organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Acetamido-3-(4-hydroxy-3-methoxyphenyl)acrylic acid

Xiao-Bing Lan,^{a,b} Ye-Fei Nan,^b Lin Chen,^a Shi-Xiang Wang^b and Xiao-Hui Zheng^{a,b}*

^aSchool of Chemistry and Biotechnology, Yunnan Nationalities University, Kunming 650031, People's Republic of China, and ^bEngineering and Research Center of Chinese Herb Modernization, Northwest University, Xi'an 710069, People's Republic of China

Correspondence e-mail: zhengxh@nwu.edu.cn

Received 1 December 2007; accepted 14 January 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.122; data-to-parameter ratio = 12.7.

In the title compound, $C_{12}H_{13}NO_5$, the azlactone of vanillin, the acrylic acid side chain has a *trans* extended conformation. There are intermolecular $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds in the crystal structure.

Related literature

For a related structure, see: Haasbroek *et al.* (1998). For information on the synthesis, see: Wong *et al.* (1992).

Experimental

Crystal data	
$C_{12}H_{13}NO_5$ $M_2 = 251.23$	a = 12.7573 (14) Å b = 12.7518 (14) Å
Orthorhombic, <i>Pbca</i>	c = 14.7290 (17) Å

V =	2396.1 (5) Å ³
Z =	8
Mo	$K\alpha$ radiation

Data collection

Bruker SMART CCD area-detector	2122 independent reflections 1788 reflections with $L > 2\sigma(I)$
Absorption correction: none	$R_{\rm int} = 0.021$
11011 measured reflections	

 $\mu = 0.11 \text{ mm}^{-1}$ T = 296 (2) K

 $0.37 \times 0.30 \times 0.26 \text{ mm}$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ 167 parameters $wR(F^2) = 0.122$ H-atom parameters constrainedS = 1.01 $\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$ 2122 reflections $\Delta \rho_{min} = -0.31 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{l} O4-H4\cdots O3^{i}\\ O1-H1B\cdots O5^{ii}\\ N1-H1\cdots O1^{iii} \end{array}$	0.82 0.82 0.86	1.79 1.84 2.13	2.6044 (15) 2.6582 (13) 2.9501 (14)	171 177 159
Symmetry codes: $-x + \frac{1}{2}, -y + 2, z - \frac{1}{2}.$	(i) $-x, -y$	y + 2, -z; (ii	i) $-x, -y+2, -z$	z + 1; (iii)

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors thank the Ministry of Science and Technology of Shaanxi Province and the Ministry of Education of the People's Republic of China for financial support (grant Nos. 2006kz10-G5, 2007ZDKG-70 and 207151).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2176).

References

- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Haasbroek, P. P., Oliver, D. W. & Carpy, A. J. M. (1998). J. Chem. Crystallogr. 28, 193–196.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wong, H. N. C., Xu, Z. L., Chang, H. M. & Lee, C. M. (1992). *Synthesis*, pp. 793–797.

supporting information

Acta Cryst. (2008). E64, o566 [doi:10.1107/S1600536808001347]

2-Acetamido-3-(4-hydroxy-3-methoxyphenyl)acrylic acid

Xiao-Bing Lan, Ye-Fei Nan, Lin Chen, Shi-Xiang Wang and Xiao-Hui Zheng

S1. Comment

The molecular structure of the title compound is illustrated in Fig. 1. There are three intermolecular hydrogen bonds. One is formed between the NH group and the phenolic hydroxyl O atom of another molecule, the others between the carbonyl O atom and OH group.

A similar structure has been reported for a related compound (Haasbroek et al., 1998).

S2. Experimental

The azlactone (Wong *et al.*, 1992) of vanillin (2.0 g, 7.3 mmol) was heated at 353 K with stirring in a sodium hydroxide solution (20 ml, 20%). A dark wine-red solution formed. After 3 h, the mixture was cooled and acidified with hydro-chloric acid (6 *M*) to a pH of 1.35. The mixture was stirred well and allowed to cool to 273 K. The crystals that formed were filtered off and dried under vacuum at 318 K (1.45 g, 5.7 mmol). Recrystallization from ethanol/water gave pale-yellow crystals of (I) with a melting point of 481 K. Yellow single crystals suitable for X-ray analysis were obtained by slow evaporation of a solution in methanol–water at room temperature for two weeks. Spectroscopic analysis: IR (KBr, cm⁻¹): 3256, 2952, 1678, 1656; ¹H NMR (DMSO, δ , p.p.m.): 12.389 (s, 1 H), 9.492 (s, 1 H), 9.316 (s, 1 H), 7.286–7.282 (d, 1 H), 7.196 (s, 1 H), 7.088–7.068 (m, 1 H), 6.797–6.781 (d, 1 H), 3.771 (s, 3 H), 1.985 (s, 3 H).

S3. Refinement

H atoms bonded to N and O atoms were located in a difference map and refined as riding, with O—H = 0.82 and N—H = 0.86 Å, and with $U_{iso}(H) = 1.2U_{eq}(O,N)$. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.96 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ [1.5 $U_{eq}(C)$ for methyl groups].

Figure 1

The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms. H atoms have been omitted.

Figure 2

The packing of (I), viewed down the c axis. Molecules are connected by O—H···O and N—H···O hydrogen bonds shown as dashed lines.

2-Acetamido-3-(4-hydroxy-3-methoxyphenyl)acrylic acid

Crystal data	
C ₁₂ H ₁₃ NO ₅	$D_{\rm x} = 1.393 {\rm ~Mg} {\rm ~m}^{-3}$
$M_r = 251.23$	Melting point: 481 K
Orthorhombic, Pbca	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
a = 12.7573 (14) Å	Cell parameters from 4984 reflections
b = 12.7518 (14) Å	$\theta = 2.7 - 28.1^{\circ}$
c = 14.7290 (17) Å	$\mu = 0.11 \text{ mm}^{-1}$
V = 2396.1 (5) Å ³	T = 296 K
Z = 8	Block, yellow
F(000) = 1056	$0.37 \times 0.30 \times 0.26 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans 11011 measured reflections 2122 independent reflections <i>Refinement</i>	1788 reflections with $I > 2\sigma(I)$ $R_{int} = 0.021$ $\theta_{max} = 25.1^{\circ}, \ \theta_{min} = 2.7^{\circ}$ $h = -15 \rightarrow 13$ $k = -15 \rightarrow 15$ $l = -14 \rightarrow 17$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from
$wR(F^2) = 0.122$	neighbouring sites
S = 1.01	H-atom parameters constrained
2122 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2 + 0.0344P]$
167 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.20$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.31$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.16380 (8)	0.89736 (8)	0.23064 (7)	0.0337 (3)	
H1	0.2301	0.9037	0.2218	0.040*	
01	0.12427 (7)	1.09483 (8)	0.65078 (6)	0.0426 (3)	
H1B	0.0745	1.1269	0.6725	0.064*	
O2	0.22102 (8)	0.94162 (8)	0.56758 (7)	0.0473 (3)	
O3	-0.00149 (10)	1.06674 (9)	0.09716 (8)	0.0604 (4)	
O4	0.07449 (9)	0.91314 (8)	0.06704 (7)	0.0521 (3)	
H4	0.0520	0.9262	0.0161	0.078*	
05	0.03350 (7)	0.79383 (7)	0.28136 (8)	0.0465 (3)	
C1	0.11343 (9)	1.08974 (10)	0.55890 (9)	0.0330 (3)	
C2	0.05408 (9)	1.16043 (10)	0.50975 (9)	0.0363 (3)	
H2	0.0209	1.2156	0.5394	0.044*	
C3	0.04374 (10)	1.14964 (10)	0.41675 (9)	0.0361 (3)	
H3	0.0033	1.1977	0.3846	0.043*	
C4	0.09273 (9)	1.06807 (9)	0.37029 (9)	0.0320 (3)	
C5	0.15561 (10)	0.99846 (10)	0.42060 (9)	0.0353 (3)	
Н5	0.1912	0.9449	0.3908	0.042*	

C6	0.16531 (9)	1.00837 (10)	0.51307 (9)	0.0342 (3)	
C7	0.26213 (15)	0.85003 (13)	0.52600 (12)	0.0631 (5)	
H7A	0.2063	0.8115	0.4979	0.095*	
H7B	0.2952	0.8070	0.5712	0.095*	
H7C	0.3127	0.8696	0.4808	0.095*	
C8	0.07026 (10)	1.05762 (10)	0.27390 (9)	0.0339 (3)	
H8	0.0296	1.1117	0.2503	0.041*	
C9	0.09724 (9)	0.98457 (10)	0.21286 (9)	0.0326 (3)	
C10	0.05389 (11)	0.98977 (10)	0.12025 (9)	0.0383 (3)	
C11	0.12612 (9)	0.80575 (10)	0.26066 (9)	0.0344 (3)	
C12	0.20317 (13)	0.71764 (12)	0.27005 (12)	0.0547 (4)	
H12A	0.1975	0.6877	0.3296	0.082*	
H12B	0.2729	0.7439	0.2612	0.082*	
H12C	0.1884	0.6649	0.2253	0.082*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0316 (6)	0.0389 (6)	0.0306 (6)	0.0028 (4)	0.0014 (4)	-0.0005 (4)
O1	0.0364 (5)	0.0617 (7)	0.0295 (6)	0.0091 (4)	-0.0031 (4)	-0.0095 (4)
O2	0.0569 (6)	0.0501 (6)	0.0349 (6)	0.0194 (5)	-0.0089 (4)	-0.0023 (4)
O3	0.0912 (8)	0.0506 (7)	0.0393 (7)	0.0255 (6)	-0.0191 (6)	-0.0037 (5)
O4	0.0774 (8)	0.0472 (6)	0.0317 (6)	0.0116 (5)	-0.0112 (5)	-0.0069 (4)
O5	0.0448 (6)	0.0363 (6)	0.0583 (7)	-0.0007 (4)	0.0118 (5)	-0.0027 (4)
C1	0.0288 (6)	0.0413 (7)	0.0289 (7)	-0.0045 (5)	-0.0015 (5)	-0.0042 (5)
C2	0.0366 (6)	0.0353 (7)	0.0370 (8)	0.0011 (5)	0.0012 (5)	-0.0052 (6)
C3	0.0394 (7)	0.0332 (7)	0.0357 (8)	0.0009 (5)	-0.0019 (5)	0.0020 (5)
C4	0.0343 (6)	0.0315 (6)	0.0301 (7)	-0.0032 (5)	-0.0001 (5)	0.0011 (5)
C5	0.0373 (7)	0.0352 (7)	0.0333 (8)	0.0019 (5)	-0.0006 (5)	-0.0038 (5)
C6	0.0318 (6)	0.0368 (7)	0.0339 (8)	0.0006 (5)	-0.0040(5)	-0.0001 (5)
C7	0.0809 (11)	0.0573 (10)	0.0512 (10)	0.0334 (9)	-0.0081 (9)	-0.0042 (8)
C8	0.0386 (6)	0.0314 (7)	0.0319 (8)	0.0002 (5)	-0.0011 (5)	0.0030 (5)
С9	0.0366 (7)	0.0326 (7)	0.0286 (7)	-0.0009(5)	-0.0006(5)	0.0036 (5)
C10	0.0490 (8)	0.0349 (7)	0.0310 (8)	0.0019 (5)	-0.0018 (6)	0.0001 (5)
C11	0.0404 (7)	0.0354 (7)	0.0275 (7)	0.0044 (5)	0.0010 (5)	-0.0042 (5)
C12	0.0614 (9)	0.0458 (9)	0.0570 (11)	0.0191 (7)	0.0032 (7)	0.0022 (7)

Geometric parameters (Å, °)

N1-C11	1.3383 (17)	С3—Н3	0.930	
N1—C9	1.4236 (16)	C4—C5	1.4074 (18)	
N1—H1	0.860	C4—C8	1.4544 (19)	
01—C1	1.3619 (17)	C5—C6	1.3734 (19)	
01—H1B	0.820	С5—Н5	0.930	
O2—C6	1.3690 (15)	С7—Н7А	0.960	
O2—C7	1.4192 (18)	С7—Н7В	0.960	
O3—C10	1.2563 (17)	C7—H7C	0.960	
O4—C10	1.2798 (17)	С8—С9	1.3396 (19)	

O4—H4	0.820	С8—Н8	0.930
O5—C11	1.2298 (15)	C9—C10	1.4733 (19)
C1—C2	1.3819 (18)	C11—C12	1.4992 (19)
C1—C6	1.4037 (18)	C12—H12A	0.960
C2—C3	1.3831 (19)	C12—H12B	0.960
С2—Н2	0.930	C12—H12C	0.960
C3—C4	1.3931 (18)		
C11—N1—C9	121.90 (10)	O2—C7—H7A	109.5
C11—N1—H1	119.0	O2—C7—H7B	109.5
C9—N1—H1	119.0	H7A—C7—H7B	109.5
C1—O1—H1B	109.5	O2—C7—H7C	109.5
C6—O2—C7	116.78 (11)	H7A—C7—H7C	109.5
C10—O4—H4	109.5	H7B—C7—H7C	109.5
O1—C1—C2	123.03 (11)	C9—C8—C4	131.93 (12)
O1—C1—C6	117.72 (11)	С9—С8—Н8	114.0
C2—C1—C6	119.25 (12)	C4—C8—H8	114.0
C1—C2—C3	120.41 (12)	C8—C9—N1	124.96 (12)
C1—C2—H2	119.8	C8—C9—C10	119.58 (12)
C3—C2—H2	119.8	N1—C9—C10	115.43 (11)
C2—C3—C4	121.20 (12)	O3—C10—O4	123.11 (13)
С2—С3—Н3	119.4	O3—C10—C9	119.79 (12)
С4—С3—Н3	119.4	O4—C10—C9	117.10 (12)
C3—C4—C5	117.90 (12)	O5—C11—N1	122.34 (11)
C3—C4—C8	117.35 (11)	O5—C11—C12	120.96 (12)
C5—C4—C8	124.65 (11)	N1—C11—C12	116.69 (12)
C6—C5—C4	121.03 (12)	C11—C12—H12A	109.5
С6—С5—Н5	119.5	C11—C12—H12B	109.5
C4—C5—H5	119.5	H12A—C12—H12B	109.5
O2—C6—C5	124.83 (12)	C11—C12—H12C	109.5
O2—C6—C1	114.99 (12)	H12A—C12—H12C	109.5
C5—C6—C1	120.16 (12)	H12B—C12—H12C	109.5
	170.00 (11)		1.02 (10)
01 - 01 - 02 - 03	-1/8.29(11)	$C_2 = C_1 = C_0 = C_3$	-1.02(18)
$C_{0} - C_{1} - C_{2} - C_{3}$	1.01(18)	$C_{3} - C_{4} - C_{8} - C_{9}$	-1/3.93(14)
C1 - C2 - C3 - C4	-0.21(19)	$C_3 = C_4 = C_8 = C_9$	2.4(2)
$C_2 = C_3 = C_4 = C_3$	-1./3(18)	C4 = C8 = C9 = N1	-3.7(2)
$C_2 = C_3 = C_4 = C_8$	1/4.80(11)	$C_4 - C_8 - C_9 - C_{10}$	1/4.10(13)
$C_{3} - C_{4} - C_{5} - C_{6}$	2.31(18)	C11 = N1 = C9 = C8	89.19 (10)
$C_{8} - C_{4} - C_{5} - C_{6}$	-1/4.01(12)	C11 - N1 - C9 - C10	-88.70(15)
$C_{1} = 0_{2} = 0_{0} = 0_{0}$	-0.80(19)	10 - 10 - 03	3.4(2)
$C_{1} = 02 = 00 = 01$	1/1.24 (13) 177 05 (11)	101 - 09 - 010 - 03	-172.96(13)
$C_{4} = C_{5} = C_{6} = C_{1}$	-0.06(10)	10 - 0.9 - 0.10 - 0.04	1/3.80 (13)
$C_4 - C_5 - C_0 - C_1$	-0.90(19)	1 1 - 0 - 0 1 - 0 4	4.20(18)
$C_1 - C_1 - C_0 - C_2$	170.22(11)	$C_{0} = N_{1} = C_{11} = C_{12}$	-3.8(2)
$C_2 - C_1 - C_0 - O_2$	-1/9.22(11)	C9—N1—C11—C12	1/3.31 (12)
01-01-00-03	1/8.88 (11)		

D—H···A $D \cdots A$ D—H···A*D*—Н $\mathrm{H}{\cdots}{A}$ 04—H4…O3ⁱ 0.82 1.79 2.6044 (15) 171 O1—H1*B*····O5ⁱⁱ 0.82 1.84 2.6582 (13) 177 N1—H1···O1ⁱⁱⁱ 0.86 2.13 2.9501 (14) 159

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*, -*y*+2, -*z*; (ii) -*x*, -*y*+2, -*z*+1; (iii) -*x*+1/2, -*y*+2, *z*-1/2.