Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dichloridobis(methylamine- $\kappa \mathrm{N}$)boron(III) chloride

Markus Weinmann, Jürgen Nuss and Martin Jansen*

Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany

Correspondence e-mail: m.jansen@fkf.mpg.de

Received 30 January 2008; accepted 1 February 2008

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{N}-\mathrm{C})=0.003 \AA$;
R factor $=0.044 ; w R$ factor $=0.090 ;$ data-to-parameter ratio $=21.5$.

The title compound, $\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{BCl}_{2} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{Cl}^{-}$or $\left[\mathrm{BCl}_{2}{ }^{-}\right.$ $\left.\left(\mathrm{H}_{3} \mathrm{CNH}_{2}\right)_{2}\right]^{+} \cdot \mathrm{Cl}^{-}$, is the first crystallographically characterized di(alkylamine) $-\mathrm{BCl}_{2}{ }^{+}$salt. The B atom is tetrahedrally coordinated by two Cl and two methylamine N atoms. In the crystal structure, the cations and anions interact via N$\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (mean $\mathrm{H} \cdots \mathrm{Cl}=2.40 \AA$), resulting in a layered structure.

Related literature

For more details of the synthesis and background, see Weinmann, Nuss et al. (2007); Weinmann, Kroschel et al. (2007). For related structures, see: Nöth \& Lukas (1962); Mikhailov et al. (1964); Nöth et al. (1966); Ryschkewitz \& Myers (1975).

Experimental

Crystal data

$\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{BCl}_{2} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=179.28$
Orthorhombic, Pbca
$a=9.9881$ (11) \AA
$b=11.8071$ (13) \AA
$c=14.1039$ (15) \AA
$V=1663.3$ (3) \AA^{3}
$Z=8$
Mo $K \alpha$ radiation
$\mu=1.01 \mathrm{~mm}^{-1}$
$T=100$ (2) K
$0.30 \times 0.02 \times 0.02 \mathrm{~mm}$

Data collection

Bruker SMART APEX diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2007)
$T_{\text {min }}=0.751, T_{\text {max }}=0.980$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043 \quad 113$ parameters
$w R\left(F^{2}\right)=0.089 \quad$ All H-atom parameters refined
$S=1.22$
$\Delta \rho_{\text {max }}=0.62 \mathrm{e}^{\AA^{-3}}$
2430 reflections

19044 measured reflections 2430 independent reflections 2123 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.050$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 1$	$0.89(3)$	$2.39(3)$	$3.2232(18)$	$156(2)$
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 1^{\mathrm{i}}$	$0.85(3)$	$2.34(3)$	$3.1862(18)$	$173(2)$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{Cl} 1$	$0.86(3)$	$2.46(3)$	$3.2168(18)$	$148(2)$
N2-H2B $\cdots \mathrm{Cl} 1^{\mathrm{ii}}$	$0.86(3)$	$2.36(3)$	$3.2016(18)$	$165(2)$

Symmetry codes: (i) $x+\frac{1}{2}, y,-z+\frac{3}{2}$; (ii) $-x+1, y-\frac{1}{2},-z+\frac{3}{2}$.

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2005); software used to prepare material for publication: SHELXL97.

The authors acknowledge financial support by the Max Planck Society and the German Research Foundation.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2697).

References

Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2007). SADABS. Version 2007/4. Bruker AXS Inc., Madison, Wisconsin, USA.
Dowty, E. (2005). ATOMS. Version 6.3. Shape Software, Kingsport, Tennessee, USA.
Mikhailov, B. M., Shchegoleva, T. A. \& Sheludyakov, V. D. (1964). Izv. Akad. Nauk. SSSR Ser. Khim. 12, 2165-2170.
Nöth, H. \& Lukas, S. (1962). Chem. Ber. 95, 1505-1512.
Nöth, H., Schweizer, P. \& Ziegelgänsberger, F. (1966). Chem. Ber. 99, 10891096.

Ryschkewitz, G. E. \& Myers, W. H. (1975). Syn. React. Inorg. Met.-Org. Chem. 5, 123-134.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Weinmann, M., Kroschel, M., Jäschke, T., Nuss, J., Jansen, M., Kolios, F., Morillo, A., Tellaeche, C. \& Nieken, U. (2007). J. Mater. Chem. In the press.
Weinmann, M., Nuss, J. \& Jansen, M. (2007). Acta Cryst. E63, o4235.

supporting information

Acta Cryst. (2008). E64, o583 [doi:10.1107/S1600536808003589]

Dichloridobis(methylamine- $\kappa \boldsymbol{N}$)boron(III) chloride

Markus Weinmann, Jürgen Nuss and Martin Jansen

S1. Comment

Borazonium cations $\mathrm{BCl}_{2}{ }^{+}$coordinated by secondary amines $R_{2} \mathrm{NH}$ are very few in number whereas those coordinated by primary amines are more or less unknown. To our knowledge, there has appeared so far no publication dealing with $\mathrm{H}_{3} \mathrm{CNH}_{2}$-coordinated $\mathrm{BCl}_{2}{ }^{+}$cations.
We recently published the continuous synthesis of $\mathrm{Cl}_{3} \mathrm{Si}^{-} \mathrm{NCH}_{3}-\mathrm{BCl}_{2}$ (DMTA) by a two-step gas phase synthesis. This reaction proceeds with the formation of solid by-products which are separated from the desired product by filtration. The solid mainly consists of $\mathrm{MeNH}_{3} \mathrm{Cl}$. Moreover we observed formation of crystalline 2,4,6-trichloro-1,3,5-trimethylborazine, $\left(\mathrm{CH}_{3} \mathrm{NBCl}\right)_{3}$ (Weinmann, Nuss et al., 2007). Re-crystallization of the solid from THF/n-pentane now additionally afforded crystals of the title compound, (I) (Fig. 1).

The boron atom in the $\mathrm{BCl}_{2} L_{2}{ }^{+}$cation in (I) is tetrahedrally coordinated by two chlorine atoms Cl 2 and Cl 3 and two nitrogen atoms N 1 and N 2 of the methylamine ligands. The smallest angle ($\mathrm{N} 2-\mathrm{B}-\mathrm{C} 12$) measures $106.38(13)^{\circ}$, while the biggest $(\mathrm{Cl} 2 — \mathrm{~B}-\mathrm{Cl} 3)$ amounts to $113.08(11)^{\circ}$. The $\mathrm{B}-\mathrm{Cl}$ bond distances are 1.837 (2) and 1.841 (2) \AA whereas the $\mathrm{B}-\mathrm{N}$ bond lengths measure 1.566 (3) and 1.562 (3) \AA. These are values typically found in tetrachloroborate $\left(\mathrm{BCl}_{4}\right)$ or tetraaminoborate $\left(\mathrm{B}\left(\mathrm{N} R_{2}\right)_{4}^{-}\right)$anions, respectively.
The chloride counter anions are associated with the cations via $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (Table 1). From Figure 2 it is evident that the anions are each connetcted to four hydrogen atoms, thereby linking three cations. Consequently all the N bonded H atoms contribute to hydrogen-bond bridges.
A further special feature is the formation of a layered structure in (001) which results from the H-bridge formation. The layers, which are stacked in [001] are connected via less polar van-der-Vaals interactions.

S2. Experimental

$\left[\mathrm{BCl}_{2}\left(\mathrm{H}_{3} \mathrm{CNH}_{2}\right)_{2}\right] \mathrm{Cl}$ was obtained as a side-product in amounts $<5 \%$ during the continuous synthesis of DMTA. Details of the experimental setup are found elsewhere (Weinmann, Nuss et al., 2007; Weinmann, Kroschel et al., 2007). Recrystallization of the reaction mixture from THF/n-hexane afforded colourless needles of (I).

S3. Refinement

All H atoms were found in a difference map and their positions and $U_{\text {iso }}$ values were freely refined.

Figure 1
Molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level (arbitrary spheres for the H atoms). Hydrogen bonds are indicated by thin red lines.

Figure 2
Packing diagram of (I) with hydrogen bonds indicated by dashed lines.

Dichloridobis(methylamine- $\kappa \mathrm{N}$)boron(III) chloride

Crystal data

$\mathrm{C}_{2} \mathrm{H}_{10} \mathrm{BCl}_{2} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=179.28$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
$a=9.9881$ (11) \AA
$b=11.8071$ (13) \AA
$c=14.1039(15) \AA$
$V=1663.3$ (3) \AA^{3}
$Z=8$

Data collection

Bruker SMART APEX
diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\min }=0.751, T_{\text {max }}=0.980$
$F(000)=736$
$D_{\mathrm{x}}=1.432 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5369 reflections
$\theta=2.6-34.8^{\circ}$
$\mu=1.01 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Needle, colourless
$0.30 \times 0.02 \times 0.02 \mathrm{~mm}$

19044 measured reflections
2430 independent reflections
2123 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.050$
$\theta_{\text {max }}=30.0^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-14 \rightarrow 14$
$k=-16 \rightarrow 16$
$l=-19 \rightarrow 19$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.089$
$S=1.22$
2430 reflections
113 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: difference Fourier map
> All H -atom parameters refined
> $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.036 P)^{2}+0.6817 P\right]$
> where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\text {max }}=0.62 \mathrm{e}_{\AA^{-3}}$
> $\Delta \rho_{\text {min }}=-0.28$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C11	$0.43797(5)$	$0.04596(4)$	$0.73581(4)$	$0.02091(13)$
C12	$0.54279(5)$	$-0.21105(4)$	$0.55584(3)$	$0.01808(12)$
C13	$0.82564(5)$	$-0.25006(4)$	$0.63429(4)$	$0.01710(12)$
B	$0.6695(2)$	$-0.16781(17)$	$0.64305(15)$	$0.0120(4)$
N1	$0.70412(17)$	$-0.03969(14)$	$0.62830(12)$	$0.0136(3)$
H1A	$0.630(3)$	$-0.002(2)$	$0.6429(17)$	$0.021(6)^{*}$
H1B	$0.767(3)$	$-0.023(2)$	$0.6669(19)$	$0.024(7)^{*}$
N2	$0.60546(17)$	$-0.18659(14)$	$0.74288(12)$	$0.0137(3)$
H2A	$0.535(3)$	$-0.145(2)$	$0.7468(19)$	$0.030(7)^{*}$
H2B	$0.579(3)$	$-0.256(3)$	$0.744(2)$	$0.028(7)^{*}$
C3	$0.7536(3)$	$-0.01034(19)$	$0.53109(16)$	$0.0212(4)$
H3A	$0.831(3)$	$-0.059(2)$	$0.519(2)$	$0.032(7)^{*}$
H3B	$0.682(3)$	$-0.020(3)$	$0.488(2)$	$0.040(8)^{*}$
H3C	$0.782(3)$	$0.066(2)$	$0.5310(19)$	$0.027(7)^{*}$
C4	$0.6894(3)$	$-0.1676(2)$	$0.82892(16)$	$0.0253(5)$
H4A	$0.636(3)$	$-0.178(2)$	$0.8830(19)$	$0.025(7)^{*}$
H4B	$0.766(4)$	$-0.218(3)$	$0.831(2)$	$0.045(9)^{*}$
H4C	$0.724(3)$	$-0.094(3)$	$0.825(2)$	$0.034(8)^{*}$

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0190(2)$	$0.0103(2)$	$0.0334(3)$	$0.00027(17)$	$0.0106(2)$	$-0.00070(18)$
C12	$0.0168(2)$	$0.0200(2)$	$0.0174(2)$	$-0.00113(18)$	$-0.00353(18)$	$-0.00502(18)$
C13	$0.0131(2)$	$0.0133(2)$	$0.0249(3)$	$0.00233(17)$	$0.00170(18)$	$-0.00173(18)$

B	$0.0121(9)$	$0.0100(9)$	$0.0140(10)$	$-0.0011(7)$	$0.0011(7)$	$0.0001(7)$
N1	$0.0143(8)$	$0.0125(8)$	$0.0141(8)$	$-0.0001(6)$	$0.0007(6)$	$-0.0001(6)$
N2	$0.0144(8)$	$0.0105(7)$	$0.0161(8)$	$-0.0011(6)$	$0.0004(6)$	$-0.0003(6)$
C3	$0.0308(12)$	$0.0155(10)$	$0.0173(10)$	$-0.0007(9)$	$0.0065(9)$	$0.0034(8)$
C4	$0.0299(12)$	$0.0321(13)$	$0.0140(10)$	$-0.0132(10)$	$-0.0023(9)$	$0.0022(9)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

B-Cl2	1.837 (2)	N2-H2A	0.86 (3)
B- Cl 3	1.841 (2)	N2-H2B	0.86 (3)
B-N2	1.562 (3)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.98 (3)
B-N1	1.566 (3)	C3-H3B	0.95 (3)
N1-C3	1.498 (3)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	0.95 (3)
N1-H1A	0.89 (3)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.94 (3)
N1-H1B	0.85 (3)	C4-H4B	0.97 (3)
N2-C4	1.492 (3)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.93 (3)
N2-B-N1	110.33 (15)	$\mathrm{C} 4-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	107.4 (18)
$\mathrm{N} 2-\mathrm{B}-\mathrm{Cl} 2$	106.38 (13)	$\mathrm{B}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	106.0 (18)
$\mathrm{N} 1-\mathrm{B}-\mathrm{Cl} 2$	109.37 (13)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	107 (3)
N2-B-Cl3	109.41 (13)	N1-C3-H3A	106.6 (16)
$\mathrm{N} 1-\mathrm{B}-\mathrm{Cl} 3$	108.27 (13)	N1-C3-H3B	108.3 (18)
$\mathrm{Cl} 2-\mathrm{B}-\mathrm{Cl} 3$	113.08 (11)	H3A-C3-H3B	114 (2)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{B}$	114.71 (16)	N1-C3-H3C	108.7 (16)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	111.9 (16)	H3A-C3-H3C	109 (2)
$\mathrm{B}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	105.4 (17)	H3B-C3-H3C	110 (2)
C3-N1-H1B	106.6 (18)	N2-C4-H4A	108.8 (17)
$\mathrm{B}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	107.7 (18)	N2-C4-H4B	112.0 (19)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	110 (2)	H4A-C4-H4B	110 (3)
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{B}$	118.80 (16)	N2-C4-H4C	107.7 (18)
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	108.7 (18)	H4A-C4-H4C	112 (2)
$\mathrm{B}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	108.1 (18)	H4B-C4-H4C	106 (3)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{Cl1}$	$0.89(3)$	$2.39(3)$	$3.2232(18)$	$156(2)$
$\mathrm{N} 1 — \mathrm{H} 1 B \cdots \mathrm{Cl1} 1^{\mathrm{i}}$	$0.85(3)$	$2.34(3)$	$3.1862(18)$	$173(2)$
$\mathrm{N} 2 — \mathrm{H} 2 A \cdots \mathrm{Cl1}$	$0.86(3)$	$2.46(3)$	$3.2168(18)$	$148(2)$
$\mathrm{N} 2 — \mathrm{H} 2 B \cdots \mathrm{Cl1}{ }^{\mathrm{ii}}$	$0.86(3)$	$2.36(3)$	$3.2016(18)$	$165(2)$

[^0]
[^0]: Symmetry codes: (i) $x+1 / 2, y,-z+3 / 2$; (ii) $-x+1, y-1 / 2,-z+3 / 2$.

