

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,2'-[1-(2,4,6-Trichlorophenyl)-1H-1,2,4triazole-3,5-diyl]diphenol

Zhong-Shu Li,^a Xiu-Bing Li^b and Bai-Wang Sun^a*

^aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China, and ^bDepartment of Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resources of the Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China

Correspondence e-mail: chmsunbw@seu.edu.cn

Received 27 December 2007; accepted 15 January 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.105; data-to-parameter ratio = 13.4.

The title compound, C₂₀H₁₂Cl₃N₃O₂, was synthesized by the reaction of 2-(2-hydroxyphenyl)benz[e][1,3]oxazin-4-one with 2,4,6-trichlorophenylhydrazine in ethanol. The trichlorophenyl ring is nearly perpendicular to the triazole plane [dihedral angle $80.56 (8)^{\circ}$], whereas the two hydroxyphenyl rings are approximately coplanar with the triazole ring [dihedral angles of 2.79 (12) and 8.00 $(14)^{\circ}$]. Intramolecular O-H···N hydrogen bonding is observed between the hydroxyphenyl and triazole rings.

Related literature

For general background, see: Nisbet-Brown et al. (2003); Steinhauser et al. (2004).

16254 measured reflections

 $R_{\rm int} = 0.047$

3501 independent reflections

3052 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$C_{20}H_{12}Cl_3N_3O_2$	V = 1998.7 (7) Å ³
$M_r = 432.68$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 14.328 (3) Å	$\mu = 0.48 \text{ mm}^{-1}$
b = 12.021 (2) Å	T = 293 (2) K
c = 12.014 (2) Å	$0.20 \times 0.20 \times 0.18 \text{ mm}$
$\beta = 104.99 \ (3)^{\circ}$	

Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\min} = 0.907, T_{\max} = 0.915$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	H atoms treated by a mixture of
$wR(F^2) = 0.104$	independent and constrained
S = 1.11	refinement
3501 reflections	$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$
261 parameters	$\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (A, °).	
--------------------------------	--

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O1 - H1A \cdots N3 \\ O2 - H2A \cdots N2 \end{array}$	0.83 (3)	1.89 (3)	2.640 (3)	149 (3)
	0.81 (2)	1.94 (2)	2.648 (3)	146 (3)

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008); program(s) used to refine structure: SHELXTL/PC; molecular graphics: SHELXTL/PC; software used to prepare material for publication: SHELXTL/PC.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2398).

References

Nisbet-Brown, E., Olivieri, N. F., Giardina, P. J., Grady, R. W., Neufeld, E. J., Sechaud, R., Krebs-Brown, A. J., Anderson, J. R., Alberti, D., Sizer, K. C. & Nathan, D. G. (2003). Lancet, 361, 1597-1602.

Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Steinhauser, S., Heinz, U., Bartholomä, M., Weyhermüller, T., Nick, H. & Hegetschweiler, K. (2004). Eur. J. Inorg. Chem. pp. 4177-4192.

supporting information

Acta Cryst. (2008). E64, o491 [doi:10.1107/S1600536808001505]

2,2'-[1-(2,4,6-Trichlorophenyl)-1H-1,2,4-triazole-3,5-diyl]diphenol

Zhong-Shu Li, Xiu-Bing Li and Bai-Wang Sun

S1. Comment

3,5-Bis(2-hydroxyphenyl)-1-phenyl-1,2,4-triazole core has been successfully used a motif for the development of biologically interesting molecules, including active iron chelator (Nisbet-Brown *et al.*, 2003; Steinhauser *et al.*, 2004). We report here the crystal structure of the title triazole compound.

In the title molecule (Fig. 1), 3-(2-hydroxyphenyl) is almost co-planar with 1,2,4-triazole ring, dihedral angle being 2.79 (12)°. The 5-(2-hydroxyphenyl) ring forms a dihedral angle of 9.70 (13)° with triazole plane. The trichlorophenyl is nearly perpendicular to the triazole plane with a dihedral angle of 80.56 (8)°. Intra-molecular N—H···O hydrogen bonding is observed between hydroxyphenyl and triazole rings (Table 1).

S2. Experimental

2-(2-Hydroxyphenyl)benz[e][1,3]oxazin-4-one (2.4 g) was mixed with 2,4,6-trichlorophenylhydrazine (2.2 g) in ethanol (30 ml). The mixture was refluxed for 3 h, after cooling to room temperature, the mixture was poured onto water and extracted with ethyl acetate. The combined organic phases were dried over sodium sulfate and concentrated on a rotary evaporator. The title compound was crystallized from methanol. The colourless crystals were obtained by slow evaporation of methanol.

S3. Refinement

H atoms bound to carbon were placed in calculated positions and refined in riding mode with C—H = 0.93 Å and $U_{iso}(H)=1.2U_{eq}(C)$. Hydroxyl H atoms were located in a difference Fourier map and refined isotropically.

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

2,2'-[1-(2,4,6-Trichlorophenyl)-1H-1,2,4-triazole-3,5-diyl]diphenol

Crystal data	
$C_{20}H_{12}Cl_3N_3O_2$	F(000) = 880
$M_r = 432.68$	$D_{\rm x} = 1.438 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 5847 reflections
a = 14.328 (3) Å	$\theta = 3.0 - 28.4^{\circ}$
b = 12.021 (2) Å	$\mu = 0.48 \text{ mm}^{-1}$
c = 12.014 (2) Å	T = 293 K
$\beta = 104.99$ (3)°	Block, colourless
$V = 1998.7(7) Å^3$	$0.20 \times 0.20 \times 0.18 \text{ mm}$
Z = 4	
Data collection	
Rigaku SCXmini	Absorption correction: multi-scan
diffractometer	(CrystalClear; Rigaku, 2005)
Radiation source: fine-focus sealed tube	$T_{\min} = 0.907, T_{\max} = 0.915$
Graphite monochromator	16254 measured reflections
Detector resolution: 8.192 pixels mm ⁻¹	3501 independent reflections
ω scans	3052 reflections with $I > 2\sigma(I)$
	$R_{\rm int} = 0.047$

$\theta_{\text{max}} = 25.0^{\circ}, \theta_{\text{min}} = 3.1^{\circ}$	$k = -14 \rightarrow 14$
$h = -17 \rightarrow 17$	$l = -14 \rightarrow 14$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.104$	neighbouring sites
S = 1.11	H atoms treated by a mixture of independent
3501 reflections	and constrained refinement
261 parameters	$w = 1/[\sigma^2(F_o^2) + (0.034P)^2 + 0.892P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.36 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.35 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.25005 (6)	-0.25222 (6)	0.53114 (7)	0.0819 (3)
Cl2	0.36388 (5)	0.15110 (5)	0.40863 (6)	0.0679 (2)
C13	0.49510 (6)	-0.22786 (7)	0.25494 (7)	0.0814 (2)
N1	0.25668 (12)	-0.00229 (15)	0.52989 (14)	0.0448 (4)
N2	0.29844 (12)	0.00432 (15)	0.64746 (14)	0.0452 (4)
N3	0.14978 (11)	0.08336 (15)	0.60312 (14)	0.0437 (4)
C1	0.33274 (16)	0.04839 (17)	0.89318 (18)	0.0460 (5)
C2	0.34437 (19)	0.0687 (2)	1.0104 (2)	0.0625 (6)
H2C	0.4018	0.0490	1.0632	0.075*
C3	0.2707 (2)	0.1181 (2)	1.0485 (2)	0.0678 (7)
H3B	0.2788	0.1305	1.1268	0.081*
C4	0.1850 (2)	0.1491 (2)	0.9706 (2)	0.0638 (7)
H4A	0.1360	0.1823	0.9967	0.077*
C5	0.17289 (17)	0.13019 (19)	0.8534 (2)	0.0531 (6)
H5A	0.1155	0.1513	0.8014	0.064*
C6	0.24623 (14)	0.07958 (17)	0.81220 (17)	0.0410 (5)
C7	0.23151 (14)	0.05618 (16)	0.68776 (17)	0.0399 (4)
C8	0.16669 (14)	0.04599 (17)	0.50442 (18)	0.0422 (5)
C9	0.09851 (15)	0.06060 (19)	0.38957 (18)	0.0483 (5)
C10	0.01411 (16)	0.1254 (2)	0.3802 (2)	0.0555 (6)
C11	-0.04752 (19)	0.1462 (2)	0.2709 (3)	0.0749 (8)
H11A	-0.1024	0.1895	0.2645	0.090*

C12	-0.0282 (2)	0.1036 (3)	0.1730 (3)	0.0841 (9)
H12A	-0.0691	0.1202	0.1012	0.101*
C13	0.0522 (2)	0.0357 (3)	0.1803 (2)	0.0850 (9)
H13A	0.0637	0.0045	0.1142	0.102*
C14	0.11476 (18)	0.0154 (3)	0.2880 (2)	0.0698 (7)
H14A	0.1687	-0.0292	0.2930	0.084*
C15	0.31228 (14)	-0.05594 (18)	0.46145 (17)	0.0430 (5)
C16	0.36702 (15)	0.00659 (18)	0.40185 (17)	0.0454 (5)
C17	0.42321 (16)	-0.0452 (2)	0.33763 (19)	0.0524 (6)
H17A	0.4587	-0.0035	0.2978	0.063*
C18	0.42469 (17)	-0.1615 (2)	0.3349 (2)	0.0550 (6)
C19	0.37295 (18)	-0.2260 (2)	0.3944 (2)	0.0609 (6)
H19A	0.3758	-0.3033	0.3923	0.073*
C20	0.31687 (16)	-0.1727 (2)	0.4570 (2)	0.0520 (5)
01	-0.01130 (13)	0.16967 (17)	0.47345 (18)	0.0718 (5)
H1A	0.032 (2)	0.156 (3)	0.533 (3)	0.087 (10)*
O2	0.40802 (12)	-0.00300 (15)	0.86177 (16)	0.0593 (4)
H2A	0.3949 (19)	-0.013 (2)	0.793 (2)	0.064 (9)*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0879 (5)	0.0692 (5)	0.1039 (6)	-0.0208 (4)	0.0528 (5)	-0.0016 (4)
C12	0.0863 (5)	0.0487 (3)	0.0809 (5)	0.0037 (3)	0.0437 (4)	0.0037 (3)
C13	0.0916 (5)	0.0814 (5)	0.0878 (5)	0.0185 (4)	0.0529 (4)	-0.0117 (4)
N1	0.0394 (9)	0.0578 (11)	0.0380 (9)	0.0044 (8)	0.0116 (7)	-0.0019 (8)
N2	0.0411 (9)	0.0563 (11)	0.0381 (9)	0.0046 (8)	0.0100 (7)	-0.0020 (8)
N3	0.0368 (9)	0.0510 (10)	0.0449 (10)	0.0025 (7)	0.0136 (8)	0.0033 (8)
C1	0.0516 (12)	0.0416 (11)	0.0455 (12)	0.0003 (9)	0.0140 (10)	0.0031 (9)
C2	0.0686 (16)	0.0713 (16)	0.0440 (13)	0.0056 (13)	0.0083 (11)	0.0029 (11)
C3	0.091 (2)	0.0722 (17)	0.0421 (14)	0.0006 (15)	0.0210 (13)	-0.0036 (12)
C4	0.0784 (17)	0.0642 (16)	0.0581 (16)	0.0057 (13)	0.0345 (14)	-0.0086 (12)
C5	0.0543 (13)	0.0559 (14)	0.0511 (13)	0.0070 (11)	0.0176 (11)	-0.0018 (10)
C6	0.0460 (11)	0.0383 (10)	0.0411 (11)	-0.0023 (9)	0.0152 (9)	0.0008 (8)
C7	0.0383 (10)	0.0419 (11)	0.0409 (11)	-0.0005 (8)	0.0130 (9)	0.0016 (8)
C8	0.0358 (10)	0.0487 (12)	0.0438 (12)	-0.0022 (9)	0.0136 (9)	0.0033 (9)
C9	0.0389 (11)	0.0603 (14)	0.0441 (12)	-0.0057 (10)	0.0079 (9)	0.0071 (10)
C10	0.0417 (12)	0.0601 (14)	0.0614 (15)	-0.0054 (10)	0.0075 (11)	0.0078 (11)
C11	0.0527 (15)	0.0833 (19)	0.075 (2)	0.0037 (14)	-0.0075 (14)	0.0187 (15)
C12	0.0689 (19)	0.114 (3)	0.0552 (17)	-0.0103 (17)	-0.0095 (14)	0.0228 (16)
C13	0.0680 (18)	0.136 (3)	0.0463 (16)	-0.0049 (18)	0.0067 (13)	-0.0005 (16)
C14	0.0504 (14)	0.110(2)	0.0458 (14)	0.0045 (14)	0.0061 (11)	-0.0033 (14)
C15	0.0380 (10)	0.0542 (13)	0.0371 (11)	0.0028 (9)	0.0102 (9)	-0.0043 (9)
C16	0.0453 (12)	0.0498 (12)	0.0418 (11)	0.0031 (9)	0.0124 (9)	0.0005 (9)
C17	0.0521 (13)	0.0618 (15)	0.0476 (13)	0.0048 (11)	0.0210 (10)	0.0042 (10)
C18	0.0550 (13)	0.0635 (15)	0.0506 (13)	0.0096 (11)	0.0210 (11)	-0.0079 (11)
C19	0.0673 (16)	0.0496 (13)	0.0704 (17)	0.0009 (11)	0.0262 (13)	-0.0083 (11)
C20	0.0499 (12)	0.0550 (14)	0.0537 (13)	-0.0060 (10)	0.0180 (10)	-0.0029 (10)

supporting information

01	0.0472 (10)	0.0926 (14)	0.0714 (13)	0.0185 (9)	0.0078 (9)	-0.0004 (10)
O2	0.0530 (10)	0.0742 (12)	0.0491 (10)	0.0160 (8)	0.0103 (8)	0.0052 (9)

Geometric parameters (Å, °)

Geometric parameters (A,)			
Cl1—C20	1.751 (2)	C9—C14	1.410 (3)
Cl2—C16	1.740 (2)	C9—C10	1.419 (3)
Cl3—C18	1.754 (2)	C10—O1	1.371 (3)
N1—C8	1.374 (3)	C10-C11	1.402 (4)
N1—N2	1.386 (2)	C11—C12	1.375 (4)
N1—C15	1.437 (2)	C11—H11A	0.9300
N2—C7	1.335 (3)	C12—C13	1.395 (4)
N3—C8	1.347 (3)	C12—H12A	0.9300
N3—C7	1.377 (3)	C13—C14	1.392 (4)
C1—O2	1.378 (3)	C13—H13A	0.9300
C1—C2	1.396 (3)	C14—H14A	0.9300
C1—C6	1.414 (3)	C15—C20	1.406 (3)
C2—C3	1.388 (4)	C15—C16	1.408 (3)
C2—H2C	0.9300	C16—C17	1.397 (3)
C3—C4	1.387 (4)	C17—C18	1.399 (3)
С3—Н3В	0.9300	C17—H17A	0.9300
C4—C5	1.393 (3)	C18—C19	1.391 (3)
C4—H4A	0.9300	C19—C20	1.391 (3)
C5—C6	1.410 (3)	C19—H19A	0.9300
С5—Н5А	0.9300	O1—H1A	0.83 (3)
C6—C7	1.482 (3)	O2—H2A	0.80 (3)
C8—C9	1.480 (3)		
C8—N1—N2	109.60 (16)	C11—C10—C9	119.3 (2)
C8—N1—C15	133.55 (17)	C12-C11-C10	121.2 (3)
N2—N1—C15	116.84 (15)	C12—C11—H11A	119.4
C7—N2—N1	103.59 (15)	C10-C11-H11A	119.4
C8—N3—C7	104.99 (16)	C11—C12—C13	120.6 (3)
O2—C1—C2	117.2 (2)	C11—C12—H12A	119.7
O2—C1—C6	122.65 (19)	C13—C12—H12A	119.7
C2—C1—C6	120.2 (2)	C14—C13—C12	118.9 (3)
C3—C2—C1	120.3 (2)	C14—C13—H13A	120.5
C3—C2—H2C	119.9	C12—C13—H13A	120.5
C1—C2—H2C	119.9	C13—C14—C9	121.8 (3)
C4—C3—C2	120.6 (2)	C13—C14—H14A	119.1
C4—C3—H3B	119.7	C9—C14—H14A	119.1
С2—С3—Н3В	119.7	C20—C15—C16	118.40 (19)
C3—C4—C5	119.7 (2)	C20—C15—N1	120.51 (19)
C3—C4—H4A	120.2	C16—C15—N1	121.03 (19)
C5—C4—H4A	120.2	C17—C16—C15	121.3 (2)
C4—C5—C6	121.0 (2)	C17—C16—Cl2	119.75 (17)
C4—C5—H5A	119.5	C15—C16—Cl2	118.97 (16)
С6—С5—Н5А	119.5	C16—C17—C18	118.2 (2)

	110.05 (10)		1000
C5-C6-C1	118.25 (19)	C16—C17—H17A	120.9
C5—C6—C7	120.75 (19)	C18—C17—H17A	120.9
C1—C6—C7	120.97 (18)	C19—C18—C17	122.1 (2)
N2—C7—N3	113.35 (17)	C19—C18—Cl3	119.10 (19)
N2—C7—C6	121.76 (18)	C17—C18—Cl3	118.77 (18)
N3—C7—C6	124.89 (17)	C18—C19—C20	118.7 (2)
N3—C8—N1	108.46 (17)	C18—C19—H19A	120.7
N3—C8—C9	123.73 (18)	С20—С19—Н19А	120.7
N1—C8—C9	127.77 (19)	C19—C20—C15	121.3 (2)
C14-C9-C10	1181(2)	C19 - C20 - C11	11944(19)
C_{14} C_{9} C_{8}	1230(2)	C_{15} C_{20} C_{11}	119.25(17)
C_{10} C_{9} C_{8}	123.0(2) 118.8(2)	$C_{10} O_1 H_{1A}$	109.23(17)
01 C10 C11	117.4(2)	$C_1 C_2 H_2 $	109(2)
01 - 010 - 010	117.4(2) 122.2(2)	CI = O2 = II2A	110.0 (19)
01-010-09	125.5 (2)		
C8—N1—N2—C7	0.1 (2)	C14—C9—C10—O1	177.2 (2)
C15—N1—N2—C7	-179.52 (17)	C8—C9—C10—O1	-4.5 (3)
O2—C1—C2—C3	-178.7 (2)	C14—C9—C10—C11	-2.7(3)
C6—C1—C2—C3	0.9 (4)	C8—C9—C10—C11	175.6 (2)
C1—C2—C3—C4	-0.8(4)	O1—C10—C11—C12	-179.0(3)
C2-C3-C4-C5	0.2 (4)	C9-C10-C11-C12	0.9 (4)
$C_{3}-C_{4}-C_{5}-C_{6}$	0.2(4)	C10-C11-C12-C13	19(5)
C4-C5-C6-C1	0.2(1)	C_{11} C_{12} C_{13} C_{14}	-26(5)
C4-C5-C6-C7	177.9(2)	C_{12} C_{13} C_{14} C_{9}	0.7(5)
$C_{+} = C_{-} = C_{-} = C_{-}$	177.9(2) 170.0(2)	$C_{12} = C_{13} = C_{14} = C_{13}$	0.7(3)
02 - 01 - 00 - 05	1/9.0(2)	$C_{10}^{0} - C_{14}^{0} - C_{13}^{12}$	2.0(4)
$C_2 - C_1 - C_0 - C_3$	-0.0(3)	$C_{0} = C_{14} = C_{15}$	-1/0.5(3)
02-01-06-07	1.1 (3)	C8—N1—C15—C20	-100.5(3)
C2-C1-C6-C7	-1/8.4(2)	N2—N1—C15—C20	79.1 (2)
N1—N2—C7—N3	-0.2 (2)	C8—N1—C15—C16	82.6 (3)
N1—N2—C7—C6	179.23 (17)	N2—N1—C15—C16	-97.8 (2)
C8—N3—C7—N2	0.2 (2)	C20-C15-C16-C17	1.3 (3)
C8—N3—C7—C6	-179.23 (18)	N1—C15—C16—C17	178.30 (19)
C5—C6—C7—N2	-177.3 (2)	C20—C15—C16—Cl2	-178.83 (16)
C1C6C7N2	0.6 (3)	N1-C15-C16-Cl2	-1.8 (3)
C5-C6-C7-N3	2.1 (3)	C15—C16—C17—C18	-0.7 (3)
C1-C6-C7-N3	179.90 (19)	Cl2—C16—C17—C18	179.45 (17)
C7—N3—C8—N1	-0.1 (2)	C16—C17—C18—C19	-0.5 (4)
C7—N3—C8—C9	-178.01 (19)	C16—C17—C18—Cl3	-179.86 (17)
N2—N1—C8—N3	0.0 (2)	C17—C18—C19—C20	1.0 (4)
C15—N1—C8—N3	179.5 (2)	Cl3—C18—C19—C20	-179.63 (19)
N2—N1—C8—C9	177.80 (19)	C18—C19—C20—C15	-0.3 (4)
C15—N1—C8—C9	-2.6(4)	C18—C19—C20—C11	179.26 (19)
N3—C8—C9—C14	-176.2(2)	C16—C15—C20—C19	-0.8 (3)
N1-C8-C9-C14	6.3 (4)	N1-C15-C20-C19	-177.8(2)
N_{3} C_{8} C_{9} C_{10}	5.6 (3)	C_{16} C_{15} C_{20} C_{11}	179 62 (16)
N1 - C8 - C9 - C10	-1720(2)	N1-C15-C20-C11	26(3)
	1/2.0 (2)	111-013-020-011	2.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
01—H1A…N3	0.83 (3)	1.89 (3)	2.640 (3)	149 (3)
O2—H2A···N2	0.81 (2)	1.94 (2)	2.648 (3)	146 (3)