

metal-organic compounds

V = 1613.13 (16) Å³

 $0.43 \times 0.30 \times 0.11 \text{ mm}$

13081 measured reflections

3337 independent reflections

2127 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Mo Ka radiation

 $\mu = 0.14 \text{ mm}^{-1}$

T = 295 (2) K

 $R_{\rm int} = 0.083$

refinement

 $\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

Z = 4

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[triaquabis(μ_2 -3-carboxypyrazine-2-carboxylato)dilithium(I)]

Mustafa Tombul,^a* Kutalmış Güven^b and Orhan Büyükgüngör^c

^aDepartment of Chemistry, Faculty of Arts and Sciences, University of Kırıkkale Campus, Yahşihan, 71450 Kırıkkale, Turkey, ^bDepartment of Physics, Faculty of Arts and Sciences, University of Kırıkkale Campus, Yahşihan, 71450 Kırıkkale, Turkey, and ^cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Samsun, Turkey

Correspondence e-mail: mustafatombul38@gmail.com

Received 5 February 2008; accepted 14 February 2008

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.052; wR factor = 0.144; data-to-parameter ratio = 11.3.

In the title compound, $[Li_2(C_6H_3N_2O_4)_2(H_2O)_3]_n$, the coordination number for both independent Li⁺ cations is five. One of the Li⁺ ions has a distorted trigonal-bipyramidal geometry, coordinated by one of the carboxyl O atoms of a 3carboxypyrazine-2-carboxylate ligand, two O atoms from two water molecules, and an N and a carboxylate O atom of a second 3-carboxypyrazine-2-carboxylate ligand. The other Li⁺ ion also has a distorted trigonal-bipyramidal geometry, coordinated by one water molecule and two 3-carboxypyrazine-2-carboxylate ligands through an N and a carboxylate O atom from each. One of the carboxyl groups of the two ligands takes part in an intramolecular O-H···O hydrogen bond. The stabilization of the crystal structure is further assisted by O-H···O, O-H···N and C-H···O hydrogenbonding interactions involving the water molecules and carboxylate O atoms.

Related literature

For related literature, see: Chen *et al.* (2007); Clark & Reid (1995); Erxleben (2003); Fei, Ang *et al.* (2006); Fei, Geldbach *et al.* 2006); Gao *et al.* (2005); López Garzón *et al.* (2003); Grossie *et al.* (2006); Haiduc & Edelmann (1999); Janiak (2003); Kim *et al.* (2007); Kitagawa *et al.* (2004); Lehn (1995); Mueller *et al.* (2006); Nepveu *et al.* (1993); Pancholi & Patel (1996); Ptasiewicz-Bak & Leciejewicz (1997*a*,*b*); Richard *et al.* (1973); Speakman (1972); Sreenivasulu & Vittal (2004); Starosta & Leciejewicz (2005); Takusagawa & Shimada (1973); Tombul *et al.* (2006, 2007, 2008); Ye *et al.* (2005).

Experimental

Crystal data

 $\begin{bmatrix} \text{Li}_2(\text{C}_6\text{H}_3\text{N}_2\text{O}_4)_2(\text{H}_2\text{O})_3 \end{bmatrix} \\ M_r = 402.14 \\ \text{Monoclinic, } P2_1/c \\ a = 15.3413 \ (9) \text{ Å} \\ b = 7.9415 \ (4) \text{ Å} \\ c = 14.9097 \ (9) \text{ Å} \\ \beta = 117.371 \ (4)^{\circ} \\ \end{bmatrix}$

Data collection

Stoe IPDSII diffractometer Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{min} = 0.947, T_{max} = 0.985$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.143$ S = 1.003337 reflections 295 parameters 2 restraints

Table 1

Selected geometric parameters (Å, °).

Li1-O2	1.980 (5)	Li2-O3	1.974 (5)
Li1-O8	2.029 (5)	Li2-O5	1.990 (5)
Li1-O1	2.037 (5)	Li2-N3 ⁱ	2.198 (5)
Li1-O9	2.074 (5)	Li2-N2	2.272 (5)
Li1-N1	2.326 (5)	N3-Li2 ⁱⁱ	2.198 (5)
Li2-O4	1.901 (5)		
O2-Li1-O8	109.5 (2)	O4-Li2-O3	101.8 (2)
O2-Li1-O1	102.2 (2)	O4-Li2-O5	104.1 (2)
O8-Li1-O1	146.8 (3)	O3-Li2-O5	154.0 (3)
O2-Li1-O9	99.7 (2)	O4-Li2-N3 ⁱ	101.6 (2)
O8-Li1-O9	87.89 (19)	O3-Li2-N3 ⁱ	76.07 (15)
O1-Li1-O9	96.5 (2)	O5-Li2-N3 ⁱ	97.47 (19)
O2-Li1-N1	102.5 (2)	O4-Li2-N2	99.97 (19)
08-Li1-N1	71.58 (15)	O3-Li2-N2	101.89 (19)
O1-Li1-N1	92.45 (19)	O5-Li2-N2	74.75 (16)
O9-Li1-N1	153.7 (2)	N3 ⁱ -Li2-N2	158.3 (2)

Symmetry codes: (i) x + 1, y, z + 1; (ii) x - 1, y, z - 1.

Tal	ble	2	
-----	-----	---	--

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
O4−H4A…O3 ⁱⁱⁱ	0.926 (10)	1.830 (12)	2.743 (3)	168 (3)
$O4-H4B\cdots O5^{iv}$	0.93 (4)	1.89 (3)	2.816 (3)	171 (4)
$O2-H2A\cdots N4^{v}$	0.93 (4)	1.98 (4)	2.898 (3)	171 (4)
$O2-H2B\cdots O8^{v}$	0.93 (3)	1.84 (3)	2.772 (3)	175 (3)
$O1-H1A\cdots O2^{v}$	0.94 (5)	2.11 (4)	2.892 (3)	141 (6)
$O1-H1B\cdots O7^{vi}$	0.93 (5)	2.38 (5)	3.305 (3)	174 (6)
$C7-H7\cdots O11^{vii}$	0.93	2.52	3.184 (3)	129
O10−H10···O11	0.86 (3)	1.55 (3)	2.404 (3)	174 (5)
$O6-H7A\cdots O7$	0.86 (3)	1.53 (4)	2.380 (3)	172 (9)

Symmetry codes: (iii) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) $-x - 1, y + \frac{1}{2}, -z - \frac{1}{2}$; (vi) x, y + 1, z; (vii) x, y - 1, z.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2008).

The authors gratefully acknowledge the Faculty of Arts and Sciences, Kırıkkale University, for financial support and the Faculty of Arts and Sciences, Ondokuz Mayıs University, for use of the Stoe IPDSII diffractometer (purchased under grant F.279 of the University Research Fund).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2542).

References

Chen, Z., Fei, Z., Zhao, D., Feng, Y. & Yu, K. (2007). *Inorg. Chem. Commun.* **10**, 77–79.

Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.

Erxleben, A. (2003). Coord. Chem. Rev. 246, 203-228.

- Fei, Z., Ang, W. H., Geldbach, T. J., Scopelliti, R. & Dyson, P. J. (2006). Chem. Eur. J. 12, 4014–4020.
- Fei, Z., Geldbach, T. J., Zhao, D. & Dyson, P. J. (2006). Chem. Eur. J. 12, 2122– 2130.
- Gao, S., Liu, J.-W., Huo, L.-H. & Zhao, H. (2005). Acta Cryst. C61, m348–m350.
 Grossie, D. A., Feld, W. A., Scanlon, L., Sandi, G. & Wawrzak, Z. (2006). Acta Cryst. E62, m827–m829.
- Haiduc, I. & Edelmann, F. T. (1999). Supramolecular Organometallic Chemistry. New York: Wiley–VCH.
- Janiak, C. (2003). Dalton Trans. pp. 2781-2804.
- Kim, E.-J., Kim, C.-H. & Yun, S.-S. (2007). Acta Cryst. C63, m427-m429.
- Kitagawa, S., Kitaura, R. & Noro, S.-I. (2004). Angew. Chem. Int. Ed. 43, 2334– 2375.
- Lehn, J. M. (1995). Supramolecular Chemistry: Concepts and Perspectives. New York: Wilev–VCH.
- López Garzón, R., Godino Salido, M. L., Low, J. N. & Glidewell, C. (2003). Acta Cryst. C59, m255–m258.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Mueller, U., Schubert, M., Teich, F., Puetter, H., Arndt, K. S. & Pastre, J. (2006). J. Mater. Chem. 16, 626–636.
- Nepveu, F., Berkaoui, M. 'H. & Walz, L. (1993). Acta Cryst. C49, 1465–1466. Pancholi, H. B. & Patel, M. M. (1996). J. Polym. Mater. 13, 261–267.
- Ptasiewicz-Bak, H. & Leciejewicz, J. (1997a). Pol. J. Chem. 71, 493–500.
- Ptasiewicz-Bak, H. & Leciejewicz, J. (1997b). Pol. J. Chem. 71, 1603-1610.
- Richard, P., Tran Qui, D. & Bertaut, E. F. (1973). Acta Cryst. B29, 1111-1115.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Speakman, J. C. (1972). Struct. Bonding (Berlin), 12, 141-199.
- Sreenivasulu, B. & Vittal, J. J. (2004). Angew. Chem. Int. Ed. 42, 5769-5772.
- Starosta, W. & Leciejewicz, J. (2005). J. Coord. Chem. 58, 963-968.
- Stoe & Cie. (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
- Takusagawa, T. & Shimada, A. (1973). Chem. Lett. pp. 1121-1126.
- Tombul, M., Güven, K. & Alkış, N. (2006). Acta Cryst. E62, m945-m947.
- Tombul, M., Güven, K. & Büyükgüngör, O. (2007). Acta Cryst. E63, m1783– m1784.
- Tombul, M., Güven, K. & Svoboda, I. (2008). Acta Cryst. E64, m246-m247.
- Westrip, S. P. (2008). *publCIF*. In preparation.
- Ye, B.-H., Tong, M.-L. & Chen, X.-M. (2005). Coord. Chem. Rev. 249, 545–565.

supporting information

Acta Cryst. (2008). E64, m491-m492 [doi:10.1107/S1600536808004467]

Poly[triaquabis(µ₂-3-carboxypyrazine-2-carboxylato)dilithium(I)]

Mustafa Tombul, Kutalmış Güven and Orhan Büyükgüngör

S1. Comment

The systematic design of metal-organic frameworks has became the most fascinating and challenging area of research particularly during the last decade (Lehn, 1995; Haiduc & Edelmann, 1999). Hence, the synthesis of novel coordination polymers has advanced rapidly because of their applications in many areas such as, hydrogen storage (Kitagawa *et al.*, 2004; Mueller *et al.*, 2006), ion-exchange resins (Pancholi & Patel, 1996) and catalysis (Janiak, 2003). Multidendate carboxylic acids are found to be excellent ligands for the synthesis of coordination polymers giving the structures with a diverse range of topologies and conformations, due to the carboxylate groups being able to coordinate to a metal centre as a mono-, bi-, or multidentate ligand (Erxleben, 2003; Ye *et al.*, 2005; Fei, Geldbach *et al.*, 2006). Although most of the studies conducted in this area is primarily focused on coordination polymers containing transition metals as connectors, such as Zn, Ni and Co (Sreenivasulu & Vittal, 2004; Fei, Ang *et al.*, 2006), there is little attention on the Group I metal (López Garzón *et al.*, 2003; Gao *et al.*, 2005; Chen *et al.*, 2007).

Pyrazine-2,3-dicarboxylic acid (Takusagawa & Shimada, 1973) and its dianion (Richard *et al.*, 1973; Nepveu *et al.*, 1993) have been reported to be well suited for the construction of multidimentional frameworks (nD, n = 1–3), owing to the presence of two adjacent carboxylate groups (O donor atoms) as substituents on the N-heterocyclic pyrazine ring (N donor atoms). In recent years, a variety of metal-organic compound of pyrazine-2,3-dicarboxylic acid have been characterized crystallographically due to growing interest in supramolecular chemistry. Examples are including the calcium (Ptasiewicz-Bak & Leciejewicz, 1997*a*; Starosta & Leciejewicz, 2005), magnesium (Ptasiewicz-Bak & Leciejewicz, 1997*b*), sodium (Tombul *et al.* 2006), caesium (Tombul *et al.* 2007) and potassium (Tombul *et al.* 2008) complexes. Continuation our research on Group I dicarboxylates, we present here the synthesis and crystal structure of the hydrated polymeric dinuclear lithium complex, (I), formed with pyrazine-2,3-dicarboxylic acid.

As shown in Fig. 1, compound (I) is a polymeric dinuclear complex with two kinds of Li atoms, two kinds of pyrazine-2,3-dicarboxylate ligands and three water molecules in the asymmetric unit. The geometries of the two independent Li atoms are distorted trigonal-bipyramidal, while the coordination modes of the pyrazine-2,3-dicarboxylate ligands are chelation. The Li1 ion has a five-coordinate geometry and achieves the coordination number by bonding to one of the carboxylate O atom of pyrazine-2,3-dicarboxylate ligand, two O atoms from two water molecules and a chelation pyrazine-2,3-dicarboxylate ligand (through the interactions by utilizing both N and O atoms) of the adjacent molecule. The Li2 ion has also distorted trigonal-bipyramidal geometry, with one water molecule, one chelation ligand molecule (through the interactions by utilizing both N and O atoms) of the adjacent pyrazine-2–3-dicarboxylate ligand. There is no metal to-metal interaction; the Li–Li distance is 7.221 (2) Å. The Li–O distances are in the range 1.980 (5) Å to 2.074 (4) Å (for Li1) and 1.901 (5) Å to 1.974 (4) Å (for Li2), in accordance with the corresponding values reported for other lithium complexes (Chen *et al.* 2007; Kim *et al.* 2007). Li–N bond lengths also lie within the normal ranges found for similar bonds in the literature (Grossie *et al.* 2006). The C—O distances are comparable with structurally similar compounds (Chen *et al.* 2007). There are appreciable differences

between the two carboxyl groups of the each ligand molecule. The C—O distances at C6 and C12 are (1.228 (3) Å, 1.275 and 1.216 (3) Å, 1.283 (3) Å respectively), and these are fairly typical for a carboxylic acid group (Speakman, 1972). On the other hand, those at C5 and C11 are (1.236 (3) Å, 1.268 (3) Å and 1.247 (3) Å, 1.258 (3) Å respectively), giving a strong indication of a carboxylate ion. As is typically the case, the mean value of the four C—O distances in the different carboxyl/carboxylate groups is almost the same, at 1.254 (3) Å, 1.251 (3) Å and 1.252 (3) Å, 1.251 (3) Å, respectively.

In (I), one of the carboxyl groups of each ligand molecule holds its H atom, which takes part in an O—H···O [O···O = 2.380(3) 2.402(3) Å respectively] intramolecular hydrogen bonds. Atoms H6A and H10A involved in these bonds and maintain the charge balance within the structure. The dinuclear complexes are linked in a three-dimensional manner by further numerous intermolecular O—H···O·· O—H···N and C—H···O hydrogen bonds (Table 2).

S2. Experimental

Li₂CO₃ (220 mg, 3 mmol) was carefully added to an aqueous solution (20 ml) of pyrazine 2,3-dicarboxylic acid (1008 mg, 6 mmol), until no further bubbles formed. The reaction mixture gave a colourless and clear solution which was stirred at 323 K for 10 h, until it solidified. The solid product was then redissolved in water (5 ml) and allowed to stand for a day at ambient temperature, after which transparent fine crystals were harvested.

S3. Refinement

All H atoms were repositioned geometrically. They were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H = 0.93 Å, O—H in the range 0.86 - 0.94 Å) and U_{iso} (H) (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints.

Figure 1

Showing the atom-labelling scheme of (I). Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (a) -1 + x, y, -1 + z; (b) 1 + x, y, 1 + z].

Figure 2

View of the stacking structure of (I) within the unit cell, down the b axis.

Poly[triaquabis(μ_2 -3-carboxypyrazine-2-carboxylato)dilithium(I)]

Crystal data	
$[Li_2(C_6H_3N_2O_4)_2(H_2O)_3]$	F(000) = 824
$M_r = 402.14$	$D_{\rm x} = 1.656 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 15847 reflections
a = 15.3413 (9) Å	$\theta = 1.5 - 27.2^{\circ}$
b = 7.9415 (4) Å	$\mu = 0.15 \text{ mm}^{-1}$
c = 14.9097 (9) Å	T = 295 K
$\beta = 117.371 \ (4)^{\circ}$	Prism, colourless
$V = 1613.13 (16) Å^3$	$0.43 \times 0.30 \times 0.11 \text{ mm}$
Z = 4	
Data collection	
Stoe IPDSII	$T_{\min} = 0.947, \ T_{\max} = 0.985$
diffractometer	13081 measured reflections
Radiation source: sealed X-ray tube, 12 x 0.4	3337 independent reflections
mm long-fine focus	2127 reflections with $I > 2\sigma(I)$
Plane graphite monochromator	$R_{\rm int} = 0.083$
Detector resolution: 6.67 pixels mm ⁻¹	$\theta_{\rm max} = 26.5^{\circ}, \ \theta_{\rm min} = 1.5^{\circ}$
rotation method scans	$h = -19 \rightarrow 19$
Absorption correction: integration	$k = -9 \rightarrow 9$
(X-RED32; Stoe & Cie, 2002)	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.051$	H atoms treated by a mixture of independent
$wR(F^2) = 0.143$	and constrained refinement
S = 1.00	$w = 1/[\sigma^2(F_o^2) + (0.0627P)^2]$
3337 reflections	where $P = (F_o^2 + 2F_c^2)/3$
295 parameters	$(\Delta/\sigma)_{\rm max} = 0.011$
2 restraints	$\Delta ho_{ m max} = 0.38 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\min} = -0.34 \text{ e} \text{ Å}^{-3}$
direct methods	Extinction correction: SHELXL97 (Sheldrick,
Secondary atom site location: difference Fourier	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.019 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	~	11	-	TT */TT
	X	У	2	U _{iso} / U _{eq}
C1	-0.3129 (2)	0.1510 (3)	0.0633 (2)	0.0544 (7)
H1	-0.3343	0.2598	0.0409	0.065*
C2	-0.2287 (2)	0.1293 (3)	0.15271 (19)	0.0483 (6)
H2	-0.1936	0.2230	0.1886	0.058*
C3	-0.24908 (16)	-0.1569 (3)	0.13584 (16)	0.0365 (5)
C4	-0.33418 (17)	-0.1336 (3)	0.04375 (17)	0.0380 (5)
C5	-0.20414 (17)	-0.3209 (3)	0.18826 (18)	0.0430 (6)
C6	-0.40262 (17)	-0.2658 (3)	-0.02839 (17)	0.0430 (6)
C7	-0.8269 (2)	-0.3841 (3)	-0.4244 (2)	0.0553 (7)
H7	-0.8155	-0.4940	-0.4002	0.066*
C8	-0.9085 (2)	-0.3489 (3)	-0.51354 (19)	0.0509 (7)
H8	-0.9488	-0.4367	-0.5512	0.061*
C9	-0.87144 (16)	-0.0679 (3)	-0.49270 (16)	0.0371 (5)
C10	-0.78391 (15)	-0.1039 (3)	-0.40504 (15)	0.0389 (5)
C11	-0.91273 (18)	0.1024 (3)	-0.53842 (17)	0.0412 (6)
C12	-0.70304 (15)	0.0156 (3)	-0.33600 (16)	0.0430 (6)
Li1	-0.4924 (3)	0.0277 (6)	-0.1557 (3)	0.0524 (10)
Li2	-0.0456 (3)	-0.1053 (5)	0.3065 (3)	0.0504 (10)
N1	-0.36462 (15)	0.0222 (3)	0.00823 (15)	0.0479 (5)
N2	-0.19698 (14)	-0.0232 (2)	0.18818 (14)	0.0418 (5)
N3	-0.93097 (15)	-0.1938 (3)	-0.54689 (14)	0.0440 (5)
N4	-0.76397 (16)	-0.2636 (3)	-0.37213 (16)	0.0501 (6)
01	-0.53187 (16)	0.2659 (3)	-0.13886 (16)	0.0611 (5)

O2	-0.42243 (14)	0.0653 (2)	-0.23731 (14)	0.0512 (5)	
03	0.00554 (13)	0.1034 (2)	0.38530 (12)	0.0490 (5)	
O4	0.02158 (14)	-0.1093 (2)	0.22662 (14)	0.0557 (5)	
05	-0.12608 (12)	-0.3144 (2)	0.26734 (13)	0.0504 (5)	
06	-0.24547 (15)	-0.4600(2)	0.15083 (16)	0.0669 (6)	
07	-0.38628 (14)	-0.4221 (2)	-0.00814 (14)	0.0538 (5)	
08	-0.47216 (13)	-0.2138 (2)	-0.10579 (13)	0.0566 (5)	
09	-0.62851 (13)	-0.0447 (2)	-0.26899 (14)	0.0584 (5)	
O10	-0.71593 (14)	0.1755 (2)	-0.34880 (15)	0.0559 (5)	
011	-0.86572 (14)	0.2348 (2)	-0.49878 (15)	0.0614 (5)	
H4A	0.017 (2)	-0.198 (3)	0.1844 (19)	0.063 (9)*	
H2A	-0.3649 (19)	0.128 (5)	-0.208 (3)	0.116 (15)*	
H10	-0.767 (2)	0.195 (7)	-0.405 (2)	0.15 (2)*	
H2B	-0.455 (2)	0.141 (4)	-0.290 (2)	0.095 (12)*	
H4B	0.054 (3)	-0.014 (3)	0.221 (3)	0.115 (15)*	
H7A	-0.294 (4)	-0.453 (11)	0.091 (2)	0.23 (4)*	
H1A	-0.565 (4)	0.324 (8)	-0.200 (3)	0.19 (3)*	
H1B	-0.494 (4)	0.359 (5)	-0.106 (4)	0.18 (3)*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0642 (18)	0.0299 (13)	0.0526 (15)	0.0022 (11)	0.0128 (14)	0.0020 (11)
C2	0.0555 (15)	0.0325 (12)	0.0466 (14)	-0.0043 (11)	0.0145 (12)	-0.0015 (11)
C3	0.0414 (12)	0.0318 (12)	0.0338 (11)	-0.0007 (9)	0.0152 (10)	-0.0009 (9)
C4	0.0425 (12)	0.0333 (12)	0.0334 (11)	0.0004 (10)	0.0134 (10)	0.0031 (9)
C5	0.0444 (14)	0.0357 (12)	0.0418 (13)	0.0017 (10)	0.0139 (11)	0.0016 (11)
C6	0.0443 (13)	0.0390 (13)	0.0363 (12)	0.0013 (10)	0.0105 (11)	0.0009 (10)
C7	0.0664 (17)	0.0307 (13)	0.0525 (15)	-0.0025 (12)	0.0134 (14)	0.0038 (12)
C8	0.0583 (16)	0.0382 (14)	0.0426 (13)	-0.0091 (12)	0.0116 (12)	-0.0024 (11)
C9	0.0403 (12)	0.0348 (12)	0.0324 (11)	0.0008 (9)	0.0134 (10)	0.0006 (9)
C10	0.0435 (13)	0.0352 (12)	0.0340 (11)	0.0012 (10)	0.0145 (10)	0.0007 (10)
C11	0.0451 (13)	0.0382 (13)	0.0368 (12)	0.0007 (10)	0.0158 (11)	-0.0003 (10)
C12	0.0422 (13)	0.0400 (13)	0.0418 (12)	0.0001 (11)	0.0150 (11)	-0.0011 (11)
Li1	0.052 (2)	0.047 (2)	0.047 (2)	0.000(2)	0.0136 (19)	0.003 (2)
Li2	0.051 (2)	0.047 (2)	0.042 (2)	0.0013 (19)	0.0126 (19)	0.0006 (19)
N1	0.0539 (12)	0.0336 (11)	0.0427 (11)	0.0021 (9)	0.0107 (10)	0.0024 (9)
N2	0.0445 (11)	0.0344 (10)	0.0399 (10)	-0.0040 (9)	0.0137 (9)	-0.0036 (9)
N3	0.0496 (12)	0.0379 (11)	0.0371 (10)	-0.0050 (9)	0.0136 (9)	-0.0009 (9)
N4	0.0543 (13)	0.0352 (11)	0.0466 (12)	0.0027 (9)	0.0112 (10)	0.0017 (9)
01	0.0730 (14)	0.0499 (12)	0.0585 (12)	0.0091 (10)	0.0288 (11)	0.0100 (10)
O2	0.0530 (11)	0.0438 (10)	0.0471 (10)	-0.0026 (9)	0.0147 (9)	0.0027 (8)
03	0.0503 (10)	0.0431 (10)	0.0405 (9)	0.0047 (8)	0.0096 (8)	0.0015 (8)
O4	0.0657 (12)	0.0475 (11)	0.0541 (11)	-0.0138 (9)	0.0277 (10)	-0.0132 (9)
05	0.0468 (10)	0.0426 (10)	0.0457 (10)	0.0017 (8)	0.0076 (8)	0.0052 (8)
O6	0.0637 (12)	0.0315 (10)	0.0664 (13)	-0.0012 (8)	-0.0037 (10)	0.0030 (9)
O7	0.0620 (11)	0.0341 (9)	0.0468 (10)	-0.0019 (8)	0.0092 (9)	-0.0023 (8)
08	0.0573 (11)	0.0441 (10)	0.0432 (10)	-0.0007 (8)	0.0015 (9)	-0.0002 (8)

supporting information

09	0.0437 (10)	0.0516 (11)	0.0562 (11)	-0.0001 (8)	0.0026 (9)	0.0031 (9)
O10	0.0527 (11)	0.0381 (10)	0.0572 (11)	-0.0038 (8)	0.0083 (9)	-0.0052 (9)
O11	0.0662 (12)	0.0322 (9)	0.0585 (11)	-0.0028 (8)	0.0053 (9)	-0.0004 (8)

Geometric parameters (Å, °)

• • • • •			
C1—N1	1.323 (3)	C11—O3 ⁱ	1.247 (3)
C1—C2	1.376 (4)	C11—O11	1.258 (3)
C1—H1	0.9300	C12—O9	1.216 (3)
C2—N2	1.321 (3)	C12—O10	1.283 (3)
C2—H2	0.9300	Li1—O2	1.980 (5)
C3—N2	1.342 (3)	Li1—O8	2.029 (5)
C3—C4	1.406 (3)	Li1—O1	2.037 (5)
C3—C5	1.512 (3)	Li1—O9	2.074 (5)
C4—N1	1.342 (3)	Li1—N1	2.326 (5)
C4—C6	1.524 (3)	Li2—O4	1.901 (5)
C5—O5	1.236 (3)	Li2—O3	1.974 (5)
C5—O6	1.268 (3)	Li2—O5	1.990 (5)
C6—O8	1.228 (3)	Li2—N3 ⁱⁱ	2.198 (5)
C6—O7	1.275 (3)	Li2—N2	2.272 (5)
C7—N4	1.328 (3)	N3—Li2 ⁱ	2.198 (5)
C7—C8	1.372 (4)	O1—H1A	0.94 (5)
С7—Н7	0.9300	O1—H1B	0.93 (5)
C8—N3	1.313 (3)	O2—H2A	0.93 (4)
C8—H8	0.9300	O2—H2B	0.93 (3)
C9—N3	1.345 (3)	O3—C11 ⁱⁱ	1.247 (3)
C9—C10	1.404 (3)	O4—H4A	0.926 (10)
C9—C11	1.516 (3)	O4—H4B	0.93 (4)
C10—N4	1.341 (3)	O6—H7A	0.86 (3)
C10—C12	1.525 (3)	O10—H10	0.86 (3)
N1—C1—C2	122.2 (2)	01—Li1—09	96.5 (2)
N1—C1—H1	118.9	O2—Li1—N1	102.5 (2)
C2—C1—H1	118.9	O8—Li1—N1	71.58 (15)
N2—C2—C1	120.8 (2)	O1—Li1—N1	92.45 (19)
N2—C2—H2	119.6	O9—Li1—N1	153.7 (2)
C1—C2—H2	119.6	O4—Li2—O3	101.8 (2)
N2—C3—C4	120.1 (2)	O4—Li2—O5	104.1 (2)
N2—C3—C5	111.87 (19)	O3—Li2—O5	154.0 (3)
C4—C3—C5	128.1 (2)	O4—Li2—N3 ⁱⁱ	101.6 (2)
N1—C4—C3	120.4 (2)	O3—Li2—N3 ⁱⁱ	76.07 (15)
N1—C4—C6	110.76 (19)	O5—Li2—N3 ⁱⁱ	97.47 (19)
C3—C4—C6	128.9 (2)	O4—Li2—N2	99.97 (19)
O5—C5—O6	121.7 (2)	O3—Li2—N2	101.89 (19)
O5—C5—C3	117.9 (2)	O5—Li2—N2	74.75 (16)
O6—C5—C3	120.4 (2)	N3"—Li2—N2	158.3 (2)
O8—C6—O7	122.7 (2)	C1—N1—C4	117.9 (2)
O8—C6—C4	116.8 (2)	C1—N1—Li1	127.8 (2)

07—C6—C4	120.5 (2)	C4—N1—Li1	113.84 (18)
N4—C7—C8	121.0(2)	$C_2 - N_2 - C_3$	118.8 (2)
N4—C7—H7	119.5	C2-N2-Li2	129.1 (2)
C8—C7—H7	119.5	$C_3 = N_2 = L_1^2$	11033(19)
$N_3 - C_8 - C_7$	121 5 (2)	C8 - N3 - C9	118.8(2)
N3-C8-H8	119.3	$C8 N3 I i 2^{i}$	128.8(2)
C7 - C8 - H8	119.3	$C9 N3 Li2^{i}$	120.0(2)
N_{3} C9 C10	119.9 (2)	C7 - N4 - C10	118.8(2)
$N_{3} - C_{9} - C_{11}$	111.43 (19)	$I_{1}=01$ H1A	110.0(2) 114(4)
C10-C9-C11	128 6 (2)	Li1—O1—H1B	131(4)
N4_C10_C9	120.0(2) 119.4(2)	$H1A_01_H1B$	93 (5)
N4-C10-C12	117.4 (2)	$I_{1}=02$ H2A	117(3)
C_{0} C_{10} C_{12}	111.14(1)) 1201(2)	Li1 = 02 = H2R	117(3) 113(2)
$C_{j} = C_{10} = C_{12}$	129.1(2) 122.8(2)	H_{2}^{-112} H_{2	94(3)
$O_{3^{i}}$ C_{11} C_{9}	122.0(2) 116.0(2)	$C11^{ii}$ O3 Li2	110 70 (10)
011 C11 C9	110.9(2) 120.2(2)	Li2 04 H44	119.70(19) 122.7(18)
00 - 012 - 010	120.2(2) 122.2(2)	$L_{12} = 04 = H4R$	122.7(10) 120(3)
09 - C12 - C10	122.2(2) 118 1(2)	$H_{4A} = 04 - H_{4B}$	120(3) 116(3)
010 C12 C10	110.1(2)	$C_{5} O_{5} U_{7}$	110(3)
02 131 08	119.4(2) 100.5(2)	$C_{5} = 05 = 12$	120.9(2)
02 - 11 - 08	109.3(2) 102.2(2)	C_{5} C_{6} C_{8} L_{11}	115(0) 1256(2)
02—LII—OI	102.2(2) 146.8(3)	$C_1^2 = 0^9 = L_1^1$	123.0(2) 140.4(2)
$O_2 I_1 O_1$	140.3(3)	$C_{12} = 0_{12} = 0_{12} = 0_{13}$	140.4(2)
02 - 11 - 09	99.7 (2) 97.90 (10)	010-1110	110 (4)
08-11-09	07.09 (19)		
N1—C1—C2—N2	-1.3 (4)	C5—C3—N2—C2	-178.5 (2)
N2—C3—C4—N1	-0.9 (4)	C4—C3—N2—Li2	-164.2 (2)
C5-C3-C4-N1	179.3 (2)	C5—C3—N2—Li2	15.6 (3)
N2—C3—C4—C6	178.7 (2)	O4—Li2—N2—C2	-79.5 (3)
C5—C3—C4—C6	-1.1 (4)	O3—Li2—N2—C2	24.9 (3)
N2—C3—C5—O5	-2.9(3)	O5—Li2—N2—C2	178.4 (2)
C4—C3—C5—O5	176.9 (2)	N3 ⁱⁱ —Li2—N2—C2	107.1 (6)
N2—C3—C5—O6	177.9 (2)	O4—Li2—N2—C3	84.5 (2)
C4—C3—C5—O6	-2.3 (4)	O3—Li2—N2—C3	-171.01 (19)
N1-C4-C6-08	0.7 (3)	O5—Li2—N2—C3	-17.5 (2)
C3—C4—C6—O8	-178.9 (2)	N3 ⁱⁱ —Li2—N2—C3	-88.8 (6)
N1-C4-C6-O7	-180.0 (2)	C7—C8—N3—C9	1.0 (4)
C3—C4—C6—O7	0.4 (4)	C7-C8-N3-Li2 ⁱ	172.1 (3)
N4—C7—C8—N3	-4.7 (5)	C10—C9—N3—C8	3.6 (3)
N3—C9—C10—N4	-4.7 (3)	C11—C9—N3—C8	-175.8 (2)
C11—C9—C10—N4	174.5 (2)	C10—C9—N3—Li2 ⁱ	-168.9(2)
N3—C9—C10—C12	175.9 (2)	C11—C9—N3—Li2 ⁱ	11.7 (3)
C11—C9—C10—C12	-4.8 (4)	C8—C7—N4—C10	3.5 (4)
N3—C9—C11—O3 ⁱ	2.4 (3)	C9—C10—N4—C7	1.1 (4)
C10-C9-C11-O3 ⁱ	-176.9 (2)	C12—C10—N4—C7	-179.5 (2)
N3—C9—C11—O11	-178.5 (2)	O4—Li2—O3—C11 ⁱⁱ	-80.7 (3)
C10-C9-C11-O11	2.1 (4)	O5—Li2—O3—C11 ⁱⁱ	96.8 (6)
N4—C10—C12—O9	7.6 (3)	N3 ⁱⁱ —Li2—O3—C11 ⁱⁱ	18.5 (2)
	~ /		× /

C9—C10—C12—O9	-173.1 (2)	N2—Li2—O3—C11 ⁱⁱ	176.33 (19)
N4—C10—C12—O10	-171.2 (2)	O6-C5-O5-Li2	164.5 (3)
C9-C10-C12-O10	8.2 (4)	C3—C5—O5—Li2	-14.7 (3)
C2-C1-N1-C4	2.1 (4)	O4—Li2—O5—C5	-79.1 (3)
C2—C1—N1—Li1	-168.8 (3)	O3—Li2—O5—C5	103.4 (5)
C3—C4—N1—C1	-1.0 (4)	N3 ⁱⁱ —Li2—O5—C5	176.8 (2)
C6—C4—N1—C1	179.3 (2)	N2—Li2—O5—C5	17.6 (2)
C3—C4—N1—Li1	171.2 (2)	O7-C6-O8-Li1	-169.6 (3)
C6-C4-N1-Li1	-8.5 (3)	C4C6O8Li1	9.6 (4)
O2—Li1—N1—C1	74.5 (3)	O2—Li1—O8—C6	86.4 (3)
08—Li1—N1—C1	-178.9 (3)	O1—Li1—O8—C6	-75.4 (5)
O1—Li1—N1—C1	-28.6 (3)	O9—Li1—O8—C6	-174.0 (2)
09—Li1—N1—C1	-138.6 (5)	N1—Li1—O8—C6	-10.7 (3)
O2—Li1—N1—C4	-96.8 (2)	O10-C12-O9-Li1	-4.5 (5)
08—Li1—N1—C4	9.8 (2)	C10-C12-O9-Li1	176.8 (3)
01—Li1—N1—C4	160.1 (2)	O2-Li1-O9-C12	-78.6 (4)
O9—Li1—N1—C4	50.1 (6)	O8—Li1—O9—C12	172.0 (3)
C1—C2—N2—C3	-0.6 (4)	O1—Li1—O9—C12	25.1 (4)
C1-C2-N2-Li2	162.3 (3)	N1—Li1—O9—C12	134.1 (5)
C4—C3—N2—C2	1.7 (3)		

Symmetry codes: (i) *x*-1, *y*, *z*-1; (ii) *x*+1, *y*, *z*+1.

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D····A	D—H···A
O4—H4A····O3 ⁱⁱⁱ	0.93 (1)	1.83 (1)	2.743 (3)	168 (3)
O4— $H4B$ ···O5 ^{iv}	0.93 (4)	1.89 (3)	2.816 (3)	171 (4)
O2— $H2A$ ···N4 ^v	0.93 (4)	1.98 (4)	2.898 (3)	171 (4)
O2— $H2B$ ···O8 ^v	0.93 (3)	1.84 (3)	2.772 (3)	175 (3)
O1—H1 <i>A</i> ···O2 ^v	0.94 (5)	2.11 (4)	2.892 (3)	141 (6)
$O1$ — $H1B$ ···· $O7^{vi}$	0.93 (5)	2.38 (5)	3.305 (3)	174 (6)
C7—H7···O11 ^{vii}	0.93	2.52	3.184 (3)	129
O10—H10…O11	0.86 (3)	1.55 (3)	2.404 (3)	174 (5)
O6—H7 <i>A</i> …O7	0.86 (3)	1.53 (4)	2.380 (3)	172 (9)

Symmetry codes: (iii) -*x*, *y*-1/2, -*z*+1/2; (iv) -*x*, *y*+1/2, -*z*+1/2; (v) -*x*-1, *y*+1/2, -*z*-1/2; (vi) *x*, *y*+1, *z*; (vii) *x*, *y*-1, *z*.