# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 4-Hydroxy-2,2,6,6-tetramethylpiperidinium perchlorate

#### Ying Cui,\* Yun-Hui Zhang and Peng-Wei Zhang

School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China Correspondence e-mail: flyingyting@yahoo.com.cn

Received 15 January 2008; accepted 28 January 2008

Key indicators: single-crystal X-ray study; T = 113 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.046; wR factor = 0.127; data-to-parameter ratio = 13.9.

In the title salt, C<sub>9</sub>H<sub>20</sub>NO<sup>+</sup>·ClO<sub>4</sub><sup>-</sup>, intermolecular hydrogen bonds are observed, which determine the crystal packing.

#### **Related literature**

For general background, see Borzatta & Carrozza (1991).



#### **Experimental**

Crystal data C<sub>9</sub>H<sub>20</sub>NO<sup>+</sup>·ClO<sub>4</sub><sup>-</sup>  $M_r = 257.71$ Monoclinic,  $P2_1/n$ a = 7.5712 (15) Åb = 13.927 (3) Å

| c = 12.007 (2) Å               |
|--------------------------------|
| $\beta = 100.71 \ (3)^{\circ}$ |
| V = 1244.0 (4) Å <sup>3</sup>  |
| Z = 4                          |
| Mo $K\alpha$ radiation         |

 $\mu = 0.31 \text{ mm}^{-1}$ T = 113 (2) K

#### Data collection

| Rigaku Saturn diffractometer         | 7480 measured reflections              |
|--------------------------------------|----------------------------------------|
| Absorption correction: multi-scan    | 2183 independent reflections           |
| (CrystalClear;                       | 1797 reflections with $I > 2\sigma(I)$ |
| Rigaku/MSC, 2005)                    | $R_{\rm int} = 0.046$                  |
| $T_{\min} = 0.963, T_{\max} = 0.988$ |                                        |

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ H atoms treated by a mixture of  $wR(F^2) = 0.127$ independent and constrained S = 1.10refinement  $\Delta \rho_{\rm max} = 0.60 \ {\rm e} \ {\rm \AA}^{-3}$ 2183 reflections  $\Delta \rho_{\rm min} = -0.48 \text{ e} \text{ Å}^{-3}$ 157 parameters

Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$          | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|--------------------------------------|----------|-------------------------|--------------|--------------------------------------|
| $N1-H1A\cdots O4^{i}$                | 0.92 (3) | 2.05 (3)                | 2.914 (3)    | 157 (2)                              |
| $N1 - H1B \cdot \cdot \cdot O1^{ii}$ | 0.88 (3) | 1.97 (3)                | 2.847 (3)    | 173 (2)                              |
| O1−H1···O2 <sup>iii</sup>            | 0.82     | 2.09                    | 2.896 (2)    | 167                                  |
| $O1-H1\cdots Cl1^{iii}$              | 0.82     | 2.93                    | 3.6985 (16)  | 158                                  |

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii)  $x - \frac{1}{2}$ ,  $-y + \frac{3}{2}$ ,  $z - \frac{1}{2}$ ; (iii) x + 1, y, z.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2373).

#### References

Borzatta, V. & Carrozza, P. (1991). Eur. Patent No. EP 0 462 069. Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.



#### $0.12 \times 0.04 \times 0.04 \text{ mm}$

# supporting information

Acta Cryst. (2008). E64, o654 [doi:10.1107/S1600536808002997]

# 4-Hydroxy-2,2,6,6-tetramethylpiperidinium perchlorate

## Ying Cui, Yun-Hui Zhang and Peng-Wei Zhang

## S1. Comment

2,2,6,6-Tetramethyl-4-hydroxy-piperidin-4-ol is a very important intermediate in the synthesis of hindered light stabilizers (Borzatta & Carrozza, 1991). We report here the crystal structure (2,2,6,6-tetramethyl-4-hydroxypiperidinium perchlorate) (Fig. 1).

Intermolecular N—H…O, O—H…O, O—H…Cl hydrogen bonds are observed which help to establish the crystal packing. The piperidine ring adopts chair conformation.

## **S2. Experimental**

2,2,6,6-tetramethylpiperidin-4-ol (3.2 mmol,0.5 g) was dissolved in perchloric acid solution(2.5 mol/l, 3 ml). Block shaped colorless crystals grew with slow evaporation of solvent.

## S3. Refinement

All H atoms were constrained; positioned geometrically (C—H = 0.99–1.00 Å) and refined as riding with  $U_{iso}(H) = 1.2U_{eq}(\text{carrier})$  or  $1.5_{eq}(\text{methyl groups})$ .



## Figure 1

A view of the molecule (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

## 4-Hydroxy-2,2,6,6-tetramethylpiperidinium perchlorate

| Crystal data                   |                                               |
|--------------------------------|-----------------------------------------------|
| $C_9H_{20}NO^+ \cdot ClO_4^-$  | V = 1244.0 (4) Å <sup>3</sup>                 |
| $M_r = 257.71$                 | Z = 4                                         |
| Monoclinic, $P2_1/n$           | F(000) = 552                                  |
| Hall symbol: -P 2yn            | $D_{\rm x} = 1.376 {\rm ~Mg} {\rm ~m}^{-3}$   |
| a = 7.5712 (15)  Å             | Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å |
| b = 13.927 (3)  Å              | Cell parameters from 2824 reflections         |
| c = 12.007 (2) Å               | $\theta = 2.3 - 28.1^{\circ}$                 |
| $\beta = 100.71 \ (3)^{\circ}$ | $\mu = 0.31 \text{ mm}^{-1}$                  |
|                                |                                               |

#### T = 113 KBlock, colorless

#### Data collection

| Rigaku Saturn<br>diffractometer                   | 7480 measured reflections<br>2183 independent reflections      |
|---------------------------------------------------|----------------------------------------------------------------|
| Radiation source: rotating anode                  | 1797 reflections with $I > 2\sigma(I)$                         |
| Confocal monochromator                            | $R_{\rm int} = 0.046$                                          |
| Detector resolution: 7.31 pixels mm <sup>-1</sup> | $\theta_{\rm max} = 25.0^\circ,  \theta_{\rm min} = 2.3^\circ$ |
| $\omega$ and $\varphi$ scans                      | $h = -9 \longrightarrow 7$                                     |
| Absorption correction: multi-scan                 | $k = -11 \rightarrow 16$                                       |
| (CrystalClear; Rigaku/MSC, 2005)                  | $l = -13 \rightarrow 14$                                       |
| $T_{\min} = 0.963, \ T_{\max} = 0.988$            |                                                                |
| Refinement                                        |                                                                |
| Refinement on $F^2$                               | Secondary atom site location: difference Fourier               |
| Least-squares matrix: full                        | map                                                            |
| $R[F^2 > 2\sigma(F^2)] = 0.045$                   | Hydrogen site location: inferred from                          |
| $wR(F^2) = 0.127$                                 | neighbouring sites                                             |
| S = 1.10                                          | H atoms treated by a mixture of independent                    |
| 2183 reflections                                  | and constrained refinement                                     |
| 157 parameters                                    | $w = 1/[\sigma^2(F_o^2) + (0.0763P)^2 + 0.0376P]$              |
| 0 restraints                                      | where $P = (F_o^2 + 2F_c^2)/3$                                 |
| Primary atom site location: structure-invariant   | $(\Delta/\sigma)_{ m max} = 0.001$                             |
| direct methods                                    | $\Delta \rho_{\rm max} = 0.60 \text{ e } \text{\AA}^{-3}$      |
|                                                   | $\Delta  ho_{ m min} = -0.48 \ { m e} \ { m \AA}^{-3}$         |

 $0.12 \times 0.04 \times 0.04 \text{ mm}$ 

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x          | У            | Z             | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|-----|------------|--------------|---------------|-------------------------------|
| 01  | 0.8859 (2) | 0.66280 (10) | 0.28774 (12)  | 0.0224 (4)                    |
| H1  | 0.9165     | 0.6118       | 0.2631        | 0.034*                        |
| N1  | 0.6419 (2) | 0.74364 (13) | -0.04347 (15) | 0.0172 (4)                    |
| H1A | 0.694 (4)  | 0.6951 (17)  | -0.078(2)     | 0.027 (6)*                    |
| H1B | 0.570 (4)  | 0.7733 (17)  | -0.099 (2)    | 0.029 (7)*                    |
| C1  | 0.7957 (3) | 0.80834 (14) | 0.01410 (18)  | 0.0200 (5)                    |
| C2  | 0.8982 (3) | 0.75325 (14) | 0.11605 (18)  | 0.0216 (5)                    |
| H2A | 0.9652     | 0.7001       | 0.0882        | 0.026*                        |
| H2B | 0.9874     | 0.7969       | 0.1609        | 0.026*                        |
| C3  | 0.7796 (3) | 0.71199 (14) | 0.19322 (16)  | 0.0184 (5)                    |
| H3  | 0.7150     | 0.7661       | 0.2230        | 0.022*                        |
| C4  | 0.6403 (3) | 0.64456 (14) | 0.12660 (17)  | 0.0187 (5)                    |
| H4A | 0.5646     | 0.6181       | 0.1782        | 0.022*                        |
|     |            |              |               |                               |

| H4B | 0.7030      | 0.5902       | 0.0977        | 0.022*     |
|-----|-------------|--------------|---------------|------------|
| C5  | 0.5198 (3)  | 0.69386 (14) | 0.02718 (17)  | 0.0188 (5) |
| C6  | 0.3909 (3)  | 0.76627 (15) | 0.06528 (19)  | 0.0240 (5) |
| H6A | 0.3364      | 0.8060       | 0.0006        | 0.036*     |
| H6B | 0.4574      | 0.8073       | 0.1250        | 0.036*     |
| H6C | 0.2963      | 0.7318       | 0.0946        | 0.036*     |
| C7  | 0.4117 (3)  | 0.62072 (15) | -0.05253 (19) | 0.0248 (5) |
| H7A | 0.4940      | 0.5759       | -0.0797       | 0.037*     |
| H7B | 0.3397      | 0.6542       | -0.1172       | 0.037*     |
| H7C | 0.3319      | 0.5851       | -0.0118       | 0.037*     |
| C8  | 0.9141 (3)  | 0.82429 (17) | -0.0744 (2)   | 0.0292 (6) |
| H8A | 1.0164      | 0.8651       | -0.0422       | 0.044*     |
| H8B | 0.8437      | 0.8557       | -0.1412       | 0.044*     |
| H8C | 0.9582      | 0.7623       | -0.0965       | 0.044*     |
| C9  | 0.7249 (3)  | 0.90544 (15) | 0.0458 (2)    | 0.0277 (5) |
| H9A | 0.6607      | 0.8970       | 0.1088        | 0.042*     |
| H9B | 0.6427      | 0.9320       | -0.0197       | 0.042*     |
| H9C | 0.8259      | 0.9496       | 0.0685        | 0.042*     |
| C11 | 0.15810 (8) | 0.46849 (3)  | 0.19458 (5)   | 0.0256 (2) |
| O2  | -0.0091 (3) | 0.47048 (12) | 0.23547 (17)  | 0.0431 (5) |
| O3  | 0.2067 (3)  | 0.56462 (12) | 0.17449 (16)  | 0.0423 (5) |
| O4  | 0.1359 (3)  | 0.41692 (15) | 0.08989 (19)  | 0.0627 (7) |
| O5  | 0.2955 (3)  | 0.42562 (16) | 0.2770 (2)    | 0.0603 (7) |
|     |             |              |               |            |

Atomic displacement parameters  $(Å^2)$ 

|     | <b>*</b> 11 | <b>*</b> 722 |             | <b>T</b> T 2 | <b>T T</b> 2 |              |
|-----|-------------|--------------|-------------|--------------|--------------|--------------|
|     | Un          | $U^{22}$     | $U^{ss}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
| 01  | 0.0226 (9)  | 0.0236 (8)   | 0.0180 (7)  | 0.0044 (6)   | -0.0039 (7)  | -0.0023 (6)  |
| N1  | 0.0133 (10) | 0.0196 (9)   | 0.0184 (9)  | 0.0023 (7)   | 0.0026 (8)   | 0.0006 (7)   |
| C1  | 0.0124 (11) | 0.0205 (11)  | 0.0266 (12) | -0.0036 (8)  | 0.0023 (10)  | -0.0006 (8)  |
| C2  | 0.0135 (11) | 0.0233 (11)  | 0.0262 (11) | -0.0014 (8)  | -0.0012 (10) | -0.0017 (8)  |
| C3  | 0.0153 (12) | 0.0205 (10)  | 0.0173 (10) | 0.0024 (8)   | -0.0021 (9)  | -0.0012 (8)  |
| C4  | 0.0159 (11) | 0.0203 (10)  | 0.0191 (11) | -0.0012 (8)  | 0.0009 (9)   | 0.0001 (8)   |
| C5  | 0.0146 (12) | 0.0202 (10)  | 0.0218 (11) | -0.0040(8)   | 0.0040 (10)  | 0.0013 (8)   |
| C6  | 0.0141 (12) | 0.0292 (12)  | 0.0300 (12) | 0.0026 (9)   | 0.0075 (10)  | 0.0034 (9)   |
| C7  | 0.0222 (13) | 0.0248 (11)  | 0.0240 (12) | -0.0065 (9)  | -0.0043 (10) | 0.0025 (9)   |
| C8  | 0.0194 (13) | 0.0350 (13)  | 0.0344 (13) | 0.0002 (10)  | 0.0081 (11)  | 0.0099 (10)  |
| C9  | 0.0241 (13) | 0.0215 (12)  | 0.0365 (13) | -0.0024 (9)  | 0.0030 (11)  | -0.0001 (9)  |
| Cl1 | 0.0215 (4)  | 0.0218 (3)   | 0.0361 (4)  | 0.0047 (2)   | 0.0119 (3)   | 0.0035 (2)   |
| 02  | 0.0254 (11) | 0.0522 (12)  | 0.0575 (13) | 0.0051 (8)   | 0.0223 (10)  | 0.0141 (8)   |
| 03  | 0.0465 (13) | 0.0299 (10)  | 0.0501 (11) | -0.0063 (8)  | 0.0079 (10)  | 0.0074 (8)   |
| 04  | 0.0644 (16) | 0.0566 (13)  | 0.0694 (15) | 0.0081 (11)  | 0.0189 (13)  | -0.0359 (11) |
| 05  | 0.0340 (12) | 0.0705 (15)  | 0.0760 (15) | 0.0229 (10)  | 0.0091 (12)  | 0.0437 (12)  |
|     |             |              |             |              |              |              |

# Geometric parameters (Å, °)

| 01—C3 | 1.437 (2) | C5—C6  | 1.532 (3) |
|-------|-----------|--------|-----------|
| 01—H1 | 0.8199    | C6—H6A | 0.9800    |

| N1—C1                | 1.532 (3)                | С6—Н6В                    | 0.9800      |
|----------------------|--------------------------|---------------------------|-------------|
| N1—C5                | 1.532 (3)                | С6—Н6С                    | 0.9800      |
| N1—H1A               | 0.92 (3)                 | C7—H7A                    | 0.9800      |
| N1—H1B               | 0.88 (3)                 | С7—Н7В                    | 0.9800      |
| C1—C9                | 1.528 (3)                | C7—H7C                    | 0.9800      |
| C1—C2                | 1.529 (3)                | C8—H8A                    | 0.9800      |
| C1 = C8              | 1 529 (3)                | C8—H8B                    | 0.9800      |
| $C^2 - C^3$          | 1 518 (3)                | C8—H8C                    | 0.9800      |
| $C_2 = C_3$          | 0.9900                   |                           | 0.9800      |
| $C_2 H_2 R$          | 0.9900                   | C0 H0R                    | 0.9800      |
| $C_2 = C_1$          | 1 523 (2)                |                           | 0.9800      |
| $C_3 = U_4$          | 1.525 (5)                |                           | 1 4210 (18) |
|                      | 1.524 (2)                | CII_05                    | 1.4210(18)  |
| C4—C3                | 1.524 (5)                |                           | 1.427(2)    |
| C4—H4A               | 0.9900                   | CII—04                    | 1.430 (2)   |
| C4—H4B               | 0.9900                   | CII—02                    | 1.4408 (18) |
| C5—C7                | 1.527 (3)                |                           |             |
| C2 01 111            | 107.4                    | C4 C5 N1                  | 107 (1 (17) |
| C3—OI—HI             | 106.4                    | C4—C5—N1                  | 10/.61 (1/) |
| CI—NI—C5             | 120.17 (16)              | C/C5N1                    | 105.26 (16) |
| C1—N1—H1A            | 106.5 (16)               | C6C5N1                    | 110.57 (16) |
| C5—N1—H1A            | 105.7 (15)               | С5—С6—Н6А                 | 109.5       |
| C1—N1—H1B            | 112.1 (16)               | С5—С6—Н6В                 | 109.5       |
| C5—N1—H1B            | 106.2 (16)               | H6A—C6—H6B                | 109.5       |
| H1A—N1—H1B           | 105 (2)                  | С5—С6—Н6С                 | 109.5       |
| C9—C1—C2             | 113.22 (18)              | Н6А—С6—Н6С                | 109.5       |
| C9—C1—C8             | 108.82 (17)              | H6B—C6—H6C                | 109.5       |
| C2—C1—C8             | 110.68 (18)              | С5—С7—Н7А                 | 109.5       |
| C9—C1—N1             | 111.14 (18)              | С5—С7—Н7В                 | 109.5       |
| C2—C1—N1             | 107.24 (16)              | H7A—C7—H7B                | 109.5       |
| C8—C1—N1             | 105.46 (17)              | С5—С7—Н7С                 | 109.5       |
| C3—C2—C1             | 114.12 (18)              | H7A—C7—H7C                | 109.5       |
| C3—C2—H2A            | 108.7                    | H7B—C7—H7C                | 109.5       |
| C1—C2—H2A            | 108.7                    | C1—C8—H8A                 | 109.5       |
| C3—C2—H2B            | 108.7                    | C1—C8—H8B                 | 109.5       |
| C1 - C2 - H2B        | 108.7                    | H8A—C8—H8B                | 109.5       |
| $H^2A - C^2 - H^2B$  | 107.6                    | C1 - C8 - H8C             | 109.5       |
| $01 - C_{3} - C_{2}$ | 110 75 (17)              |                           | 109.5       |
| 01 - 03 - 02         | 110.73(17)<br>110.62(16) |                           | 109.5       |
| $C_2 = C_3 = C_4$    | 110.02 (10)              | $C_1 = C_0 = H_0 \Lambda$ | 109.5       |
| $C_2 = C_3 = C_4$    | 100 (10)                 | $C_1 = C_2 = H_2 A$       | 109.5       |
| O1 - C3 - H3         | 108.4                    |                           | 109.5       |
| C2—C3—H3             | 108.4                    | H9A—C9—H9B                | 109.5       |
| C4—C3—H3             | 108.4                    | C1—C9—H9C                 | 109.5       |
| $C_3 - C_4 - C_5$    | 112.87 (16)              | нуа—С9—Н9С                | 109.5       |
| C3—C4—H4A            | 109.0                    | нув—С9—Н9С                | 109.5       |
| С5—С4—Н4А            | 109.0                    | 03—Cl1—O5                 | 109.47 (13) |
| C3—C4—H4B            | 109.0                    | O3—C11—O4                 | 108.40 (13) |
| C5—C4—H4B            | 109.0                    | O5—C11—O4                 | 110.53 (14) |
| H4A—C4—H4B           | 107.8                    | O3—Cl1—O2                 | 108.16 (11) |

# supporting information

| C4—C5—C7<br>C4—C5—C6<br>C7—C5—C6 | 111.31 (16)<br>112.63 (16)<br>109.21 (18) | 05—C11—O2<br>O4—C11—O2 | 110.23 (11)<br>110.00 (13) |
|----------------------------------|-------------------------------------------|------------------------|----------------------------|
| C5—N1—C1—C9                      | -76.1 (2)                                 | O1—C3—C4—C5            | 178.28 (15)                |
| C5—N1—C1—C2                      | 48.2 (2)                                  | C2—C3—C4—C5            | -59.0 (2)                  |
| C5—N1—C1—C8                      | 166.19 (18)                               | C3—C4—C5—C7            | 167.26 (17)                |
| C9—C1—C2—C3                      | 72.5 (2)                                  | C3—C4—C5—C6            | -69.7 (2)                  |
| C8—C1—C2—C3                      | -165.05 (17)                              | C3—C4—C5—N1            | 52.4 (2)                   |
| N1—C1—C2—C3                      | -50.5 (2)                                 | C1—N1—C5—C4            | -49.6 (2)                  |
| C1—C2—C3—O1                      | -179.04 (15)                              | C1—N1—C5—C7            | -168.37 (17)               |
| C1—C2—C3—C4                      | 58.3 (2)                                  | C1—N1—C5—C6            | 73.8 (2)                   |

Hydrogen-bond geometry (Å, °)

| D—H···A                             | D—H      | H···A    | D····A      | D—H···A |
|-------------------------------------|----------|----------|-------------|---------|
| N1—H1A····O4 <sup>i</sup>           | 0.92 (3) | 2.05 (3) | 2.914 (3)   | 157 (2) |
| N1—H1 <i>B</i> ····O1 <sup>ii</sup> | 0.88 (3) | 1.97 (3) | 2.847 (3)   | 173 (2) |
| O1—H1···O2 <sup>iii</sup>           | 0.82     | 2.09     | 2.896 (2)   | 167     |
| O1—H1···Cl1 <sup>iii</sup>          | 0.82     | 2.93     | 3.6985 (16) | 158     |

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) *x*-1/2, -*y*+3/2, *z*-1/2; (iii) *x*+1, *y*, *z*.