organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl 2-{[3-(4,6-dimethoxypyrimidin-2yl)ureido]sulfonylmethyl}benzoate

Jin-yun Xia, Fang-shi Li,* Li-he Yin, Da-sheng Yu and Deng-yu Wu

Department of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China Correspondence e-mail: fangshi.li@njut.edu.cn

Received 11 February 2008; accepted 21 February 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.056; wR factor = 0.156; data-to-parameter ratio = 12.9.

In the title compound, C₁₆H₁₈N₄O₇S, a synthetic sulfonylurea herbicide, there are intramolecular N-H···N and C-H···O hydrogen bonds. Intermolecular $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds form centrosymmetric dimers. The dihedral angle between the two rings is $50.00 (15)^{\circ}$.

Related literature

For related literature, see: Kong et al. (1990); Lee et al. (2002); Sabadie (1996).

Experimental

Crystal data

Crysiai aaia	
$C_{16}H_{18}N_4O_7S$	c = 16.021 (3) Å
$M_r = 410.41$	$\beta = 104.48 \ (3)^{\circ}$
Monoclinic, $C2/c$	$V = 3622.1 (13) \text{ Å}^3$
a = 33.831 (7) Å	Z = 8
b = 6.9020 (14) Å	Mo $K\alpha$ radiation

μ	=	0.23	3 mi	n^{-1}
Т	=	298	(2)	Κ

Data collection

Enraf-Nonius CAD-4	3265 independent reflections
diffractometer	2421 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.035$
(North et al., 1968)	3 standard reflections
$T_{\min} = 0.914, \ T_{\max} = 0.978$	every 200 reflections
3325 measured reflections	intensity decay: none
D (
Refinement	

 $0.40 \times 0.20 \times 0.10 \text{ mm}$

 $R[F^2 > 2\sigma(F^2)] = 0.056$ 253 parameters $wR(F^2) = 0.156$ H-atom parameters constrained S = 1.03 $\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$ 3265 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1A \cdots N3$ $N2 - H2A \cdots O5^{i}$ $C9 - H9B \cdots O1$ $C15 - H15C \cdots O1^{i}$	0.86 0.86 0.97 0.96	1.94 2.10 2.36 2.43	2.648 (4) 2.951 (3) 2.970 (4) 3.068 (4)	138 170 120 124

Symmetry code: (i) -x, y, $-z + \frac{3}{2}$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2185).

References

Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Kong, F., Hu, X., Wang, L., Tao, Z., Wang, X. & Cao, W. (1990). Huaxue Shijie, **31**. 211–213.

Lee, J. K., Ahn, K. C., Park, O. S., Ko, Y. K. & Kim, D.-W. (2002). J. Agric. Food Chem. 50, 1791-1803.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359

Sabadie, J. (1996). Weed Res. 36, 441-448.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

0632

supporting information

Acta Cryst. (2008). E64, o632 [doi:10.1107/S1600536808005011]

Methyl 2-{[3-(4,6-dimethoxypyrimidin-2-yl)ureido]sulfonylmethyl}benzoate

Jin-yun Xia, Fang-shi Li, Li-he Yin, Da-sheng Yu and Deng-yu Wu

S1. Comment

The title compound, bensulfuron-methyl, belongs to the class of systemic sulfonylurea herbicides inhibiting acetolactate synthase, a key enzyme in the biosynthesis of the branched-chain amino acids of target plants (Lee *et al.*, 2002). It is widely used in transplanted and direct-seeded rice fields to control most annual and perennial broadleaved weeds selectively (Sabadie, 1996).

We report here the crystal structure of the title compound, (I). The molecular structure of (I) is shown in Fig. 1. The dihedral angle between the C3–C8 and C11/N3/C12/C13/C14/N4 rings is 50.00 (15)°. There are intramolecular N1– H1A…N3 and C9–H9B…O1 hydrogen bonds (Fig. 1), and intermolecular N–H…O and C–H…O hydrogen bonds form centrosymmetric dimers (Fig. 2).

S2. Experimental

The title compound, (I), was prepared according to the literature method (Kong et al., 1990).

Crystals suitable for X-ray analysis were obtained by dissolving (I) (0.2 g) in ethyl acetate (25 ml) and evaporating the solvent slowly at room temperature for about 15 d.

S3. Refinement

All H atoms were positioned geometrically with C—H = 0.93–0.97 Å and N—H = 0.86 Å, and were and included in the refinement in a riding model approximation, with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(N,C)$.

Figure 1

The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate intramolecular hydrogen bonds.

Figure 2

A hydrogen-bonded dimer. Dashed lines indicate hydrogen bonds.

Methyl 2-{[3-(4,6-dimethoxypyrimidin-2-yl)ureido]sulfonylmethyl}benzoate

Crystal data
$C_{16}H_{18}N_4O_7S$
$M_r = 410.41$
Monoclinic, C2/c
Hall symbol: -C 2yc
a = 33.831 (7) Å
<i>b</i> = 6.9020 (14) Å
c = 16.021 (3) Å
$\beta = 104.48 (3)^{\circ}$
$V = 3622.1 (13) \text{ Å}^3$
Z = 8

F(000) = 1712 $D_x = 1.505 \text{ Mg m}^{-3}$ Melting point = 450–451 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 10-13^{\circ}$ $\mu = 0.23 \text{ mm}^{-1}$ T = 298 KNeedle, colorless $0.40 \times 0.20 \times 0.10 \text{ mm}$ Data collection

Enraf–Nonius CAD-4 diffractometer	3265 independent reflections 2421 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.035$
Graphite monochromator	$\theta_{\text{max}} = 25.2^{\circ}, \ \theta_{\text{min}} = 1.2^{\circ}$
$\omega/2\theta$ scans	$h = -40 \rightarrow 38$
Absorption correction: ψ scan	$k = 0 \longrightarrow 8$
(North <i>et al.</i> , 1968)	$l = 0 \rightarrow 19$
$T_{\min} = 0.914, T_{\max} = 0.978$	3 standard reflections every 200 reflections
3325 measured reflections	intensity decay: none
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.056$	Hydrogen site location: inferred from
$wR(F^2) = 0.156$	neighbouring sites
S = 1.03	H-atom parameters constrained
3265 reflections	$w = 1/[\sigma^2(F_o^2) + (0.08P)^2 + 5P]$
253 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$

Special details

direct methods

Primary atom site location: structure-invariant

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\Delta \rho_{\text{max}} = 0.26 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.31 \text{ e } \text{\AA}^{-3}$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	y	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S	0.12664 (2)	0.14338 (13)	0.69392 (5)	0.0401 (2)	
N1	0.07804 (7)	0.1705 (4)	0.64572 (16)	0.0424 (7)	
H1A	0.0719	0.1836	0.5906	0.051*	
01	0.15578 (7)	0.0798 (4)	0.92720 (16)	0.0557 (7)	
C1	0.19376 (12)	-0.2563 (5)	0.9629 (3)	0.0570 (10)	
H1B	0.2121	-0.3646	0.9704	0.085*	
H1C	0.1676	-0.2946	0.9278	0.085*	
H1D	0.1909	-0.2139	1.0182	0.085*	
O2	0.20987 (7)	-0.0991 (3)	0.92109 (16)	0.0484 (6)	
N2	0.00822 (7)	0.1970 (4)	0.63164 (16)	0.0388 (6)	
H2A	-0.0114	0.1857	0.6565	0.047*	
C2	0.18727 (9)	0.0615 (5)	0.90655 (19)	0.0379 (7)	
N3	0.02372 (7)	0.2300 (4)	0.49733 (16)	0.0363 (6)	
03	0.13329 (8)	-0.0390 (4)	0.73670 (16)	0.0576 (7)	
C3	0.20669 (9)	0.2172 (5)	0.86550 (18)	0.0356 (7)	

O4	0.14650 (7)	0.1838 (4)	0.62677 (15)	0.0542 (7)
N4	-0.04352 (7)	0.2765 (4)	0.51521 (16)	0.0375 (6)
C4	0.24906 (9)	0.2405 (5)	0.8922 (2)	0.0432 (8)
H4C	0.2647	0.1513	0.9300	0.052*
05	0.05149 (7)	0.1570 (4)	0.76305 (14)	0.0509 (6)
C5	0.26803 (10)	0.3949 (5)	0.8631 (2)	0.0470 (8)
H5A	0.2962	0.4101	0.8819	0.056*
O6	0.03580 (7)	0.2645 (4)	0.36258 (15)	0.0531 (6)
C6	0.24518 (11)	0.5258 (6)	0.8063 (2)	0.0505 (9)
H6A	0.2578	0.6302	0.7870	0.061*
07	-0.09468 (7)	0.3699 (4)	0.39861 (15)	0.0508 (6)
C7	0.20337 (10)	0.5023 (5)	0.7779 (2)	0.0468 (8)
H7A	0.1883	0.5896	0.7382	0.056*
C8	0.18338 (9)	0.3511 (5)	0.80731 (19)	0.0363 (7)
С9	0.13757 (9)	0.3323 (5)	0.7722 (2)	0.0406 (8)
H9A	0.1264	0.4537	0.7460	0.049*
H9B	0.1249	0.3034	0.8188	0.049*
C10	0.04638 (9)	0.1743 (5)	0.6850(2)	0.0369 (7)
C11	-0.00401 (9)	0.2356 (4)	0.54321 (19)	0.0341 (7)
C12	0.00998 (10)	0.2704 (5)	0.4133 (2)	0.0388 (7)
C13	-0.03018 (10)	0.3179 (5)	0.3764 (2)	0.0438 (8)
H13A	-0.0395	0.3469	0.3181	0.053*
C14	-0.05548 (9)	0.3198 (5)	0.4314 (2)	0.0391 (7)
C15	-0.12294 (10)	0.3408 (6)	0.4504 (2)	0.0573 (10)
H15A	-0.1496	0.3834	0.4193	0.086*
H15B	-0.1143	0.4138	0.5028	0.086*
H15C	-0.1239	0.2056	0.4639	0.086*
C16	0.07680 (10)	0.1963 (6)	0.3980 (2)	0.0597 (10)
H16A	0.0918	0.2013	0.3545	0.090*
H16B	0.0760	0.0652	0.4175	0.090*
H16C	0.0899	0.2770	0.4457	0.090*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S	0.0287 (4)	0.0485 (5)	0.0398 (4)	0.0025 (3)	0.0022 (3)	-0.0034 (4)
N1	0.0293 (13)	0.0636 (19)	0.0332 (14)	-0.0023 (13)	0.0057 (11)	0.0033 (13)
01	0.0422 (14)	0.0684 (17)	0.0634 (15)	0.0099 (12)	0.0260 (12)	0.0167 (13)
C1	0.067 (2)	0.041 (2)	0.065 (2)	-0.0069 (18)	0.0199 (19)	0.0080 (19)
O2	0.0434 (13)	0.0434 (14)	0.0610 (15)	0.0055 (10)	0.0178 (11)	0.0100 (11)
N2	0.0292 (13)	0.0450 (16)	0.0394 (14)	0.0004 (11)	0.0035 (11)	0.0083 (12)
C2	0.0350 (17)	0.0447 (18)	0.0313 (15)	0.0025 (14)	0.0032 (13)	-0.0006 (14)
N3	0.0344 (14)	0.0381 (15)	0.0353 (14)	-0.0032 (11)	0.0069 (11)	-0.0003 (11)
03	0.0556 (16)	0.0440 (15)	0.0620 (16)	0.0068 (12)	-0.0061 (12)	0.0009 (12)
C3	0.0359 (16)	0.0420 (18)	0.0281 (14)	-0.0003 (14)	0.0067 (12)	-0.0035 (13)
O4	0.0377 (13)	0.0835 (19)	0.0434 (13)	-0.0003 (12)	0.0140 (10)	-0.0076 (12)
N4	0.0319 (13)	0.0339 (14)	0.0419 (15)	-0.0018 (11)	0.0001 (11)	0.0019 (12)
C4	0.0339 (16)	0.055 (2)	0.0373 (17)	0.0008 (15)	0.0018 (13)	-0.0002 (16)

05	0.0351 (12)	0.0769 (18)	0.0383 (13)	0.0013 (12)	0.0046 (10)	0.0061 (12)
C5	0.0336 (17)	0.062 (2)	0.0423 (18)	-0.0094 (16)	0.0041 (14)	-0.0014 (17)
O6	0.0460 (14)	0.0707 (17)	0.0428 (13)	0.0023 (12)	0.0117 (11)	0.0010 (12)
C6	0.049 (2)	0.057 (2)	0.0463 (19)	-0.0161 (17)	0.0120 (16)	0.0005 (17)
O7	0.0359 (12)	0.0585 (15)	0.0513 (14)	0.0048 (11)	-0.0016 (10)	0.0134 (12)
C7	0.0469 (19)	0.050(2)	0.0393 (17)	0.0003 (16)	0.0035 (15)	0.0036 (16)
C8	0.0306 (15)	0.0397 (17)	0.0360 (16)	-0.0009 (13)	0.0035 (12)	-0.0060 (14)
C9	0.0344 (16)	0.0445 (19)	0.0406 (17)	0.0049 (14)	0.0050 (13)	-0.0014 (15)
C10	0.0304 (15)	0.0371 (17)	0.0412 (18)	-0.0007 (13)	0.0052 (13)	0.0015 (14)
C11	0.0312 (15)	0.0291 (16)	0.0389 (16)	-0.0024 (12)	0.0028 (13)	0.0013 (13)
C12	0.0439 (18)	0.0330 (17)	0.0385 (17)	-0.0033 (14)	0.0083 (14)	-0.0030 (14)
C13	0.0460 (19)	0.045 (2)	0.0340 (16)	-0.0047 (15)	-0.0020 (14)	0.0006 (14)
C14	0.0363 (17)	0.0323 (17)	0.0433 (18)	-0.0011 (13)	-0.0001 (14)	0.0054 (14)
C15	0.0384 (19)	0.068 (3)	0.062 (2)	0.0021 (18)	0.0057 (17)	0.011 (2)
C16	0.0396 (19)	0.081 (3)	0.057 (2)	-0.0040 (19)	0.0105 (16)	-0.009 (2)

Geometric parameters (Å, °)

S-03	1.424 (3)	O5—C10	1.224 (4)
S—O4	1.431 (2)	C5—C6	1.374 (5)
S—N1	1.643 (3)	С5—Н5А	0.930
S—C9	1.782 (3)	O6—C12	1.334 (4)
N1-C10	1.372 (4)	O6—C16	1.440 (4)
N1—H1A	0.860	C6—C7	1.383 (5)
O1—C2	1.199 (4)	C6—H6A	0.930
C1—O2	1.451 (4)	O7—C14	1.344 (4)
C1—H1B	0.960	O7—C15	1.428 (4)
C1—H1C	0.960	C7—C8	1.388 (5)
C1—H1D	0.960	С7—Н7А	0.930
O2—C2	1.333 (4)	C8—C9	1.516 (4)
N2-C10	1.368 (4)	С9—Н9А	0.970
N2-C11	1.399 (4)	С9—Н9В	0.970
N2—H2A	0.860	C12—C13	1.379 (4)
C2—C3	1.495 (5)	C13—C14	1.373 (5)
N3—C11	1.329 (4)	C13—H13A	0.930
N3—C12	1.339 (4)	C15—H15A	0.960
C3—C4	1.399 (4)	C15—H15B	0.960
C3—C8	1.406 (4)	C15—H15C	0.960
N4-C11	1.330 (4)	C16—H16A	0.960
N4	1.336 (4)	C16—H16B	0.960
C4—C5	1.384 (5)	C16—H16C	0.960
C4—H4C	0.930		
O3—S—O4	119.13 (17)	С6—С7—Н7А	119.3
O3—S—N1	110.25 (15)	C8—C7—H7A	119.3
O4—S—N1	103.13 (14)	C7—C8—C3	118.6 (3)
O3—S—C9	109.17 (16)	С7—С8—С9	118.5 (3)
O4—S—C9	109.40 (16)	C3—C8—C9	122.8 (3)

N1—S—C9	104.73 (15)	C8—C9—S	109.7 (2)
C10—N1—S	126.2 (2)	С8—С9—Н9А	109.7
C10—N1—H1A	116.9	S—С9—Н9А	109.7
S—N1—H1A	116.9	С8—С9—Н9В	109.7
O2—C1—H1B	109.5	S—C9—H9B	109.7
O2—C1—H1C	109.5	Н9А—С9—Н9В	108.2
H1B—C1—H1C	109.5	O5—C10—N2	121.3 (3)
02—C1—H1D	109.5	O5-C10-N1	122.7 (3)
H1B—C1—H1D	109.5	N2-C10-N1	116.0(3)
H1C-C1-H1D	109.5	N3-C11-N4	127.5(3)
$C^2 - C^2 - C^1$	115.9 (3)	N3-C11-N2	1189(3)
$C10 - N^2 - C11$	130.5(3)	N4—C11—N2	113.6(3)
C10 N2 U11	114.8	06-C12-N3	119.0(3)
C_{11} N_2 H_2A	114.8	06-C12-C13	119.4(3)
$01-C^2-0^2$	123 4 (3)	N3-C12-C13	1225(3)
01 - 02 - 02	123.4(3) 124.3(3)	C_{14} C_{13} C_{12}	122.5(3)
0^{2} 0^{2} 0^{3}	124.3(3) 112.2(3)	$C_{14} = C_{13} = C_{12}$	122.2
02 - 02 - 03	112.2(3) 115.7(3)	C12 $C13$ $H13A$	122.2
$C_{11} = N_{3} = C_{12}$	113.7(3) 110.2(3)	N4 C14 O7	122.2
C4 = C3 = C3	119.5(3)	N4 - C14 - C12	116.1(3)
$C_4 - C_2 - C_2$	110.3(3)	N4-C14-C13	124.2(3)
$C_0 - C_2 - C_2$	121.9(3)	07 - 015 - 015	117.7 (5)
C11 - N4 - C14	114.4(3)	07C15H15D	109.5
C_{5}	120.8 (3)		109.5
C_{3} C_{4} $H_{4}C_{4}$	119.6	HISA—CIS—HISB	109.5
C3—C4—H4C	119.6		109.5
C6C4	119.8 (3)	HISA—CIS—HISC	109.5
C6—C5—H5A	120.1	H15B—C15—H15C	109.5
C4—C5—H5A	120.1	06—C16—H16A	109.5
C12—O6—C16	118.8 (3)	O6—C16—H16B	109.5
C5—C6—C7	120.1 (3)	H16A—C16—H16B	109.5
С5—С6—Н6А	120.0	O6—C16—H16C	109.5
С7—С6—Н6А	120.0	H16A—C16—H16C	109.5
C14—O7—C15	118.4 (3)	H16B—C16—H16C	109.5
C6—C7—C8	121.4 (3)		
O3—S—N1—C10	61.5 (3)	N1—S—C9—C8	-167.4 (2)
O4—S—N1—C10	-170.2 (3)	C11—N2—C10—O5	173.7 (3)
C9—S—N1—C10	-55.8 (3)	C11—N2—C10—N1	-6.9 (5)
C1-02-C2-01	1.1 (5)	S—N1—C10—O5	-0.1(5)
C1	178.5 (3)	S—N1—C10—N2	-179.5 (2)
O1—C2—C3—C4	139.0 (3)	C12—N3—C11—N4	0.0 (5)
O2—C2—C3—C4	-38.4 (4)	C12—N3—C11—N2	-179.3 (3)
01—C2—C3—C8	-34.9 (5)	C14—N4—C11—N3	-1.4 (5)
O2—C2—C3—C8	147.7 (3)	C14—N4—C11—N2	178.0 (3)
C8—C3—C4—C5	1.0 (5)	C10—N2—C11—N3	8.8 (5)
C2—C3—C4—C5	-173.1 (3)	C10—N2—C11—N4	-170.6(3)
C3—C4—C5—C6	-0.9 (5)	C16—O6—C12—N3	6.0 (5)
C4—C5—C6—C7	-0.5 (5)	C16—O6—C12—C13	-173.8 (3)

C5—C6—C7—C8	1.9 (5)	C11—N3—C12—O6	-178.8 (3)
C6—C7—C8—C3	-1.7 (5)	C11—N3—C12—C13	1.0 (5)
C6—C7—C8—C9	-179.0 (3)	O6-C12-C13-C14	179.3 (3)
C4—C3—C8—C7	0.3 (4)	N3-C12-C13-C14	-0.5 (5)
C2—C3—C8—C7	174.2 (3)	C11—N4—C14—O7	-177.5 (3)
C4—C3—C8—C9	177.5 (3)	C11—N4—C14—C13	1.9 (5)
C2—C3—C8—C9	-8.7 (5)	C15—O7—C14—N4	-11.2 (4)
C7—C8—C9—S	102.8 (3)	C15—O7—C14—C13	169.4 (3)
C3—C8—C9—S	-74.3 (3)	C12—C13—C14—N4	-1.0 (5)
O3—S—C9—C8	74.5 (3)	C12—C13—C14—O7	178.4 (3)
O4—S—C9—C8	-57.5 (3)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	D—H···A
N1—H1 <i>A</i> …N3	0.86	1.94	2.648 (4)	138
N2—H2A···O5 ⁱ	0.86	2.10	2.951 (3)	170
C9—H9 <i>B</i> ···O1	0.97	2.36	2.970 (4)	120
C15—H15C…O1 ⁱ	0.96	2.43	3.068 (4)	124

Symmetry code: (i) -x, y, -z+3/2.