Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,3,4-Tribromothiophene

Tony M. Kuriger, Stephen C. Moratti and Jim Simpson*

Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand Correspondence e-mail: jsimpson@alkali.otago.ac.nz

Received 7 March 2008; accepted 9 March 2008
Key indicators: single-crystal X-ray study; $T=91 \mathrm{~K} ;$ mean $\sigma(\mathrm{C}-\mathrm{C})=0.033 \AA ; R$ factor $=$ $0.062 ; w R$ factor $=0.172$; data-to-parameter ratio $=19.8$.

In the title compound, $\mathrm{C}_{4} \mathrm{HBr}_{3} \mathrm{~S}$, there are two essentially planar molecules in the asymmetric unit. In the crystal structure, bifurcated $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds link the molecules into chains. Weak $\mathrm{Br} \cdots \mathrm{Br}$ interactions $[\mathrm{Br} \cdots \mathrm{Br}=$ 3.634 (4)-3.691 (4) \AA] then lead to undulating sheets in the $b c$ plane.

Related literature

For related polybromothiophene structures, see: Helmholdt et al. (2007); Murakami et al. (2002); Xie et al. (1997, 1998). For information on halogen \cdots halogen contacts, see: Pedireddi et al. (1994). For details of the Cambridge Structural Database, see: Allen (2002).

Experimental

Crystal data

$\mathrm{C}_{4} \mathrm{HBr}_{3} \mathrm{~S}$

$M_{r}=320.84$
Orthorhombic, Pna $_{1}$
$a=12.4529$ (11) A
$b=3.9724$ (4) A
$c=28.846$ (3) \AA
$V=1426.9(2) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
$\mu=17.14 \mathrm{~mm}^{-1}$
$T=91$ (2) K
$0.17 \times 0.06 \times 0.02 \mathrm{~mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2006)
$T_{\min }=0.434, T_{\max }=0.710$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
H -atom parameters constrained
$w R\left(F^{2}\right)=0.172$
$\Delta \rho_{\text {max }}=3.39 \mathrm{e}^{\AA^{-3}}$
$S=0.86$
2163 reflections
109 parameters
$\Delta \rho_{\min }=-1.30$ e \AA^{-3}
Absolute structure: Flack (1983),
1050 Friedel pairs
1 restraint

Flack parameter: 0.11 (6)

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 A-\mathrm{H} 1 A \cdots \mathrm{Br} 3 A^{\mathrm{i}}$	0.95	3.04	$3.89(3)$	149
$\mathrm{C} 1 A-\mathrm{H} 1 A \cdots \mathrm{Br} 4 A^{\mathrm{i}}$	0.95	2.96	$3.68(3)$	134
$\mathrm{C} 1 B-\mathrm{H} 1 B \cdots \mathrm{Br} 3 B^{\mathrm{ii}}$	0.95	2.93	$3.79(3)$	151
$\mathrm{C} 1 B-\mathrm{H} 1 B \cdots \mathrm{Br} 4 B^{\mathrm{ii}}$	0.95	2.97	$3.66(2)$	131

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{3}{2}, z$; (ii) $x-\frac{1}{2},-y+\frac{1}{2}, z$.
Data collection: APEX2 (Bruker 2006); cell refinement: APEX2 and SAINT (Bruker 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN (Hunter \& Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN; molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004) and PLATON (Spek, 2003).

This work was supported by grant No UOO-X0404 from the New Economy Research Fund of the New Zealand Foundation for Research Science and Technology. We also thank the University of Otago for the purchase of the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2706).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Helmholdt, R. B., Sonneveld, E. J., Velde, C. M. L. V., Blockhuys, F., Lenstra, A. T. H., Geise, H. J. \& Peschar, R. (2007). Acta Cryst. B63, 783-790.

Hunter, K. A. \& Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Murakami, F., Sasaki, S. \& Yoshifuji, M. (2002). Angew. Chem. Int. Ed. 41, 2574-2576.
Pedireddi, V. R., Shekhar Reddy, D., Satish Goud, B., Craig, D. C., Rae, A. D. \& Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353-2359.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Xie, Y., Ng, S.-C., Wu, B.-M., Xue, F., Mak, T. C. W. \& Hor, T. S. A. (1997). J. Organomet. Chem. 531, 175-181.
Xie, Y., Wu, B.-M., Xue, F., Ng, S.-C., Mak, T. C. W. \& Hor, T. S. A. (1998). Organometallics, 17, 3988-3995.

supporting information

Acta Cryst. (2008). E64, o709 [doi:10.1107/S1600536808006600]

2,3,4-Tribromothiophene

Tony M. Kuriger, Stephen C. Moratti and Jim Simpson

S1. Comment

Brominated thiophenes are very important intermediates in the construction of thiophene oligomers and polymers for use in optoelectronics. In some cases, it is important to have one or two α-positions free for further oxidative coupling. The 2,3,4-tribromo derivative is not easy to access, as the 2 - and 5-positions are normally substituted first, and so it is normally synthesized via debromination from tetrabromothiophene (Xie et al., 1998).

The asymmetric unit of the title compound, (I), $\mathrm{C}_{8} \mathrm{H}_{2} \mathrm{Br}_{6} \mathrm{~S}_{2}$, consists of two discrete tribromothiophene molecules A \& B (Fig. 1). Each molecule is essentially planar with r.m.s. deviations from the mean planes through all non-hydrogen atoms of 0.0194 and $0.0286 \AA$ for A and B respectively. The dihedral angle between the A and B ring planes is $0.9(4)^{\circ}$ but they are well separated with a centroid to centroid distance of $6.3 \AA$.
In the crystal of (I) bifurcated $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds (Table 1) form chains of like molecules that pack in an obverse fashion along a . The structure is further stabilized by an extensive network of weak $\mathrm{Br} \cdots \mathrm{Br}$ interactions with $\mathrm{Br} \cdots \mathrm{Br}$ distances in the range $3.634(4) \AA\left(\mathrm{Br} 3 \mathrm{~A} \cdots \mathrm{Br} 2 \mathrm{~B}^{\mathrm{i}}, \mathrm{i}=1-x, 1-y,-1 / 2+z ; \theta_{1}=156.7^{\circ}\right.$ and $\left.\theta_{2}=117.5^{\circ}\right)$ (Pedireddi et al., 1994) to 3.691 (4) $\AA\left(\mathrm{Br} 3 \mathrm{~A} \cdots \mathrm{Br} 2 \mathrm{~A}^{\mathrm{ii}} \mathrm{ii}=-1 / 2+x, 1 / 2-y, z ; \theta_{1}=161.8^{\circ}\right.$ and $\left.\theta_{2}=84.7^{\circ}\right)$. These contacts link the chains of molecules into undulating sheets in the $b c$ plane (Fig. 2).

S2. Experimental

2,3,4-Tribromothiophene, prepared by the method of Xie et al. (1998), was dissolved in methanol. Colourless plates of (I) were grown by slow diffusion of water into the solution.

S3. Refinement

The crystals were small and very weakly diffracting and little data were obtainable beyond $\theta=23^{\circ}$. This clearly contributes to the relatively high R factor and poor precision of the data in this determination. The C -bound H atoms were placed geometrically $(\mathrm{C}-\mathrm{H}=0.95 \AA)$ and refined as riding with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$. A number of high peaks were found in the final difference map in the vicinity of the Br atoms in both molecules. The deepest hole is $0.98 \AA$ from Br 3 B .

Figure 1

The asymmetric unit of (I), with 50\% displacement ellipsoids for the non-hydrogen atoms.

Figure 2
Crystal packing of (I) with $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}$ hydrogen bonds and $\mathrm{Br} \cdots \mathrm{Br}$ interactions drawn as dashed lines.

2,3,4-Tribromothiophene

Crystal data

$\mathrm{C}_{4} \mathrm{HBr}_{3} \mathrm{~S}$
$M_{r}=320.84$
Orthorhombic, Pna_{1}
Hall symbol: P 2c -2n
$a=12.4529$ (11) \AA
$b=3.9724$ (4) \AA
$c=28.846$ (3) \AA
$V=1426.9(2) \AA^{3}$
$Z=8$

Data collection

Bruker APEXII CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
$F(000)=1168$
$D_{\mathrm{x}}=2.987 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1448 reflections
$\theta=3.4-21.9^{\circ}$
$\mu=17.14 \mathrm{~mm}^{-1}$
$T=91 \mathrm{~K}$
Plate, colourless
$0.17 \times 0.06 \times 0.02 \mathrm{~mm}$

Graphite monochromator
ω scans

Absorption correction: multi-scan
(SADABS; Bruker, 2006)
$T_{\text {min }}=0.434, T_{\text {max }}=0.710$
12082 measured reflections
2163 independent reflections
1852 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
$w R\left(F^{2}\right)=0.172$
$S=0.86$
2163 reflections
109 parameters
1 restraint
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

$$
\begin{aligned}
& R_{\text {int }}=0.092 \\
& \theta_{\max }=23.7^{\circ}, \theta_{\min }=1.4^{\circ} \\
& h=-14 \rightarrow 14 \\
& k=-4 \rightarrow 4 \\
& l=-32 \rightarrow 32
\end{aligned}
$$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1079 P)^{2}+95.665 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=3.39$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-1.30$ e \AA^{-3}
Absolute structure: Flack (1983), 1050 Friedel pairs
Absolute structure parameter: 0.11 (6)

Special details

Experimental. As the crystals were small and very weakly diffracting, data were collected using 55 sec exposures per frame.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1A	$0.6553(5)$	$0.6506(19)$	$0.2528(2)$	$0.0307(15)$
C1A	$0.723(2)$	$0.726(7)$	$0.2042(10)$	$0.0307(15)$
H1A	0.7916	0.8311	0.2015	0.037^{*}
C2A	$0.6527(19)$	$0.592(6)$	$0.1649(8)$	$0.0229(6)$
Br2A	$0.69172(17)$	$0.6009(6)$	$0.10260(10)$	$0.0229(6)$
C3A	$0.5527(17)$	$0.441(7)$	$0.1819(9)$	$0.021(5)$
Br3A	$0.44805(17)$	$0.2573(6)$	$0.14378(10)$	$0.0183(7)$
C4A	$0.5485(18)$	$0.455(6)$	$0.2298(8)$	$0.0197(6)$
Br4A	$0.43447(16)$	$0.3131(7)$	$0.26658(9)$	$0.0197(6)$
S1B	$0.6092(5)$	$0.3531(17)$	$0.3764(2)$	$0.0268(14)$
C1B	$0.542(2)$	$0.270(6)$	$0.4273(10)$	$0.0268(14)$
H1B	0.4743	0.1617	0.4311	0.032^{*}
C2B	$0.6136(18)$	$0.407(7)$	$0.4637(8)$	$0.0227(6)$
Br2B	$0.57498(17)$	$0.4088(6)$	$0.52692(10)$	$0.0227(6)$
C3B	$0.7118(17)$	$0.544(6)$	$0.4479(8)$	$0.016(5)$
Br3B	$0.82097(17)$	$0.7329(6)$	$0.48587(10)$	$0.0193(7)$

C4B	$0.7212(17)$	$0.523(6)$	$0.4001(8)$	$0.0206(6)$
Br4B	$0.83237(18)$	$0.6820(7)$	$0.36312(9)$	$0.0206(6)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1A	$0.017(3)$	$0.039(4)$	$0.037(4)$	$0.000(3)$	$-0.004(3)$	$0.002(3)$
C1A	$0.017(3)$	$0.039(4)$	$0.037(4)$	$0.000(3)$	$-0.004(3)$	$0.002(3)$
C2A	$0.0147(12)$	$0.0294(16)$	$0.0246(13)$	$-0.0022(10)$	$0.0041(10)$	$0.0019(12)$
Br2A	$0.0147(12)$	$0.0294(16)$	$0.0246(13)$	$-0.0022(10)$	$0.0041(10)$	$0.0019(12)$
C3A	$0.005(10)$	$0.035(14)$	$0.024(13)$	$0.008(10)$	$-0.002(9)$	$-0.006(12)$
Br3A	$0.0104(11)$	$0.0209(16)$	$0.0237(16)$	$-0.0040(9)$	$-0.0040(10)$	$-0.0015(9)$
C4A	$0.0138(12)$	$0.0212(11)$	$0.0243(14)$	$-0.0028(9)$	$0.0055(9)$	$-0.0012(14)$
Br4A	$0.0138(12)$	$0.0212(11)$	$0.0243(14)$	$-0.0028(9)$	$0.0055(9)$	$-0.0012(14)$
S1B	$0.023(3)$	$0.023(3)$	$0.034(4)$	$0.004(3)$	$0.001(3)$	$-0.005(3)$
C1B	$0.023(3)$	$0.023(3)$	$0.034(4)$	$0.004(3)$	$0.001(3)$	$-0.005(3)$
C2B	$0.0142(11)$	$0.0305(15)$	$0.0235(13)$	$-0.0007(10)$	$0.0037(10)$	$0.0040(12)$
Br2B	$0.0142(11)$	$0.0305(15)$	$0.0235(13)$	$-0.0007(10)$	$0.0037(10)$	$0.0040(12)$
C3B	$0.016(11)$	$0.015(11)$	$0.017(12)$	$0.000(9)$	$0.000(9)$	$0.002(10)$
Br3B	$0.0090(11)$	$0.0200(16)$	$0.0290(17)$	$0.0022(10)$	$-0.0020(10)$	$-0.0028(10)$
C4B	$0.0125(11)$	$0.0198(10)$	$0.0295(15)$	$0.0030(10)$	$0.0056(10)$	$0.0023(14)$
Br4B	$0.0125(11)$	$0.0198(10)$	$0.0295(15)$	$0.0030(10)$	$0.0056(10)$	$0.0023(14)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

S1A-C4A	1.68 (2)	S1B-C4B	1.69 (2)
S1A-C1A	1.66 (3)	S1B-C1B	1.72 (3)
C1A-C2A	1.53 (4)	C1B-C2B	1.48 (4)
C1A-H1A	0.9500	C1B-H1B	0.9500
C2A-C3A	1.47 (3)	C2B-C3B	1.41 (3)
C2A-Br2A	1.86 (2)	$\mathrm{C} 2 \mathrm{~B}-\mathrm{Br} 2 \mathrm{~B}$	1.89 (2)
C3A-C4A	1.38 (3)	C3B-C4B	1.39 (3)
C3A-Br3A	1.86 (2)	C3B-Br3B	1.90 (2)
C4A-Br4A	1.86 (2)	$\mathrm{C} 4 \mathrm{~B}-\mathrm{Br} 4 \mathrm{~B}$	1.86 (2)
C4A-S1A-C1A	98.9 (13)	C4B-S1B-C1B	97.7 (12)
C2A-C1A-S1A	105.5 (17)	C2B-C1B-S1B	103.8 (17)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{H} 1 \mathrm{~A}$	127.2	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{H} 1 \mathrm{~B}$	128.1
S1A-C1A-H1A	127.2	S1B-C1B-H1B	128.1
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	112 (2)	$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	116 (2)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{Br} 2 \mathrm{~A}$	123.5 (18)	$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{Br} 2 \mathrm{~B}$	122.1 (17)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{Br} 2 \mathrm{~A}$	123.9 (18)	$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{Br} 2 \mathrm{~B}$	122.1 (18)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	110 (2)	$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	112 (2)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{Br} 3 \mathrm{~A}$	125.6 (19)	$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{Br} 3 \mathrm{~B}$	122.4 (17)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{Br} 3 \mathrm{~A}$	124.0 (19)	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{Br} 3 \mathrm{~B}$	125.8 (17)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{S} 1 \mathrm{~A}$	112.5 (18)	$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{S} 1 \mathrm{~B}$	110.9 (17)
C3A-C4A-Br4A	125.9 (18)	$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{Br} 4 \mathrm{~B}$	127.9 (18)
S1A-C4A-Br4A	121.4 (14)	S1B-C4B-Br4B	121.1 (14)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 A — \mathrm{H} 1 A \cdots \mathrm{Br} 3 A^{\mathrm{i}}$	0.95	3.04	$3.89(3)$	149
$\mathrm{C} 1 A — \mathrm{H} 1 A \cdots \mathrm{Br} 4 A^{\mathrm{i}}$	0.95	2.96	$3.68(3)$	134
$\mathrm{C} 1 B — \mathrm{H} 1 B \cdots \mathrm{Br} 3 B^{\mathrm{ii}}$	0.95	2.93	$3.79(3)$	151
$\mathrm{C} 1 B — \mathrm{H} 1 B \cdots \mathrm{Br} 4 B^{\mathrm{ii}}$	0.95	2.97	$3.66(2)$	131

Symmetry codes: (i) $x+1 / 2,-y+3 / 2, z$; (ii) $x-1 / 2,-y+1 / 2, z$.

