Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Diaquabis(5-carboxy-2-methyl-1H-imidazole-4-carboxylato- $\kappa^{2} N^{3}, O^{4}$)manganese(II)

Jian-Zhong Zeng, ${ }^{\text {a }}$ Xiu-Guang Yi, ${ }^{\mathbf{b} *}$ Jun-Yue Lin, ${ }^{\text {b }}$ Shao-Ming Ying ${ }^{b}$ and Gan-Sheng Huang ${ }^{\text {b }}$

${ }^{\text {a }}$ College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi 343009, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, People's Republic of China Correspondence e-mail: yingshaoming@hotmail.com

Received 9 January 2008; accepted 9 February 2008

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.033 ; w R$ factor $=0.096 ;$ data-to-parameter ratio $=14.6$.

The title complex, $\left[\mathrm{Mn}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, was obtained by hydrothermal synthesis. The $\mathrm{Mn}^{\text {II }}$ atom, which lies on an inversion centre, displays a slightly distorted octahedral geometry. In the crystal packing, complex molecules are linked by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a three-dimensional supramolecular structure. The title complex is isostructural with the corresponding cadmium(II) complex [Nie, Wen, Wu, Liu \& Liu (2007). Acta Cryst. E63, m753-m755].

Related literature

For related literature, see: Liang et al. (2002); Net et al. (1989); Nie et al. (2007); Ying \& Mao (2006).

Experimental

Crystal data
$\left[\mathrm{Mn}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=429.21$
$V=809.62(14) \AA^{3}$
Monoclinic, $P 2_{1} / c$
$Z=2$
$a=12.2047$ (12) \AA
Mo $K \alpha$ radiation
$b=9.1607$ (9) A
$\mu=0.88 \mathrm{~mm}^{-}$
$c=7.3860$ (7) \AA
$T=293$ (2) K
$\beta=101.355$ (2) ${ }^{\circ}$
$0.30 \times 0.21 \times 0.12 \mathrm{~mm}$

Data collection

Bruker APEX area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2002)
$T_{\text {min }}=0.778, T_{\text {max }}=0.902$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.096 \quad$ independent and constrained
$S=0.96$
1931 reflections
132 parameters

5936 measured reflections 1931 independent reflections 1387 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 B \cdots \mathrm{O}^{\text {i }}$	0.77 (3)	2.01 (3)	2.763 (2)	168 (3)
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 4^{\text {ii }}$	0.78 (3)	1.98 (3)	2.760 (2)	174 (3)
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 1^{\text {iii }}$	0.86	2.06	2.841 (2)	151
$\begin{aligned} & \text { Symmetry cod } \\ & -x+1,-y+1,- \end{aligned}$	(i) $-x, y+\frac{1}{2},-z+\frac{1}{2}$;		(ii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (iii)	

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Version 5.1; Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2194).

References

Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Liang, Y. C., Cao, R. \& Hong, M. C. (2002). Inorg. Chem. Commun. 5, 366-368.
Net, G., Bayon, J. C., Butler, W. M. \& Rasmussen, P. (1989). J. Chem. Soc. Chem. Commun. pp. 1022-1023.
Nie, X.-L., Wen, H.-L., Wu, Z.-S., Liu, D.-B. \& Liu, C.-B. (2007). Acta Cryst. E63, m753-m755.
Sheldrick, G. M. (2002). SADABS. Version 2.03. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Ying, S.-M. \& Mao, J.-G. (2006). Cryst. Growth Des. 6, 964-968.

supporting information

Diaquabis(5-carboxy-2-methyl-1 H -imidazole-4-carboxylato$\kappa^{2} N^{3}, O^{4}$)manganese(II)

Jian-Zhong Zeng, Xiu-Guang Yi, Jun-Yue Lin, Shao-Ming Ying and Gan-Sheng Huang

S1. Comment

The use of multifunctional ligands to construct coordination polymers is of current interest due to their potential ability to generate new solid materials with novel network topologies by deliberate design (Ying \& Mao, 2006). In these studies, much attention has been put into coordination polymers containing metals and N -heterocyclic carboxylic acids because they can exhibit abundant structural type and can be potentially used as functional materials (Nie et al., 2007; Liang et al., 2002; Net et al., 1989). In this paper, we report the synthesis and structure of a new manganese(II) complex obtained from 2-methyl-1 H-imidazole-4,5-dicarboxylic acid ($\mathrm{H}_{3} \mathrm{MIA}$).
The title mononuclear complex molecule contains one manganese(II) ion, two mono-deprotonated H_{2} MIA ligands and two water molecules. The manganese(II) ion lies on an inversion centre and is six-coordinated by two carboxylate oxygen atoms and two nitrogen atoms of the H_{2} MIA ligands, and by the oxygen atoms of two water molecules forming a slightly distorted octahedral geometry (Fig. 1). The Mn-O distances are 2.1433 (19) and 2.2103 (13) \AA and the Mn-N distance is $2.2700(16) \AA$. In the crystal packing, complex molecules are linked by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form a three-dimensional supermolecular structure (Fig. 2). The complex is isostructural with the corresponding cadmium(II) complex which has been reported recently (Nie et al., 2007).

S2. Experimental

A mixture of manganese(II) acetate ($0.5 \mathrm{mmol}, 0.120 \mathrm{~g}$) and 2-methyl- $1 H$-imidazole-4,5-dicarboxylic acid in 10 ml of distilled water was sealed in an autoclave equipped with a Teflon liner $(20 \mathrm{ml})$ and then heated at $150^{\circ} \mathrm{C}$ for 3 days. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

S3. Refinement

The water H atoms were located in a difference Fourier map and refined freely, with $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. All other H atoms were positioned geometrically and refined in the riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.97 \AA, \mathrm{~N}-\mathrm{H}=0.86$ $\AA, \mathrm{O}-\mathrm{H}=0.82 \AA$ and with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{N})$ or $1.5 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{O})$

Figure 1
The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Symmetry code: (A) $-x,-y+1,-z$.

Figure 2
Packing diagram of the title compound viewed along the c axis. Hydrogen atoms are omitted for clarity. The hydrogen bonds are drawn as dotted lines.

Diaquabis(5-carboxy-2-methyl-1 H -imidazole-4-carboxylato- $\kappa^{2} N^{3}, \mathrm{O}^{4}$)manganese(II)

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$
$M_{r}=429.21$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=12.2047$ (12) \AA
$b=9.1607$ (9) \AA

$$
\begin{aligned}
& c=7.3860(7) \AA \\
& \beta=101.355(2)^{\circ} \\
& V=809.62(14) \AA^{3} \\
& Z=2 \\
& F(000)=438 \\
& D_{\mathrm{x}}=1.761 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3147 reflections
$\theta=2.8-28.2^{\circ}$
$\mu=0.88 \mathrm{~mm}^{-1}$

Data collection

Bruker APEX area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
$T_{\text {min }}=0.778, T_{\text {max }}=0.902$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.096$
$S=0.96$
1931 reflections
132 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& T=293 \mathrm{~K} \\
& \text { Plate, colourless } \\
& 0.30 \times 0.21 \times 0.12 \mathrm{~mm} \\
& \\
& \\
& 5936 \text { measured reflections } \\
& 1931 \text { independent reflections } \\
& 1387 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.033 \\
& \theta_{\max }=28.3^{\circ}, \theta_{\min }=2.8^{\circ} \\
& h=-16 \rightarrow 16 \\
& k=-12 \rightarrow 12 \\
& l=-9 \rightarrow 9
\end{aligned}
$$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0578 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.35$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.35$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
Mn1	0.0000	0.5000	0.0000	$0.02937(16)$
N1	$0.18504(13)$	$0.50974(16)$	$0.1269(2)$	$0.0293(4)$
N2	$0.35369(14)$	$0.52117(17)$	$0.2952(3)$	$0.0363(4)$
H2A	0.4143	0.5577	0.3581	0.044^{*}
O1	$0.50357(12)$	$0.30235(19)$	$0.4426(3)$	$0.0559(5)$
O2	$0.39335(12)$	$0.12886(16)$	$0.3029(2)$	$0.0484(4)$
H2B	0.3298	0.1226	0.2415	0.073^{*}
O3	$0.19549(11)$	$0.11771(14)$	$0.1132(2)$	$0.0352(4)$
O4	$0.06082(11)$	$0.27347(14)$	$-0.01036(19)$	$0.0330(3)$
O5	$-0.02904(16)$	$0.4590(2)$	$0.2723(3)$	$0.0459(5)$
C1	$0.2586(2)$	$0.7599(2)$	$0.2185(4)$	$0.0549(7)$
H1A	0.1875	0.7922	0.1503	0.082^{*}

H1B	0.3172	0.8005	0.1645	0.082^{*}
H1C	0.2675	0.7915	0.3444	0.082^{*}
C2	$0.26397(16)$	$0.5981(2)$	$0.2124(3)$	$0.0339(5)$
C3	$0.41682(17)$	$0.2662(2)$	$0.3431(3)$	$0.0370(5)$
C4	$0.33359(15)$	$0.3766(2)$	$0.2638(3)$	$0.0309(5)$
C5	$0.22732(15)$	$0.3710(2)$	$0.1569(3)$	$0.0273(4)$
C6	$0.15691(15)$	$0.2449(2)$	$0.0818(3)$	$0.0277(4)$
H5B	$-0.071(2)$	$0.499(2)$	$0.319(4)$	$0.041(8)^{*}$
H5A	$0.001(2)$	$0.397(3)$	$0.336(4)$	$0.065(9)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	$0.0254(2)$	$0.0274(2)$	$0.0312(3)$	$0.00137(17)$	$-0.00438(17)$	$0.00092(17)$
N1	$0.0265(9)$	$0.0253(8)$	$0.0328(10)$	$-0.0015(6)$	$-0.0023(7)$	$-0.0002(7)$
N2	$0.0232(8)$	$0.0327(10)$	$0.0468(12)$	$-0.0040(7)$	$-0.0081(7)$	$-0.0053(8)$
O1	$0.0338(9)$	$0.0507(10)$	$0.0697(12)$	$0.0059(7)$	$-0.0231(8)$	$-0.0116(9)$
O2	$0.0350(8)$	$0.0358(9)$	$0.0650(11)$	$0.0064(7)$	$-0.0127(7)$	$-0.0026(7)$
O3	$0.0305(7)$	$0.0248(7)$	$0.0466(9)$	$-0.0008(6)$	$-0.0011(6)$	$-0.0008(6)$
O4	$0.0275(7)$	$0.0276(7)$	$0.0379(9)$	$-0.0018(6)$	$-0.0080(6)$	$-0.0034(6)$
O5	$0.0493(11)$	$0.0499(10)$	$0.0391(10)$	$0.0240(9)$	$0.0099(8)$	$0.0137(8)$
C1	$0.0500(15)$	$0.0375(13)$	$0.071(2)$	$0.0001(11)$	$-0.0042(13)$	$-0.0063(12)$
C2	$0.0283(10)$	$0.0309(10)$	$0.0388(13)$	$-0.0037(8)$	$-0.0029(9)$	$-0.0022(9)$
C3	$0.0276(10)$	$0.0376(12)$	$0.0415(14)$	$0.0043(8)$	$-0.0037(9)$	$-0.0016(10)$
C4	$0.0244(10)$	$0.0317(11)$	$0.0335(12)$	$-0.0012(8)$	$-0.0022(8)$	$-0.0025(8)$
C5	$0.0230(9)$	$0.0293(10)$	$0.0275(11)$	$-0.0010(7)$	$-0.0003(7)$	$-0.0006(8)$
C6	$0.0255(10)$	$0.0276(10)$	$0.0286(11)$	$-0.0023(8)$	$0.0015(8)$	$-0.0010(8)$

Geometric parameters $\left(\hat{A},{ }^{\circ}\right)$

Mn1-O5 ${ }^{\text {i }}$	2.1433 (19)	O2-H2B	0.8200
Mn1-O5	2.1433 (19)	O3-C6	1.261 (2)
$\mathrm{Mn} 1-\mathrm{O} 4$	2.2103 (13)	O4-C6	1.262 (2)
$\mathrm{Mn} 1-\mathrm{O} 4{ }^{\text {i }}$	2.2103 (13)	O5-H5B	0.77 (3)
Mn1-N1	2.2700 (16)	O5-H5A	0.78 (3)
$\mathrm{Mn} 1-\mathrm{N} 1^{\text {i }}$	2.2700 (16)	C1-C2	1.485 (3)
N1-C2	1.320 (2)	C1-H1A	0.9600
N1-C5	1.373 (2)	C1-H1B	0.9600
N2-C2	1.344 (3)	C1-H1C	0.9600
N2-C4	1.358 (2)	C3-C4	1.471 (3)
N2-H2A	0.8600	C4-C5	1.380 (3)
O1-C3	1.210 (2)	C5-C6	1.481 (3)
$\mathrm{O} 2-\mathrm{C} 3$	1.311 (2)		
$\mathrm{O} 5-\mathrm{Mn} 1-\mathrm{O} 5$	180.00 (10)	Mn1-O5-H5A	124 (2)
O 5 - $\mathrm{Mn} 1-\mathrm{O} 4$	90.77 (6)	H5B-O5-H5A	110 (3)
$\mathrm{O} 5-\mathrm{Mn} 1-\mathrm{O} 4$	89.23 (6)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5
$\mathrm{O} 5-\mathrm{Mn} 1-\mathrm{O} 4{ }^{\mathrm{i}}$	89.23 (6)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5

$\mathrm{O} 5-\mathrm{Mn} 1-\mathrm{O} 4^{\mathrm{i}}$	$90.77(6)$
$\mathrm{O} 4-\mathrm{Mn} 1-\mathrm{O} 4^{\mathrm{i}}$	$180.00(10)$
$\mathrm{O} 5-\mathrm{Mn} 1-\mathrm{N} 1$	$92.62(7)$
$\mathrm{O} 5-\mathrm{Mn} 1-\mathrm{N} 1$	$87.38(7)$
$\mathrm{O} 4-\mathrm{Mn} 1-\mathrm{N} 1$	$74.79(5)$
$\mathrm{O} 4-\mathrm{Mn} 1-\mathrm{N} 1$	$105.21(5)$
$\mathrm{O} 5-\mathrm{Mn} 1-\mathrm{N} 1^{\mathrm{i}}$	$87.38(7)$
$\mathrm{O} 5-\mathrm{Mn} 1-\mathrm{N} 1^{\mathrm{i}}$	$92.62(7)$
$\mathrm{O} 4-\mathrm{Mn} 1-\mathrm{N} 1^{\mathrm{i}}$	$105.21(5)$
$\mathrm{O} 4-\mathrm{Mn} 1-\mathrm{N} 1^{\mathrm{i}}$	$74.79(5)$
$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 1^{\mathrm{i}}$	$180.00(8)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 5$	$105.93(16)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{Mn} 1$	$142.63(14)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{Mn} 1$	$110.00(11)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 4$	$109.25(16)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	125.4
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	125.4
$\mathrm{C} 3-\mathrm{O} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{C} 6-\mathrm{O} 4-\mathrm{Mn} 1$	$117.32(11)$
$\mathrm{Mn} 1-\mathrm{O} 5-\mathrm{H} 5 \mathrm{~B}$	$126(2)$

$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{N} 2$	$110.42(18)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1$	$126.44(19)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 1$	$123.14(18)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{O} 2$	$121.74(19)$
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4$	$120.44(19)$
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4$	$117.82(17)$
$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5$	$104.59(16)$
$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3$	$121.00(17)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$134.39(18)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$109.80(15)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6$	$119.32(16)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$130.84(17)$
$\mathrm{O} 4-\mathrm{C} 6-\mathrm{O} 3$	$124.39(16)$
$\mathrm{O} 4-\mathrm{C} 6-\mathrm{C} 5$	$116.68(16)$
$\mathrm{O} 3-\mathrm{C} 6-\mathrm{C} 5$	$118.93(16)$

Symmetry code: (i) $-x,-y+1,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{O} 5 — \mathrm{H} 5 B \cdots \mathrm{O} 3^{\mathrm{ii}}$	$0.77(3)$	$2.01(3)$	$2.763(2)$	$168(3)$
$\mathrm{O} 5 — \mathrm{H} 5 A \cdots \mathrm{O} 4^{\mathrm{iii}}$	$0.78(3)$	$1.98(3)$	$2.760(2)$	$174(3)$
$\mathrm{N} 2 — \mathrm{H} 2 A \cdots \mathrm{O}^{\text {iv }}$	0.86	2.06	$2.841(2)$	151

Symmetry codes: (ii) $-x, y+1 / 2,-z+1 / 2$; (iii) $x,-y+1 / 2, z+1 / 2$; (iv) $-x+1,-y+1,-z+1$.

