Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Amino-13-(1-naphthyl)-[2,2]paracyclophane

Junshan Sun,^a Yanmin Huo,^b Rentao Wu,^c Jikun Li^a and Yudao Ma^d*

^aDepartment of Materials and Chemical Engineering, Taishan University, 271021 Tajan, Shandong, People's Republic of China, ^bShandong Institute of Supervision & Inspection of Product Quality, 250100 Jinan, Shandong, People's Republic of China, ^cDepartment of Chemistry, Taishan University, 271021 Taian, Shandong, People's Republic of China, and ${}^{\mathbf{d}}$ Department of Chemistry, Shandong University, 250100 Jinan, Shandong, People's Republic of China Correspondence e-mail: ydma@sdu.edu.cn

Received 5 November 2007; accepted 25 February 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.054; wR factor = 0.160; data-to-parameter ratio = 7.8.

The title compound [systematic name: 1^2 -amino- 4^2 -(1-naphthyl)-1,4(1,4)-dibenzenacyclohexaphane], C₂₆H₂₃N, was synthesized from 4-amino-13-bromo-[2,2]paracyclophane and 1naphthaleneboronic acid in the presence of 1,4-dioxane. It is a new cyclophane-derived compound which can be regarded as a prospective ligand for asymmetric synthesis and catalysis. The benzene rings of the paracyclophane units are very slightly deformed from planarity as shallow boats.

Related literature

For related literature on paracyclophane chemistry, see: Cipiciani et al. (1997); on diphosphanes, see: Pye et al. (1997); on oxazoline-phosphanes, see: Wu et al. (2003); on oxazolineimidazolium, see: Bolm et al. (2003); on oxazoline-selenides, see: Hou et al. (2000); on oxazoline-alcohols, see: Wu et al. (2001).

Experimental

Crystal data

C26H23N V = 1879.6 (2) Å³ $M_r = 349.45$ Z = 4Orthorhombic, $P2_12_12_1$ a = 8.5261 (5) Åb = 12.8123 (8) Å c = 17.2065 (11) Å

Data collection

```
Bruker SMART APEXII CCD
  area-detector diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 1996)
  T_{\rm min} = 0.990, \ T_{\rm max} = 0.993
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	
$wR(F^2) = 0.159$	
S = 1.00	
1901 reflections	
245 parameters	

Mo $K\alpha$ radiation $\mu = 0.07 \text{ mm}^{-3}$ T = 293 (2) K $0.15 \times 0.12 \times 0.10 \text{ mm}$

9879 measured reflections 1901 independent reflections 1690 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.026$

6 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$

Data collection: APEX2 (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Financial support from the National Natural Science Foundation of China (grant Nos. 20441004, 20671059) and the Department of Science and Technology of Shandong Province is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KJ2079).

References

- Bolm, C., Focken, T. & Raabe, G. (2003). Tetrahedron Asymmetry, 14, 1733-1746
- Cipiciani, A., Fringuelli, F., Mancini, V., Piermatti, O., Scappini, M. & Ruzziconi, R. (1997). Tetrahedron, 53, 11853-11858.
- Hou, X.-L., Wu, X.-W., Dai, L.-X. & Cao, B.-X. (2000). Chem. Commun. pp. 1195-1196
- Pye, P. J., Rossen, K., Reamer, R. A., Tsou, N. N., Volante, R. P. & Reider, P. J. (1997). J. Am. Chem. Soc. 119, 6207-6208.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122
- Siemens (1996). APEX2 and SAINT. Siemens Analytical X-ray Systems Inc., Madison, Wisconsin, USA.
- Wu, X.-W., Hou, X.-L., Dai, L.-X., Tao, J., Cao, B.-X. & Sun, B. J. (2001). Tetrahedron Asymmetry, 12, 529-532
- Wu, X.-W., Yuan, X. K., Sun, W., Zhang, M.-J. & Hou, X.-L. (2003). Tetrahedron Asymmetry, 14, 107-112.

supporting information

Acta Cryst. (2008). E64, o650 [doi:10.1107/S1600536808005333]

4-Amino-13-(1-naphthyl)-[2,2]paracyclophane

Junshan Sun, Yanmin Huo, Rentao Wu, Jikun Li and Yudao Ma

S1. Comment

The chemistry of [2.2]paracyclophanes has attracted the interest of researchers since the middle of the last century. After a standstill period, investigations in this area have received a new impulse (Cipiciani *et al.*, 1997) and recently there has been notable progress especially regarding the synthesis of new derivatives. [2.2]paracyclophane is unique as the strain in the molecule has become so large that the benzene rings have been substantially bent from planarity. The configurationally rigid [2. 2]paracyclophanyl unit makes the design of chiral ligands of different types possible. The [2.2]paracyclophane ligand has previously been included in diphosphanes, (Pye *et al.*, 1997) oxazoline-phosphanes,(Wu *et al.*, 2003) oxazoline-imidazolium,(Bolm *et al.*, 2003) oxazoline-selenides, (Hou *et al.*, 2000) oxazoline-alcohols,(Wu *et al.*, 2001) and Schiff base phenols.

The benzene rings in the [2,2] paracyclophane are not planar. Their conformation can be described as an asymmetric boat conformation. The benzene C atoms which are directly bonded to the ethylene links of the paracyclophane deviate significantly from the least-squares planes running through the other four benzene C atoms. The largest deviations are found for the atoms C3 [0.117 (5) Å] and C12 [0.146 (4) Å], which are the atoms closest to the amino and naphtyl substituents of the benzene rings. The angle between the planes through the benzene rings is 6.0 (2) °. The N1—C1 bond length lies between the expected values for a C—N and a C=N bond, which is probably caused by $p-\pi$ conjugation.

S2. Experimental

A solution of 4-amino-13-bromo [2,2]paracyclophane (501.3 mg, 1.66 mmol), 1-naphthaleneboronic acid (428.3 mg, 2.49 mmol), KF (289.7 mg, 4.98 mmol), Pd-DPPF (13.6 mg, 0.0166 mmol) in 1,4-dioxane (5 ml) was stirred at 353–363k for 24 h under a slight overpressure of nitrogen. After this, reagents were added to the mixture at 24 h intervals. 1- naphthaleneboronic acid (0.55 mmol), KF (72.4 mg, 1.245 mmol), Pd-DPPF (13.6 mg, 0.0166 mmol) were added to the flask in the first two times, in the last two times, 1-naphthaleneboronic acid (0.55 mmol), KF (72.4 mg, 1.245 mmol), Pd-DPPF (6.78 mg, 0.0083 mmol) were added. The flask was kept at 353–363 K and stirred the whole time. After completion of the reaction, as indicated by TLC, water (5 ml) was added and the solution was filtered. The solution was extracted by dichloromethane (30 ml) and the solvent was removed on a rotary evaporator. The solid was subjected to chromatography on silica gel (eluent: petroleum ether / ethyl acetate =20:1). Pure product was isolated (yield 84.6%). Analysis, calculated for $C_{26}H_{23}N$: C, 89.36; H, 6.63; N, 4.01. Found: C, 89.03; H, 6.62; N, 3.93. The elemental analyses were performed with a Perkin Elmer PE2400II.

S3. Refinement

All the H atoms could be found in the difference Fourier maps. Nevertheless, they were placed into the idealized positions and refined in a riding atom approximation with following constraints: C-H = 0.93, 0.97 Å and N-H = 0.86 Å, and with $U_{iso}(H) = 1.2U_{eq}(C$ -aromatic and methylene and *N*-amido) in all the cases. In the absence of significant

anomalous scattering effects, 1406 Friedel pairs were merged. The absolute configuration was determined by synthesis.

Figure 1

The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The H atoms are omitted.

1²-amino-4²-(1-naphthyl)-1,4(1,4)-dibenzenacyclohexaphane

Crystal data

 $C_{26}H_{23}N$ $M_r = 349.45$ Orthorhombic, $P2_12_12_1$ a = 8.5261 (5) Å b = 12.8123 (8) Å c = 17.2065 (11) Å $V = 1879.6 (2) Å^3$ Z = 4 F(000) = 744

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.990, T_{\max} = 0.993$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.159$ S = 1.001901 reflections 245 parameters 6 restraints $D_x = 1.235 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3936 reflections $\theta = 2.7-25.1^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 293 KBlock, colorless $0.15 \times 0.12 \times 0.10 \text{ mm}$

9879 measured reflections 1901 independent reflections 1690 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = -8 \rightarrow 10$ $k = -14 \rightarrow 15$ $l = -12 \rightarrow 20$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0986P)^2 + 0.8216P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.005$ $\Delta\rho_{\text{max}} = 0.37 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\min} = -0.33 \text{ e} \text{ Å}^{-3}$ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.022 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.2691 (6)	0.4913 (3)	0.2196 (3)	0.0659 (12)
H1A	0.2007	0.5066	0.2545	0.079*
H1B	0.3499	0.5306	0.2131	0.079*
C1	0.2490 (5)	0.4028 (3)	0.1733 (2)	0.0497 (11)
C2	0.1199 (5)	0.3383 (4)	0.1826 (3)	0.0561 (12)
H2	0.0486	0.3532	0.2219	0.067*
C3	0.0935 (6)	0.2543 (4)	0.1365 (3)	0.0628 (13)
C4	0.1940 (7)	0.2352 (4)	0.0744 (3)	0.0683 (15)
H4	0.1728	0.1820	0.0392	0.082*
C5	0.3267 (7)	0.2972 (4)	0.0662 (3)	0.0628 (14)
Н5	0.3937	0.2856	0.0244	0.075*
C6	0.3618 (6)	0.3758 (4)	0.1187 (2)	0.0515 (11)
C7	0.0003 (7)	0.1612 (5)	0.1707 (4)	0.0833 (19)
H7A	-0.0545	0.1263	0.1287	0.100*
H7B	-0.0782	0.1882	0.2063	0.100*
C8	0.1025 (7)	0.0790 (4)	0.2147 (4)	0.0692 (15)
H8A	0.0486	0.0596	0.2622	0.083*
H8B	0.1106	0.0169	0.1827	0.083*
C9	0.2692 (6)	0.1156 (3)	0.2358 (3)	0.0517 (11)
C10	0.3837 (6)	0.1093 (3)	0.1808 (3)	0.0539 (12)
H10	0.3753	0.0595	0.1417	0.065*
C11	0.5102 (6)	0.1742 (3)	0.1817 (3)	0.0515 (11)
H11	0.5909	0.1640	0.1461	0.062*
C12	0.5201 (5)	0.2548 (3)	0.2347 (2)	0.0417 (10)
C13	0.4179 (5)	0.2553 (3)	0.2981 (2)	0.0394 (9)
C14	0.2894 (5)	0.1865 (3)	0.2960 (2)	0.0465 (10)
H14	0.2162	0.1885	0.3361	0.056*
C15	0.6056 (5)	0.3547 (4)	0.2093 (3)	0.0504 (11)
H15A	0.7152	0.3386	0.2001	0.061*
H15B	0.6005	0.4055	0.2510	0.061*
C16	0.5336 (6)	0.4041 (4)	0.1335 (3)	0.0585 (13)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H16A	0.5423	0.4794	0.1370	0.070*	
H16B	0.5955	0.3816	0.0892	0.070*	
C17	0.4316 (5)	0.3268 (3)	0.3660 (2)	0.0442 (10)	
C18	0.3029 (6)	0.3795 (4)	0.3928 (3)	0.0567 (12)	
H18	0.2071	0.3686	0.3683	0.068*	
C19	0.3088 (8)	0.4494 (5)	0.4558 (3)	0.0711 (16)	
H19	0.2190	0.4849	0.4713	0.085*	
C20	0.4445 (9)	0.4643 (5)	0.4931 (3)	0.0748 (18)	
H20	0.4484	0.5109	0.5345	0.090*	
C21	0.5830 (7)	0.4106 (4)	0.4706 (3)	0.0630 (15)	
C22	0.5777 (6)	0.3395 (4)	0.4069 (2)	0.0479 (11)	
C23	0.7156 (6)	0.2835 (4)	0.3886 (3)	0.0599 (13)	
H23	0.7143	0.2352	0.3482	0.072*	
C24	0.8502 (7)	0.2994 (5)	0.4293 (4)	0.0771 (18)	
H24	0.9397	0.2614	0.4170	0.093*	
C25	0.8549 (10)	0.3729 (6)	0.4899 (4)	0.091 (2)	
H25	0.9485	0.3850	0.5162	0.109*	
C26	0.7244 (9)	0.4258 (5)	0.5102 (3)	0.080(2)	
H26	0.7285	0.4732	0.5512	0.096*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.069 (3)	0.048 (2)	0.081 (3)	0.005 (2)	-0.001 (2)	-0.009 (2)
C1	0.055 (3)	0.042 (2)	0.052 (2)	0.007 (2)	-0.010 (2)	0.009 (2)
C2	0.044 (2)	0.055 (3)	0.069 (3)	0.007 (2)	-0.011 (2)	0.005 (2)
C3	0.054 (3)	0.062 (3)	0.073 (3)	-0.001 (3)	-0.022 (3)	0.002 (3)
C4	0.084 (4)	0.060 (3)	0.061 (3)	-0.001 (3)	-0.033 (3)	-0.006 (3)
C5	0.081 (3)	0.072 (3)	0.036 (2)	-0.002 (3)	-0.005 (2)	0.002 (2)
C6	0.063 (3)	0.051 (2)	0.041 (2)	-0.006(2)	-0.003 (2)	0.012 (2)
C7	0.059 (3)	0.075 (4)	0.116 (5)	-0.024 (3)	-0.026 (4)	0.002 (4)
C8	0.072 (3)	0.052 (3)	0.083 (3)	-0.026 (3)	-0.013 (3)	-0.002 (3)
C9	0.062 (3)	0.035 (2)	0.058 (2)	-0.008(2)	-0.011 (2)	0.0041 (19)
C10	0.068 (3)	0.034 (2)	0.060 (3)	0.005 (2)	-0.011 (2)	-0.009 (2)
C11	0.055 (3)	0.044 (2)	0.055 (2)	0.011 (2)	0.000 (2)	-0.007 (2)
C12	0.0367 (19)	0.039 (2)	0.049 (2)	0.0018 (18)	-0.0046 (18)	-0.0019 (18)
C13	0.043 (2)	0.0339 (19)	0.042 (2)	0.0011 (17)	-0.0071 (17)	0.0002 (16)
C14	0.052 (2)	0.042 (2)	0.045 (2)	-0.006(2)	-0.004 (2)	0.0073 (19)
C15	0.042 (2)	0.049 (2)	0.060 (3)	-0.008(2)	0.010 (2)	-0.003 (2)
C16	0.065 (3)	0.062 (3)	0.049 (2)	-0.016 (3)	0.013 (2)	0.006 (2)
C17	0.054 (2)	0.039 (2)	0.040 (2)	-0.0040 (19)	-0.001 (2)	0.0009 (18)
C18	0.063 (3)	0.055 (3)	0.052 (2)	-0.003 (2)	0.009 (2)	-0.007 (2)
C19	0.087 (4)	0.066 (3)	0.060 (3)	0.004 (3)	0.015 (3)	-0.014 (3)
C20	0.117 (5)	0.060 (3)	0.047 (3)	-0.017 (3)	0.016 (3)	-0.013 (2)
C21	0.096 (4)	0.055 (3)	0.038 (2)	-0.028 (3)	-0.010 (3)	0.009 (2)
C22	0.061 (3)	0.043 (2)	0.040(2)	-0.013 (2)	-0.009 (2)	0.0080 (18)
C23	0.061 (3)	0.061 (3)	0.057 (3)	-0.004 (2)	-0.017 (2)	0.009 (2)
C24	0.062 (3)	0.085 (4)	0.084 (4)	-0.012 (3)	-0.026 (3)	0.029 (3)

supporting information

C25	0.101 (5)	0.105 (5)	0.068 (4)	-0.048 (5)	-0.044 (4)	0.026 (4)
C26	0.104 (5)	0.083 (4)	0.054 (3)	-0.035 (4)	-0.028 (3)	0.013 (3)

Geometric parameters (Å, °)

N1—C1	1.396 (6)	C12—C15	1.537 (6)	
N1—H1A	0.8600	C13—C14	1.406 (6)	
N1—H1B	0.8600	C13—C17	1.489 (6)	
C1—C2	1.386 (7)	C14—H14	0.9300	
C1—C6	1.389 (7)	C15—C16	1.574 (7)	
C2—C3	1.354 (7)	C15—H15A	0.9700	
С2—Н2	0.9300	C15—H15B	0.9700	
C3—C4	1.391 (8)	C16—H16A	0.9700	
C3—C7	1.549 (8)	C16—H16B	0.9700	
C4—C5	1.390 (8)	C17—C18	1.369 (6)	
C4—H4	0.9300	C17—C22	1.440 (6)	
C5—C6	1.385 (7)	C18—C19	1.406 (7)	
С5—Н5	0.9300	C18—H18	0.9300	
C6—C16	1.530(7)	C19—C20	1.337 (9)	
C7—C8	1.563 (8)	C19—H19	0.9300	
С7—Н7А	0.9700	C20—C21	1.421 (9)	
С7—Н7В	0.9700	C20—H20	0.9300	
C8—C9	1.539(7)	C21—C26	1.398 (8)	
C8—H8A	0.9700	C21—C22	1.426 (7)	
C8—H8B	0.9700	C22—C23	1.413 (7)	
C9—C10	1.362 (7)	C23—C24	1.360 (7)	
C9—C14	1.390 (6)	С23—Н23	0.9300	
C10—C11	1.362 (7)	C24—C25	1.405 (10)	
C10—H10	0.9300	C24—H24	0.9300	
C11—C12	1.381 (6)	C25—C26	1.349 (10)	
C11—H11	0.9300	С25—Н25	0.9300	
C12—C13	1.395 (6)	C26—H26	0.9300	
C1—N1—H1A	120.0	C14—C13—C17	117.8 (4)	
C1—N1—H1B	120.0	C9—C14—C13	121.7 (4)	
H1A—N1—H1B	120.0	C9—C14—H14	119.2	
C2—C1—C6	118.7 (4)	C13—C14—H14	119.2	
C2—C1—N1	121.1 (5)	C12—C15—C16	112.7 (4)	
C6—C1—N1	120.2 (4)	C12—C15—H15A	109.0	
C3—C2—C1	122.6 (5)	C16—C15—H15A	109.0	
C3—C2—H2	118.7	C12—C15—H15B	109.0	
C1—C2—H2	118.7	C16—C15—H15B	109.0	
C2—C3—C4	119.1 (5)	H15A—C15—H15B	107.8	
C2—C3—C7	118.3 (5)	C6—C16—C15	114.6 (4)	
C4—C3—C7	118.1 (5)	C6—C16—H16A	108.6	
C5—C4—C3	118.6 (5)	C15—C16—H16A	108.6	
С5—С4—Н4	120.7	C6—C16—H16B	108.6	
С3—С4—Н4	120.7	C15—C16—H16B	108.6	

C6—C5—C4	121.7 (5)	H16A—C16—H16B	107.6
С6—С5—Н5	119.2	C18—C17—C22	118.2 (4)
С4—С5—Н5	119.2	C18—C17—C13	120.4 (4)
C5—C6—C1	118.2 (5)	C22—C17—C13	121.4 (4)
C5—C6—C16	119.2 (5)	C17—C18—C19	123.1 (5)
C1—C6—C16	119.4 (4)	C17—C18—H18	118.5
C3—C7—C8	114.6 (4)	C19—C18—H18	118.5
С3—С7—Н7А	108.6	C20—C19—C18	119.4 (6)
С8—С7—Н7А	108.6	С20—С19—Н19	120.3
С3—С7—Н7В	108.6	C18—C19—H19	120.3
С8—С7—Н7В	108.6	C19—C20—C21	121.3 (5)
H7A—C7—H7B	107.6	С19—С20—Н20	119.3
C9—C8—C7	115.1 (4)	С21—С20—Н20	119.3
С9—С8—Н8А	108.5	C26—C21—C20	121.1 (5)
С7—С8—Н8А	108.5	C26—C21—C22	119.5 (6)
С9—С8—Н8В	108.5	C20—C21—C22	119.5 (5)
С7—С8—Н8В	108.5	C23—C22—C21	118.0 (4)
H8A—C8—H8B	107.5	C23—C22—C17	123.6 (4)
C10—C9—C14	117.9 (4)	C21—C22—C17	118.4 (5)
C10—C9—C8	118.7 (4)	C_{24} C_{23} C_{22}	120.7 (5)
C14-C9-C8	119.3 (5)	C24—C23—H23	119.6
C11—C10—C9	121.6 (4)	C22—C23—H23	119.6
C11—C10—H10	119.2	C23—C24—C25	120.5 (7)
C9-C10-H10	119.2	C_{23} C_{24} H_{24}	119.8
C10—C11—C12	120.8 (4)	C25—C24—H24	119.8
C10—C11—H11	119.6	$C_{26} - C_{25} - C_{24}$	120.3 (6)
C12—C11—H11	119.6	C26—C25—H25	119.8
$C_{11} - C_{12} - C_{13}$	118.8 (4)	C_{24} C_{25} H_{25}	119.8
$C_{11} - C_{12} - C_{15}$	117.6 (4)	C_{25} C_{26} C_{21}	120.9 (6)
C_{13} C_{12} C_{15}	121.0 (4)	C25—C26—H26	119.5
C_{12} C_{13} C_{14}	1177(4)	$C_{21} = C_{26} = H_{26}$	119.5
C12 - C13 - C17	124.5 (4)	021 020 1120	119.0
	12 1.3 (1)		
C6-C1-C2-C3	-50(3)	C11—C12—C15—C16	56.6 (5)
N1-C1-C2-C3	177 2 (4)	C_{13} C_{12} C_{15} C_{16}	-1049(5)
C1 - C2 - C3 - C4	-40(3)	C_{5} C_{6} C_{16} C_{15}	-993(5)
C1 - C2 - C3 - C7	152.0 (4)	C1-C6-C16-C15	60.0 (6)
$C_2 - C_3 - C_4 - C_5$	60(5)	C12-C15-C16-C6	24 3 (6)
$C_{7} - C_{3} - C_{4} - C_{5}$	-1500(5)	C12 - C13 - C17 - C18	1324(4)
C_{3} C_{4} C_{5} C_{6}	10(6)	C12 - C13 - C17 - C18	-447(5)
C4-C5-C6-C1	-9.9(6)	C_{12} C_{13} C_{17} C_{22}	-50.0(6)
C4-C5-C6-C16	1497(4)	C12 - C13 - C17 - C22	132.9(4)
$C_{1}^{2} - C_{1}^{2} - C_{0}^{2} - C_{1}^{2}$	1+9.7(+) 11.8(5)	$C_{14} = C_{13} = C_{17} = C_{22}$	34(7)
$N_1 - C_1 - C_5 - C_5$	-1704(4)	$C_{12} = C_{17} = C_{16} = C_{19}$	-1780(A)
C_{2}	-1478(4)	C_{17} C_{18} C_{19} C_{20}	-1.6(8)
$N_1 = C_1 = C_0 = C_{10}$	300(6)	C18 C19 C20 C21	-0.3(0)
$C_{2} = C_{3} = C_{7} = C_{9}$	-87.2 (6)	$C_{10} = C_{17} = C_{20} = C_{21}$	-170 5 (5)
$C_2 = C_3 = C_7 = C_8$	60.0(7)	$C_{19} = C_{20} = C_{21} = C_{20}$	1/9.5 (3)
L4-L3-L/-L8	09.0(/)	U19 - U20 - U21 - U22	0.3 (8)

C3—C7—C8—C9	15.1 (8)	C26—C21—C22—C23	2.8 (7)
C7—C8—C9—C10	-82.7 (6)	C20—C21—C22—C23	-176.9 (5)
C7—C8—C9—C14	74.1 (7)	C26—C21—C22—C17	-178.7 (4)
C14—C9—C10—C11	-3.8 (3)	C20—C21—C22—C17	1.6 (7)
C8—C9—C10—C11	153.4 (4)	C18—C17—C22—C23	175.1 (4)
C9—C10—C11—C12	-5.6 (3)	C13—C17—C22—C23	-2.6 (7)
C10-C11-C12-C13	14.2 (5)	C18—C17—C22—C21	-3.3 (6)
C10-C11-C12-C15	-147.7 (3)	C13—C17—C22—C21	179.0 (4)
C11—C12—C13—C14	-13.1 (5)	C21—C22—C23—C24	-1.8 (7)
C15—C12—C13—C14	148.2 (4)	C17—C22—C23—C24	179.8 (5)
C11—C12—C13—C17	169.7 (4)	C22—C23—C24—C25	-0.7 (8)
C15—C12—C13—C17	-29.0 (6)	C23—C24—C25—C26	2.4 (9)
C10-C9-C14-C13	4.5 (5)	C24—C25—C26—C21	-1.4 (9)
C8—C9—C14—C13	-152.5 (4)	C20—C21—C26—C25	178.5 (5)
C12—C13—C14—C9	4.0 (5)	C22—C21—C26—C25	-1.3 (8)
C17—C13—C14—C9	-178.7 (4)		