748 (15)  | 0.6451 (8)   | 0.706 (2)   | 0.026 (5)*  | 0.114 (4) |
| C18A | 0.737 (2)    | 0.6387 (8)   | 1.058 (4)   | 0.015 (7)*  | 0.114 (4) |
| C19A | 0.801 (2)    | 0.5901 (16)  | 1.155 (4)   | 0.022 (12)* | 0.114 (4) |
| H19A | 0.7753       | 0.5480       | 1.1409      | 0.027*      | 0.114 (4) |
| C20A | 0.905 (4)    | 0.607 (3)    | 1.273 (13)  | 0.04 (4)*   | 0.114 (4) |
| H20A | 0.9403       | 0.5732       | 1.3464      | 0.053*      | 0.114 (4) |
| C21A | 0.968 (3)    | 0.662 (2)    | 1.307 (6)   | 0.000 (10)* | 0.114 (4) |
| H21A | 1.0423       | 0.6690       | 1.3819      | 0.000*      | 0.114 (4) |
| C22A | 0.890 (3)    | 0.703 (2)    | 1.202 (5)   | 0.000 (10)* | 0.114 (4) |
| H22A | 0.9125       | 0.7456       | 1.2248      | 0.000*      | 0.114 (4) |
| C23A | 0.786 (3)    | 0.6977 (13)  | 1.071 (5)   | 0.018 (13)* | 0.114 (4) |
| N24A | 0.718 (2)    | 0.7556 (14)  | 0.982 (4)   | 0.020 (8)*  | 0.114 (4) |
| O25A | 0.762 (3)    | 0.802 (2)    | 0.974 (5)   | 0.000 (8)*  | 0.114 (4) |
| O26A | 0.6136 (15)  | 0.7479 (8)   | 0.911 (2)   | 0.027 (5)*  | 0.114 (4) |
| C27  | 0.2090 (3)   | 0.51967 (15) | 0.3011 (4)  | 0.0317 (8)  |           |
| H27A | 0.1377       | 0.5242       | 0.3271      | 0.047*      |           |
| H27B | 0.2249       | 0.4751       | 0.2912      | 0.047*      |           |
| H27C | 0.2027       | 0.5408       | 0.1914      | 0.047*      |           |
| S28  | 0.15313 (6)  | 0.90846 (3)  | 0.25166 (9) | 0.0233 (2)  |           |
| O29  | 0.11820 (19) | 0.95900 (10) | 0.1300 (3)  | 0.0358 (6)  |           |
| O30  | 0.23911 (17) | 0.92471 (11) | 0.4117 (3)  | 0.0357 (6)  |           |
| 031  | 0.16858 (18) | 0.84963 (10) | 0.1774 (3)  | 0.0330 (6)  |           |
| C32  | 0.0297 (3)   | 0.89497 (15) | 0.3214 (4)  | 0.0277 (7)  |           |
| F33  | 0.00993 (15) | 0.94384 (9)  | 0.4102 (2)  | 0.0424 (5)  |           |
| F34  | 0.04372 (16) | 0.84469 (9)  | 0.4239 (2)  | 0.0420 (5)  |           |
|      | - · (= ~ /   | \- /         | (=)         | · 、- /      |           |

# supporting information

F35

-0.06374 (14)

0.88552 (9)

0.1871 (2)

0.0383 (5)

Atomic displacement parameters  $(Å^2)$ 

|     | <i>U</i> <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | $U^{12}$     | $U^{13}$     | <i>U</i> <sup>23</sup> |
|-----|------------------------|-----------------|-----------------|--------------|--------------|------------------------|
| C1  | 0.0183 (16)            | 0.0225 (17)     | 0.0237 (16)     | -0.0010 (12) | -0.0004 (13) | -0.0002 (14)           |
| C2  | 0.0232 (17)            | 0.0199 (17)     | 0.0269 (17)     | 0.0035 (13)  | 0.0037 (14)  | 0.0013 (14)            |
| C3  | 0.0242 (18)            | 0.0209 (17)     | 0.0296 (17)     | -0.0006(13)  | 0.0055 (15)  | -0.0024 (14)           |
| C4  | 0.0269 (18)            | 0.0261 (18)     | 0.0244 (17)     | -0.0034 (14) | 0.0028 (14)  | -0.0041 (14)           |
| C5  | 0.0242 (18)            | 0.0297 (19)     | 0.0185 (16)     | 0.0031 (14)  | -0.0006 (13) | 0.0014 (14)            |
| C6  | 0.0268 (18)            | 0.0278 (18)     | 0.0245 (17)     | 0.0045 (14)  | 0.0054 (14)  | 0.0054 (15)            |
| C7  | 0.0272 (18)            | 0.0215 (17)     | 0.0321 (18)     | 0.0013 (14)  | 0.0067 (15)  | 0.0041 (15)            |
| C8  | 0.0236 (17)            | 0.0201 (17)     | 0.0292 (17)     | -0.0014 (13) | 0.0014 (14)  | 0.0014 (14)            |
| C9  | 0.0226 (17)            | 0.0209 (17)     | 0.0229 (16)     | -0.0027 (13) | 0.0043 (13)  | 0.0015 (14)            |
| N10 | 0.0196 (13)            | 0.0203 (13)     | 0.0180 (13)     | 0.0000 (10)  | 0.0018 (11)  | -0.0008 (11)           |
| C11 | 0.0180 (16)            | 0.0235 (17)     | 0.0188 (15)     | -0.0017 (12) | 0.0071 (13)  | -0.0028 (13)           |
| C12 | 0.0185 (16)            | 0.0221 (16)     | 0.0189 (15)     | -0.0017 (12) | 0.0065 (13)  | -0.0024 (13)           |
| C13 | 0.0191 (16)            | 0.0253 (17)     | 0.0204 (15)     | 0.0002 (13)  | 0.0057 (13)  | 0.0024 (14)            |
| C14 | 0.0215 (17)            | 0.0241 (17)     | 0.0201 (16)     | -0.0010 (13) | 0.0087 (13)  | 0.0002 (14)            |
| C15 | 0.022 (2)              | 0.0167 (19)     | 0.022 (2)       | 0.0029 (15)  | 0.0066 (19)  | 0.0084 (17)            |
| O16 | 0.0190 (14)            | 0.0237 (13)     | 0.0220 (14)     | 0.0007 (10)  | 0.0013 (12)  | -0.0028 (11)           |
| O17 | 0.0247 (14)            | 0.0191 (13)     | 0.0240 (13)     | 0.0000 (10)  | 0.0048 (11)  | -0.0015 (11)           |
| C18 | 0.017 (2)              | 0.027 (2)       | 0.021 (2)       | -0.0016 (15) | 0.0064 (18)  | -0.0052 (17)           |
| C19 | 0.024 (2)              | 0.022 (2)       | 0.024 (2)       | 0.0007 (16)  | 0.006 (2)    | -0.0038 (18)           |
| C20 | 0.023 (4)              | 0.024 (4)       | 0.024 (3)       | 0.0065 (17)  | 0.007 (3)    | 0.002 (2)              |
| C21 | 0.018 (3)              | 0.040 (4)       | 0.021 (3)       | 0.003 (3)    | -0.005 (3)   | -0.002 (2)             |
| C22 | 0.025 (3)              | 0.021 (3)       | 0.026 (3)       | -0.0035 (18) | 0.009 (2)    | 0.002 (2)              |
| C23 | 0.023 (2)              | 0.021 (3)       | 0.026 (3)       | 0.0007 (15)  | 0.006 (2)    | 0.0054 (18)            |
| N24 | 0.0216 (19)            | 0.031 (2)       | 0.029 (2)       | -0.0035 (15) | 0.0013 (18)  | 0.0065 (17)            |
| O25 | 0.052 (3)              | 0.022 (2)       | 0.074 (4)       | -0.0030 (15) | 0.001 (2)    | 0.0051 (18)            |
| O26 | 0.0337 (16)            | 0.0399 (16)     | 0.0378 (17)     | -0.0129 (12) | -0.0075 (14) | 0.0188 (13)            |
| C27 | 0.0317 (19)            | 0.0291 (18)     | 0.0226 (16)     | 0.0004 (15)  | -0.0078 (14) | 0.0004 (15)            |
| S28 | 0.0229 (4)             | 0.0225 (4)      | 0.0223 (4)      | -0.0002 (3)  | 0.0039 (3)   | -0.0007 (3)            |
| O29 | 0.0486 (15)            | 0.0244 (12)     | 0.0308 (12)     | -0.0008 (10) | 0.0075 (11)  | 0.0056 (10)            |
| O30 | 0.0236 (12)            | 0.0456 (14)     | 0.0315 (12)     | -0.0035 (10) | -0.0004 (10) | -0.0030 (11)           |
| O31 | 0.0359 (14)            | 0.0275 (12)     | 0.0359 (13)     | 0.0074 (10)  | 0.0118 (11)  | -0.0043 (11)           |
| C32 | 0.0272 (19)            | 0.0307 (19)     | 0.0198 (16)     | 0.0020 (14)  | -0.0003 (14) | -0.0047 (15)           |
| F33 | 0.0330 (11)            | 0.0523 (13)     | 0.0413 (11)     | 0.0043 (9)   | 0.0112 (9)   | -0.0191 (10)           |
| F34 | 0.0447 (12)            | 0.0468 (13)     | 0.0325 (11)     | -0.0133 (9)  | 0.0095 (9)   | 0.0070 (10)            |
| F35 | 0.0232 (10)            | 0.0496 (12)     | 0.0348 (11)     | -0.0054 (8)  | -0.0012 (9)  | -0.0076 (9)            |
|     |                        |                 |                 |              |              |                        |

Geometric parameters (Å, °)

| C1—C2  | 1.350 (4) | C20—H20 | 0.9500    | - |
|--------|-----------|---------|-----------|---|
| C1-C11 | 1.423 (4) | C21—C22 | 1.374 (7) |   |
| C1—H1  | 0.9500    | C21—H21 | 0.9500    |   |
| C2—C3  | 1.408 (4) | C22—C23 | 1.380 (5) |   |
| C2—H2  | 0.9500    | C22—H22 | 0.9500    |   |
|        |           |         |           |   |

| C3—C4            | 1.354 (4)            | C23—N24                         | 1.461 (6)          |
|------------------|----------------------|---------------------------------|--------------------|
| С3—Н3            | 0.9500               | N24—O26                         | 1.219 (4)          |
| C4—C12           | 1.415 (4)            | N24—O25                         | 1.227 (10)         |
| C4—H4            | 0.9500               | C15A—O17A                       | 1.17 (3)           |
| C5—C6            | 1.358 (4)            | C15A—O16A                       | 1.31 (3)           |
| C5—C14           | 1.411 (4)            | 016A—C18A                       | 1.46 (3)           |
| C5—H5            | 0.9500               | C18A - C19A                     | 1.390 (8)          |
| C6—C7            | 1.396 (4)            | C18A—C23A                       | 1.390 (8)          |
| C6—H6            | 0.9500               | C19A - C20A                     | 1 390 (8)          |
| C7—C8            | 1 356 (4)            | C19A—H19A                       | 0.9500             |
| C7—H7            | 0.9500               | C20A - C21A                     | 1 390 (8)          |
| C8-C13           | 1 430 (4)            | $C_{20A}$ H20A                  | 0.9500             |
| C8—H8            | 0.9500               | $C_{20}$                        | 1 390 (8)          |
| C9-C13           | 1 401 (4)            | $C_{21A}$ $H_{21A}$             | 0.9500             |
| $C_{P}$          | 1.401(4)<br>1.405(4) | $C_{22} \Delta = C_{23} \Delta$ | 1 390 (8)          |
| $C_{0}$ $C_{15}$ | 1.405 (4)            | $C_{22}A = C_{23}A$             | 0.9500             |
| $C_{2}$          | 1.500(3)             | $C_{22A} = M_{22A}$             | 1.54(5)            |
| N10 C12          | 1.05(3)<br>1.366(4)  | $N24A \qquad O25A$              | 1.34(3)            |
| N10-C14          | 1.300(4)<br>1.377(4) | N24A = 025A                     | 1.13(0)<br>1.26(3) |
| N10-C14          | 1.377(4)             | N24A - 020A                     | 1.20 (3)           |
| N10-C27          | 1.472(4)             | $C_2/-H_2/A$                    | 0.9800             |
| C12 - C12        | 1.431(4)             | $C_2/-H_2/B$                    | 0.9800             |
| C13—C14          | 1.420 (4)            | $C_2/-H_2/C$                    | 0.9800             |
|                  | 1.199 (4)            | S28—031                         | 1.433 (2)          |
|                  | 1.361 (5)            | S28—029                         | 1.435 (2)          |
| 016-018          | 1.415 (4)            | S28—O30                         | 1.441 (2)          |
| C18—C19          | 1.378 (5)            | S28—C32                         | 1.821 (3)          |
| C18—C23          | 1.385 (5)            | C32—F35                         | 1.335 (3)          |
| C19—C20          | 1.378 (6)            | C32—F33                         | 1.336 (3)          |
| С19—Н19          | 0.9500               | C32—F34                         | 1.336 (4)          |
| C20—C21          | 1.393 (6)            |                                 |                    |
| C2C1C11          | 121.5 (3)            | C21—C20—H20                     | 120.9              |
| C2—C1—H1         | 119.2                | C22—C21—C20                     | 122.7 (7)          |
| C11—C1—H1        | 119.2                | C22—C21—H21                     | 118.7              |
| C1—C2—C3         | 119.8 (3)            | C20—C21—H21                     | 118.7              |
| С1—С2—Н2         | 120.1                | C21—C22—C23                     | 117.8 (6)          |
| С3—С2—Н2         | 120.1                | C21—C22—H22                     | 121.1              |
| C4—C3—C2         | 121.2 (3)            | C23—C22—H22                     | 121.1              |
| С4—С3—Н3         | 119.4                | C22—C23—C18                     | 120.8 (5)          |
| С2—С3—Н3         | 119.4                | C22—C23—N24                     | 115.8 (4)          |
| C3—C4—C12        | 120.6 (3)            | C18—C23—N24                     | 123.4 (4)          |
| C3—C4—H4         | 119.7                | O26—N24—O25                     | 124.0 (5)          |
| C12—C4—H4        | 119.7                | O26—N24—C23                     | 118.6 (3)          |
| C6—C5—C14        | 119.9 (3)            | O25—N24—C23                     | 117.3 (5)          |
| С6—С5—Н5         | 120.0                | O17A—C15A—O16A                  | 130 (3)            |
| C14—C5—H5        | 120.0                | O17A—C15A—C9                    | 131 (2)            |
| C5—C6—C7         | 121.5 (3)            | O16A—C15A—C9                    | 98.7 (19)          |
| С5—С6—Н6         | 119.2                | C15A—O16A—C18A                  | 115 (2)            |

| С7—С6—Н6      | 119.2     | C19A—C18A—C23A        | 118 (3)     |
|---------------|-----------|-----------------------|-------------|
| C8—C7—C6      | 120.5 (3) | C19A—C18A—O16A        | 117 (2)     |
| С8—С7—Н7      | 119.7     | C23A—C18A—O16A        | 125 (2)     |
| С6—С7—Н7      | 119.7     | C18A—C19A—C20A        | 116 (4)     |
| C7—C8—C13     | 120.4 (3) | C18A—C19A—H19A        | 122.0       |
| С7—С8—Н8      | 119.8     | С20А—С19А—Н19А        | 122.0       |
| С13—С8—Н8     | 119.8     | C19A—C20A—C21A        | 134 (6)     |
| C13—C9—C11    | 120.6 (3) | C19A—C20A—H20A        | 112.9       |
| C13—C9—C15    | 119.3 (3) | C21A—C20A—H20A        | 112.9       |
| C11—C9—C15    | 119.6 (3) | C22A—C21A—C20A        | 100 (5)     |
| C13—C9—C15A   | 116.3 (9) | C22A—C21A—H21A        | 130.0       |
| C11—C9—C15A   | 116.0 (9) | C20A—C21A—H21A        | 130.0       |
| C12—N10—C14   | 122.2 (2) | C23A—C22A—C21A        | 136 (4)     |
| C12—N10—C27   | 119.4 (2) | C23A—C22A—H22A        | 112.2       |
| C14—N10—C27   | 118.4 (2) | C21A—C22A—H22A        | 112.2       |
| C9-C11-C1     | 122.9 (3) | C22A—C23A—C18A        | 114 (3)     |
| C9-C11-C12    | 119.0 (3) | C22A—C23A—N24A        | 122 (3)     |
| C1-C11-C12    | 118.1 (3) | C18A - C23A - N24A    | 122(3)      |
| N10-C12-C4    | 121.9 (3) | 0.25A - N.24A - 0.26A | 122(3)      |
| N10-C12-C11   | 119.5 (3) | 025A - N24A - C23A    | 121 (3)     |
| C4-C12-C11    | 118.6 (3) | O26A - N24A - C23A    | 117(2)      |
| C9-C13-C14    | 118.9 (3) | N10—C27—H27A          | 109.5       |
| C9—C13—C8     | 122.8 (3) | N10-C27-H27B          | 109.5       |
| C14—C13—C8    | 118.2 (3) | H27A—C27—H27B         | 109.5       |
| N10—C14—C5    | 120.9 (3) | N10—C27—H27C          | 109.5       |
| N10-C14-C13   | 119.7 (3) | H27A—C27—H27C         | 109.5       |
| C5—C14—C13    | 119.4 (3) | H27B—C27—H27C         | 109.5       |
| O17—C15—O16   | 123.8 (3) | O31—S28—O29           | 114.95 (13) |
| O17—C15—C9    | 124.8 (3) | O31—S28—O30           | 115.49 (13) |
| O16—C15—C9    | 111.3 (3) | O29—S28—O30           | 114.64 (14) |
| C15—O16—C18   | 117.1 (3) | O31—S28—C32           | 103.36 (14) |
| C19—C18—C23   | 120.4 (4) | O29—S28—C32           | 103.35 (14) |
| C19—C18—O16   | 115.8 (3) | O30—S28—C32           | 102.57 (13) |
| C23—C18—O16   | 123.8 (3) | F35—C32—F33           | 107.3 (2)   |
| C20—C19—C18   | 120.1 (5) | F35—C32—F34           | 107.2 (3)   |
| С20—С19—Н19   | 119.9     | F33—C32—F34           | 107.5 (2)   |
| C18—C19—H19   | 119.9     | F35—C32—S28           | 112.0 (2)   |
| C19—C20—C21   | 118.2 (6) | F33—C32—S28           | 111.3 (2)   |
| С19—С20—Н20   | 120.9     | F34—C32—S28           | 111.4 (2)   |
|               |           |                       | ~ /         |
| C11—C1—C2—C3  | -2.3 (4)  | C15—O16—C18—C23       | -71.5 (5)   |
| C1—C2—C3—C4   | 2.2 (4)   | C23—C18—C19—C20       | 0.1 (10)    |
| C2—C3—C4—C12  | 1.2 (4)   | O16—C18—C19—C20       | 178.1 (8)   |
| C14—C5—C6—C7  | -0.4 (4)  | C18—C19—C20—C21       | -1.1 (15)   |
| C5—C6—C7—C8   | 0.6 (4)   | C19—C20—C21—C22       | 0.3 (17)    |
| C6—C7—C8—C13  | -0.3 (4)  | C20—C21—C22—C23       | 1.6 (13)    |
| C13—C9—C11—C1 | 179.5 (3) | C21—C22—C23—C18       | -2.6 (10)   |
| C15—C9—C11—C1 | -8.7 (4)  | C21—C22—C23—N24       | 176.1 (6)   |
|               | × /       |                       | × /         |

| C15A—C9—C11—C1  | 30.1 (10)   | C19—C18—C23—C22     | 1.9 (9)     |
|-----------------|-------------|---------------------|-------------|
| C13—C9—C11—C12  | -1.5 (4)    | O16—C18—C23—C22     | -175.9 (5)  |
| C15—C9—C11—C12  | 170.4 (3)   | C19—C18—C23—N24     | -176.8(5)   |
| C15A—C9—C11—C12 | -150.9 (10) | O16-C18-C23-N24     | 5.4 (8)     |
| C2—C1—C11—C9    | 178.3 (3)   | C22—C23—N24—O26     | 164.5 (5)   |
| C2-C1-C11-C12   | -0.7 (4)    | C18—C23—N24—O26     | -16.8 (8)   |
| C14—N10—C12—C4  | 175.3 (3)   | C22—C23—N24—O25     | -14.1 (9)   |
| C27—N10—C12—C4  | -4.8 (4)    | C18—C23—N24—O25     | 164.6 (6)   |
| C14—N10—C12—C11 | -4.1 (4)    | C13—C9—C15A—O17A    | -50 (3)     |
| C27—N10—C12—C11 | 175.7 (2)   | C11—C9—C15A—O17A    | 101 (3)     |
| C3—C4—C12—N10   | 176.2 (3)   | C15—C9—C15A—O17A    | -154 (4)    |
| C3—C4—C12—C11   | -4.3 (4)    | C13—C9—C15A—O16A    | 128.8 (13)  |
| C9-C11-C12-N10  | 4.4 (4)     | C11—C9—C15A—O16A    | -80.5 (16)  |
| C1-C11-C12-N10  | -176.5 (2)  | C15—C9—C15A—O16A    | 24.6 (10)   |
| C9—C11—C12—C4   | -175.1 (3)  | O17A—C15A—O16A—C18A | -4 (4)      |
| C1—C11—C12—C4   | 4.0 (4)     | C9—C15A—O16A—C18A   | 176.8 (14)  |
| C11—C9—C13—C14  | -1.7 (4)    | C15A—O16A—C18A—C19A | -112 (3)    |
| C15—C9—C13—C14  | -173.6 (3)  | C15A—O16A—C18A—C23A | 65 (4)      |
| C15A—C9—C13—C14 | 147.6 (10)  | C23A—C18A—C19A—C20A | 7 (7)       |
| C11—C9—C13—C8   | 179.1 (3)   | O16A-C18A-C19A-C20A | -175 (6)    |
| C15—C9—C13—C8   | 7.3 (4)     | C18A—C19A—C20A—C21A | -8 (14)     |
| C15A—C9—C13—C8  | -31.5 (10)  | C19A—C20A—C21A—C22A | 8 (13)      |
| C7—C8—C13—C9    | 178.9 (3)   | C20A—C21A—C22A—C23A | -11 (9)     |
| C7—C8—C13—C14   | -0.3 (4)    | C21A—C22A—C23A—C18A | 13 (8)      |
| C12—N10—C14—C5  | -178.3 (2)  | C21A—C22A—C23A—N24A | 178 (5)     |
| C27—N10—C14—C5  | 1.8 (4)     | C19A—C18A—C23A—C22A | -9 (5)      |
| C12—N10—C14—C13 | 0.9 (4)     | O16A—C18A—C23A—C22A | 174 (3)     |
| C27—N10—C14—C13 | -178.9 (2)  | C19A—C18A—C23A—N24A | -174 (3)    |
| C6—C5—C14—N10   | 179.1 (3)   | O16A—C18A—C23A—N24A | 9 (5)       |
| C6—C5—C14—C13   | -0.2 (4)    | C22A—C23A—N24A—O25A | 27 (6)      |
| C9—C13—C14—N10  | 2.0 (4)     | C18A—C23A—N24A—O25A | -169 (4)    |
| C8—C13—C14—N10  | -178.7 (2)  | C22A—C23A—N24A—O26A | -157 (4)    |
| C9—C13—C14—C5   | -178.7 (3)  | C18A—C23A—N24A—O26A | 7 (5)       |
| C8—C13—C14—C5   | 0.5 (4)     | O31—S28—C32—F35     | -66.2 (2)   |
| C13—C9—C15—O17  | 61.8 (4)    | O29—S28—C32—F35     | 53.9 (2)    |
| C11—C9—C15—O17  | -110.2 (4)  | O30—S28—C32—F35     | 173.4 (2)   |
| C15A—C9—C15—O17 | 156.3 (16)  | O31—S28—C32—F33     | 173.78 (19) |
| C13—C9—C15—O16  | -120.4 (3)  | O29—S28—C32—F33     | -66.1 (2)   |
| C11—C9—C15—O16  | 67.6 (4)    | O30—S28—C32—F33     | 53.4 (2)    |
| C15A—C9—C15—O16 | -25.9 (15)  | O31—S28—C32—F34     | 53.8 (2)    |
| O17—C15—O16—C18 | 4.3 (5)     | O29—S28—C32—F34     | 173.94 (19) |
| C9—C15—O16—C18  | -173.5 (3)  | O30—S28—C32—F34     | -66.6 (2)   |
| C15—O16—C18—C19 | 110.6 (4)   |                     |             |

# Hydrogen-bond geometry (Å, °)

| D—H···A                | <i>D</i> —Н | H···A | D····A    | <i>D</i> —H··· <i>A</i> |
|------------------------|-------------|-------|-----------|-------------------------|
| C2—H2…O30 <sup>i</sup> | 0.95        | 2.39  | 3.111 (4) | 132                     |

# supporting information

| .95 2 | 2.59                                         | 3.268 (10)                           | 129                                                                                         |
|-------|----------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------|
| .95 2 | 2.55                                         | 3.339 (4)                            | 141                                                                                         |
| .95 2 | 2.44                                         | 3.196 (4)                            | 136                                                                                         |
| .95 2 | 2.59                                         | 3.273 (9)                            | 129                                                                                         |
| .98 2 | 2.57                                         | 3.246 (4)                            | 126                                                                                         |
| .98 2 | 2.56                                         | 3.508 (4)                            | 162                                                                                         |
|       | 95 2<br>95 2<br>95 2<br>95 2<br>98 2<br>98 2 | 952.59952.55952.44952.59982.57982.56 | 952.593.268 (10)952.553.339 (4)952.443.196 (4)952.593.273 (9)982.573.246 (4)982.563.508 (4) |

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+3/2; (ii) *x*, -*y*+3/2, *z*-1/2; (iii) *x*, -*y*+3/2, *z*+1/2.