

10763 measured reflections

7143 independent reflections

3697 reflections with > 2s(I)

H-atom parameters constrained

 $R_{\rm int} = 0.041$

523 parameters

 $\Delta \rho_{\text{max}} = 0.60 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.55 \text{ e } \text{\AA}^{-3}$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[(*E*)-2-(3,5-Dibromo-2-oxidobenzylideneamino)-3-(4-hydroxyphenyl)propionato- $\kappa^3 O, N, O'$](dimethylformamide- κO)copper(II)

Ming-Xiong Tan,^{a,b}* Zhen-Feng Chen,^c Zhou Neng^b and Hong Liang^a

^aCollege of Chemistry and Chemical Engineering, Central South University, Changsha, HuNan 410083, People's Republic of China, ^bDepartment of Chemistry and Biology, Yu Lin Normal College, Yulin, Guangxi 537000, People's Republic of China, and ^cKey Laboratory of Medicinal Chemical Resources and Molecular Engineering, Ministry of Education, College of Chemistry and Chemical Engineering, Guangxi Normal University, Yucai Road 15, Guilin 541004, People's Republic of China

Correspondence e-mail: tanmx00@163.com

Received 28 February 2008; accepted 24 March 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.010 Å; R factor = 0.050; wR factor = 0.094; data-to-parameter ratio = 13.7.

In the title complex, $[Cu(C_{16}H_{11}Br_2NO_4)(C_3H_7NO)]_2$, there are two unique molecules in the asymmetric unit. Each Cu^{II} atom is coordinated by two O atoms and one N atom from the tridentate ligand L^{2-} $[LH_2 = (E)-2-(3,5-dibromo-2-hydroxy$ benzylideneamino)-2-(4-hydroxyphenyl)acetic acid] and theO atom of a dimethylformamide molecule to give a slightlydistorted square-planar geometry. The two unique moleculesform a dimer through weak C-H···O hydrogen bonds. In thedimer, the Cu···Cu distance is 3.712 (1) Å. In the crystalstructure, molecules form a one-dimensional chain throughC-H···O hydrogen bonds. These are further aggregated intoa three-dimensional network by O-H···O and C-H···Ohydrogen bonds.

Related literature

For related structures, see: Li *et al.* 2008; Zhang *et al.* (2007*a,b*). For preparative procedures, see: Xia *et al.* (2007); Liu *et al.* (2007).

Experimental

Crystal data

$Cu(C_{16}H_{11}Br_2NO_4)(C_3H_7NO)]$	$\gamma = 73.210 \ (2)^{\circ}$
$M_r = 577.71$	V = 2057.9 (6) Å ³
Triclinic, P1	Z = 4
a = 11.4316 (19) Å	Mo $K\alpha$ radiation
b = 11.840 (2) Å	$\mu = 4.98 \text{ mm}^{-1}$
c = 15.984 (2) Å	T = 298 (2) K
$\alpha = 88.998 \ (3)^{\circ}$	$0.33 \times 0.18 \times 0.14 \text{ mm}$
$\beta = 83.562 \ (2)^{\circ}$	

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.267, T_{\max} = 0.498$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.093$ S = 1.007143 reflections

Table 1

Selected geometric parameters (Å, °).

Cu1—O4	1.874 (4)	Cu2-O9	1.874 (4)
Cu1-N1	1.893 (5)	Cu2-N3	1.907 (5)
Cu1-O5	1.917 (5)	Cu2-O6	1.922 (4)
Cu1-O1	1.932 (4)	Cu2-O10	1.932 (5)
04-Cu1-N1	94.3 (2)	O9-Cu2-N3	95.0 (2)
O4-Cu1-O5	92.5 (2)	O9-Cu2-O6	178.9 (2)
N1-Cu1-O5	173.1 (2)	N3-Cu2-O6	85.1 (2)
O4-Cu1-O1	177.0 (2)	O9-Cu2-O10	90.9 (2)
N1-Cu1-O1	84.6 (2)	N3-Cu2-O10	173.7 (2)
O5-Cu1-O1	88.5 (2)	O6-Cu2-O10	89.0 (2)

Та	ble	2		
тт	1		1	

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C18–H18C···O7	0.96	2.59	3.364 (9)	137
C37−H37 <i>C</i> ···O2	0.96	2.48	3.307 (8)	144
$O3-H3\cdots O1^{i}$	0.82	1.98	2.772 (6)	163
O8−H8···O6 ⁱⁱ	0.82	2.07	2.888 (6)	176
C16−H16···O7 ⁱⁱⁱ	0.93	2.52	3.422 (9)	163
C29−H29····O2 ^{iv}	0.93	2.45	3.291 (8)	150
$C35 - H35 \cdots O2^{iv}$	0.93	2.59	3.408 (8)	147

Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) -x, -y + 1, -z + 1; (iii) x + 1, y, z; (iv) x, y - 1, z.

metal-organic compounds

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

We acknowledge financial support by the NSFC (No. 20561001) and the EDF of Guangxi (No. 200607LX067).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2468).

References

- Bruker (2001). SAINT and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.
- Li, G. Z., Zhang, S. H. & Liu, Z. (2008). Acta Cryst. E64, m52.
- Liu, Z., Zhang, S.-H., Feng, X.-Z., Li, G.-Z. & Lin, Y.-B. (2007). Acta Cryst. E63, m156-m158.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xia, J. H., Zhang, S.-H., Feng, X.-Z., Jin, L.-X. & Zheng, L. (2007). Acta Cryst. E63, m353–m355.
- Zhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007a). Acta Cryst. E63, m1156–m1157.
- Zhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007b). Acta Cryst. E63, m535–m536.

supporting information

Acta Cryst. (2008). E64, m601-m602 [doi:10.1107/S1600536808007915]

[(*E*)-2-(3,5-Dibromo-2-oxidobenzylideneamino)-3-(4-hydroxyphenyl)propionato- $\kappa^3 O, N, O'$](dimethylformamide- κO)copper(II)

Ming-Xiong Tan, Zhen-Feng Chen, Zhou Neng and Hong Liang

S1. Comment

Herein, we report the structure of a new mononuclear copper coordination complex $[Cu(L)(C_3H_7NO)]_2$ (1), Fig. 1, of the chiral ligand (*E*)-2-(3,5-dibromo-2-oxidobenzylideneamino)-2-(4-hydroxyphenyl)acetate *L*H₂. The Cu(II) atom coordinates a dimethylformamide molecule and the tridentate anionic ligand L^{2-} which binds through the N atom and carboxylate and phenolate O atoms. Although the *L*H₂ ligand is chiral, the compound crystallizes as a racemate with two molecules in the asymmetric unit. The coordination geometry about each copper atom is slightly distorted square planar, Table 1. A s expected all other bond distances and angles are within normal ranges (Zhang *et al.*, 2007*a*,b).

The two unique molecules form a dimer through weak C18—H18C···O7 and C37—H37C···O2 hydrogen bonds, Table 2. In the dimer, the Cu1···Cu2 distance is 3.712 (1) Å. In the crystal structure, molecules of (I) form a one-dimensional chain along c (Fig. 2) through C3–H3B···O8 and C22–H22B···O3 hydrogen bonds. These chains then form a three-dimensional network through O3—H3···O1 and O8—H8···O6 hydrogen bonds and C29–H29···O2 and C35—H35···O2 interactions (Table 2, Figure 3).

S2. Experimental

Complex (I) was prepared following the procedure described by Liu *et al.* (2007) and Xia *et al.* (2007) as follows. 3,5-Dibromo-2-hydroxy-benzaldehyde(0.560 g, 2.0 mmol) and 4-hydroxyl-phenylalanine (0.3624 g, 2.0 mmol) were dissolved in 10 ml absolute methanol. The mixture was stirred for 1 h at room temperature to give a yellow solution. 2 ml DMF and 10 ml of a methanolic solution of CuSO₄.5H₂O (0.5 g, 2 mmol) were added, the mixture was refluxed for another 1 h at 363 K, and the resulting blue solution was filtered. Blue single crystals suitable for *X*-ray analysis were obtained by slow evaporation of the filtrate at room temperature. Yield: 80.1% (based on copper). Elemental analysis for $[Cu(C_{16}H_{11}Br_2NO_4)(C_3H_7NO)]_2$ calculated: C 46.69, H 3.71, N 5.73%; found: C 46.65, H 3.81, N 5.71%.

S3. Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93 Å, $U_{iso} = 1.2U_{eq}$ (C) for aromatic 0.96 Å, $U_{iso} = 1.5U_{eq}$ (C) for CH₃ atoms and 0.82 Å, $U_{iso} = 1.5U_{eq}$ (O) for the OH groups.

Figure 1

The asymmetric unit of (I), with 30% probability displacement ellipsoids for non-H atoms. Hydrogen atoms have been omitted and C—H…O hydrogen bonds are drawn as dashed lines.

Figure 2

The formation of one-dimensional chains along c. Hydrogen bonds are drawn as dashed lines.

Figure 3

Crystal packing of (I) showing the three-dimensional network, with hydrogen bonds drawn as dashed lines.

$[(E)-2-(3,5-Dichloro-2-oxidobenzylideneamino)-3-(4- hydroxyphenyl)propionato-<math>\kappa^3 O, N, O']$ (dimethylformamide- κO) copper(II)

Crystal data

$\begin{bmatrix} Cu(C_{16}H_{11}Br_2NO_4)(C_3H_7NO) \end{bmatrix}$ $M_r = 577.71$ Triclinic, P1 Hall symbol: -P 1 a = 11.4316 (19) Å b = 11.840 (2) Å c = 15.984 (2) Å $a = 88.998 (3)^{\circ}$ $\beta = 83.562 (2)^{\circ}$ $\gamma = 73.210 (2)^{\circ}$ $V = 2057.9 (6) \text{ Å}^3$	Z = 4 F(000) = 1140 $D_x = 1.865 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1919 reflections $\theta = 2.2-21.6^{\circ}$ $\mu = 4.98 \text{ mm}^{-1}$ T = 298 K Prism, blue $0.33 \times 0.18 \times 0.14 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans	Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick,1996) $T_{min} = 0.267, T_{max} = 0.498$ 10763 measured reflections 7143 independent reflections 3697 reflections with > 2s(<i>I</i>)

$R_{\rm int} = 0.041$	$k = -14 \rightarrow 10$
$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min} = 1.3^{\circ}$	$l = -19 \rightarrow 16$
$h = -13 \rightarrow 13$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: inferred from
$wR(F^2) = 0.093$	neighbouring sites
S = 1.00	H-atom parameters constrained
7143 reflections	$w = 1/[\sigma^2(F_o^2) + (0.024P)^2]$
523 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.60 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.55 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of F² > σ (F²) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Cul	0.45708 (7)	0.70847 (7)	0.17285 (5)	0.0437 (2)
Cu2	0.33188 (7)	0.52131 (7)	0.32557 (5)	0.0433 (2)
Br1	0.47185 (6)	0.32932 (7)	0.06179 (5)	0.0569 (2)
Br2	0.95715 (7)	0.15518 (7)	0.14381 (6)	0.0859 (3)
Br3	0.70303 (6)	0.51591 (6)	0.44153 (5)	0.0583 (2)
Br4	0.88589 (7)	0.02902 (7)	0.36347 (6)	0.0810 (3)
N1	0.6098 (5)	0.6878 (5)	0.2154 (3)	0.0386 (14)
N2	0.1415 (5)	0.6973 (6)	0.0891 (4)	0.0586 (17)
N3	0.3513 (4)	0.3622 (4)	0.2930 (3)	0.0312 (13)
N4	0.3335 (5)	0.8409 (5)	0.4121 (3)	0.0494 (15)
01	0.4266 (4)	0.8725 (4)	0.2033 (3)	0.0507 (12)
O2	0.4951 (4)	0.9914 (4)	0.2783 (3)	0.0625 (14)
O3	0.7098 (4)	0.9130 (4)	-0.1456 (3)	0.0760 (16)
H3	0.6752	0.9822	-0.1549	0.114*
O4	0.4861 (4)	0.5476 (4)	0.1493 (3)	0.0492 (12)
05	0.2972 (4)	0.7485 (4)	0.1347 (3)	0.0592 (14)
O6	0.1695 (4)	0.5527 (4)	0.2919 (3)	0.0509 (13)
O7	0.0475 (4)	0.4692 (4)	0.2348 (3)	0.0709 (16)
08	0.0751 (4)	0.2943 (4)	0.6592 (3)	0.0816 (17)
H8	0.0063	0.3400	0.6711	0.122*
O9	0.4890 (4)	0.4905 (4)	0.3606 (3)	0.0431 (12)
O10	0.2976 (4)	0.6874 (4)	0.3510 (3)	0.0645 (15)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C1	0.5074 (7)	0.8940 (6)	0.2447 (4)	0.0443 (18)
C2	0.6249 (6)	0.7964 (6)	0.2492 (4)	0.0452 (18)
H2	0.6391	0.7842	0.3084	0.054*
C3	0.7327 (6)	0.8309 (6)	0.2023 (4)	0.0483 (18)
H3A	0.7399	0.9013	0.2289	0.058*
H3B	0.8077	0.7682	0.2079	0.058*
C4	0.7220 (5)	0.8543 (6)	0.1097 (4)	0.0390 (17)
C5	0.6648 (6)	0.9636 (6)	0.0814 (4)	0.0467 (18)
Н5	0.6290	1.0245	0.1204	0.056*
C6	0.6584 (6)	0.9870 (6)	-0.0033(4)	0.0492 (19)
H6	0.6202	1.0627	-0.0208	0.059*
C7	0.7089 (6)	0.8970 (6)	-0.0613(5)	0.0450 (18)
C8	0.7654 (5)	0 7877 (6)	-0.0346(4)	0.0458 (18)
H8A	0.8003	0 7271	-0.0740	0.055*
C9	0.7724(5)	0.7642(6)	0.0503(4)	0.0394(17)
НО	0.8107	0.6883	0.0674	0.047*
C10	0.6954 (6)	0.0003	0.0074 0.2170(4)	0.047 0.0427 (19)
H10	0.0534 (0)	0.5921	0.2432	0.051*
C11	0.7050	0.3721	0.2452 0.1821 (4)	0.0330 (16)
C12	0.0938 (0)	0.4798 (0)	0.1021(4) 0.1476(4)	0.0339(10) 0.0384(17)
C12 C13	0.3917(0)	0.4000(0) 0.3563(7)	0.1470(4) 0.1100(4)	0.0384(17)
C13	0.0000(0)	0.3503(7)	0.1109(4) 0.1006(4)	0.0434(18)
U14	0.7127(0)	0.2030 (0)	0.1090 (4)	0.0404 (18)
П14 С15	0.7184	0.1950	0.0843	0.030°
	0.8119(6)	0.2807(6)	0.1401(4) 0.1807(4)	0.0473(19)
	0.8028 (6)	0.3839 (6)	0.1807 (4)	0.0451 (19)
H16	0.8697	0.3964	0.2043	0.054*
CI/	0.2547 (7)	0.6760(7)	0.1048 (5)	0.058 (2)
HI/	0.3072	0.6007	0.0926	0.070*
C18	0.0959 (7)	0.6084 (7)	0.0547 (5)	0.083 (3)
HI8A	0.1634	0.5397	0.0388	0.125*
H18B	0.0554	0.6387	0.0061	0.125*
H18C	0.0387	0.5877	0.0964	0.125*
C19	0.0575 (7)	0.8125 (8)	0.1092 (6)	0.117 (4)
H19A	0.0213	0.8142	0.1666	0.175*
H19B	-0.0061	0.8291	0.0724	0.175*
H19C	0.1011	0.8707	0.1021	0.175*
C20	0.1454 (6)	0.4640 (7)	0.2619 (4)	0.0453 (19)
C21	0.2437 (5)	0.3457 (5)	0.2600 (4)	0.0390 (17)
H21	0.2675	0.3202	0.2010	0.047*
C22	0.1966 (5)	0.2501 (5)	0.3067 (4)	0.0427 (17)
H22A	0.1238	0.2452	0.2829	0.051*
H22B	0.2588	0.1748	0.2964	0.051*
C23	0.1652 (6)	0.2694 (5)	0.4012 (4)	0.0349 (16)
C24	0.2473 (6)	0.2088 (5)	0.4556 (5)	0.0445 (18)
H24	0.3246	0.1613	0.4342	0.053*
C25	0.2147 (6)	0.2189 (6)	0.5402 (5)	0.0504 (19)
H25	0.2707	0.1775	0.5759	0.060*
C26	0.1029 (7)	0.2877 (6)	0.5744 (5)	0.0484 (19)

C27	0.0216 (6)	0.3516 (6)	0.5208 (4)	0.0488 (19)	
H27	-0.0538	0.4022	0.5425	0.059*	
C28	0.0536 (6)	0.3397 (6)	0.4346 (4)	0.0422 (18)	
H28	-0.0023	0.3805	0.3987	0.051*	
C29	0.4494 (6)	0.2781 (6)	0.2933 (4)	0.0387 (17)	
H29	0.4508	0.2063	0.2698	0.046*	
C30	0.5595 (6)	0.2846 (6)	0.3275 (4)	0.0354 (16)	
C31	0.5709 (6)	0.3894 (6)	0.3605 (4)	0.0353 (16)	
C32	0.6824 (6)	0.3771 (6)	0.3959 (4)	0.0431 (18)	
C33	0.7748 (6)	0.2735 (7)	0.3965 (4)	0.050 (2)	
H33	0.8461	0.2706	0.4205	0.060*	
C34	0.7605 (6)	0.1727 (6)	0.3609 (4)	0.0479 (19)	
C35	0.6547 (6)	0.1792 (6)	0.3273 (4)	0.0418 (18)	
H35	0.6453	0.1116	0.3036	0.050*	
C36	0.3602 (6)	0.7288 (6)	0.3940 (4)	0.0496 (19)	
H36	0.4290	0.6775	0.4141	0.059*	
C37	0.4104 (6)	0.8861 (6)	0.4608 (4)	0.063 (2)	
H37A	0.4721	0.8213	0.4812	0.095*	
H37B	0.3607	0.9322	0.5077	0.095*	
H37C	0.4494	0.9346	0.4259	0.095*	
C38	0.2263 (6)	0.9238 (6)	0.3835 (5)	0.075 (2)	
H38A	0.1738	0.8816	0.3644	0.112*	
H38B	0.2514	0.9687	0.3380	0.112*	
H38C	0.1823	0.9761	0.4291	0.112*	

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0467 (5)	0.0381 (5)	0.0484 (6)	-0.0140 (4)	-0.0101 (4)	0.0016 (4)
0.0440 (5)	0.0341 (5)	0.0536 (6)	-0.0120 (4)	-0.0116 (4)	0.0022 (4)
0.0556 (5)	0.0620 (6)	0.0605 (6)	-0.0290 (4)	-0.0039 (4)	-0.0116 (4)
0.0567 (5)	0.0566 (6)	0.1299 (9)	0.0036 (5)	-0.0036 (5)	0.0072 (5)
0.0577 (5)	0.0530 (5)	0.0742 (6)	-0.0261 (4)	-0.0222 (4)	0.0004 (4)
0.0546 (5)	0.0557 (6)	0.1204 (8)	0.0037 (5)	-0.0123 (5)	0.0119 (5)
0.048 (4)	0.032 (4)	0.039 (4)	-0.015 (3)	-0.009 (3)	0.008 (3)
0.037 (4)	0.065 (5)	0.074 (5)	-0.012 (4)	-0.016 (3)	0.002 (4)
0.032 (3)	0.026 (3)	0.039 (4)	-0.012 (3)	-0.006 (3)	0.002 (2)
0.056 (4)	0.044 (4)	0.048 (4)	-0.016 (4)	0.002 (3)	-0.003 (3)
0.055 (3)	0.042 (3)	0.058 (3)	-0.017 (3)	-0.009 (3)	0.003 (2)
0.084 (4)	0.044 (3)	0.065 (4)	-0.027 (3)	-0.008 (3)	-0.013 (3)
0.108 (4)	0.059 (4)	0.041 (4)	0.007 (3)	-0.005 (3)	-0.003 (3)
0.046 (3)	0.035 (3)	0.066 (3)	-0.007 (3)	-0.017 (2)	0.004 (2)
0.050 (3)	0.055 (4)	0.073 (4)	-0.013 (3)	-0.014 (3)	-0.005 (3)
0.046 (3)	0.042 (3)	0.066 (4)	-0.011 (3)	-0.015 (2)	0.004 (2)
0.049 (3)	0.086 (4)	0.087 (4)	-0.027 (3)	-0.026 (3)	0.019 (3)
0.098 (4)	0.078 (4)	0.041 (4)	0.017 (3)	-0.007 (3)	0.001 (3)
0.048 (3)	0.031 (3)	0.051 (3)	-0.010 (2)	-0.008 (2)	0.001 (2)
0.064 (3)	0.035 (3)	0.095 (4)	-0.005 (3)	-0.033 (3)	-0.002 (3)
	$\begin{array}{c} U^{11} \\ \hline 0.0467 (5) \\ 0.0440 (5) \\ 0.0556 (5) \\ 0.0557 (5) \\ 0.0577 (5) \\ 0.0546 (5) \\ 0.048 (4) \\ 0.037 (4) \\ 0.032 (3) \\ 0.056 (4) \\ 0.055 (3) \\ 0.084 (4) \\ 0.046 (3) \\ 0.046 (3) \\ 0.046 (3) \\ 0.046 (3) \\ 0.046 (3) \\ 0.098 (4) \\ 0.048 (3) \\ 0.064 (3) \\ 0.064 (3) \\ \end{array}$	U^{11} U^{22} $0.0467 (5)$ $0.0381 (5)$ $0.0440 (5)$ $0.0341 (5)$ $0.0556 (5)$ $0.0620 (6)$ $0.0557 (5)$ $0.0566 (6)$ $0.0577 (5)$ $0.0530 (5)$ $0.0546 (5)$ $0.0557 (6)$ $0.048 (4)$ $0.032 (4)$ $0.037 (4)$ $0.065 (5)$ $0.056 (4)$ $0.044 (4)$ $0.055 (3)$ $0.042 (3)$ $0.084 (4)$ $0.035 (3)$ $0.084 (4)$ $0.059 (4)$ $0.046 (3)$ $0.035 (3)$ $0.050 (3)$ $0.055 (4)$ $0.046 (3)$ $0.042 (3)$ $0.046 (3)$ $0.035 (3)$ $0.046 (3)$ $0.078 (4)$ $0.048 (3)$ $0.031 (3)$ $0.064 (3)$ $0.035 (3)$	U^{11} U^{22} U^{33} $0.0467 (5)$ $0.0381 (5)$ $0.0484 (6)$ $0.0440 (5)$ $0.0341 (5)$ $0.0536 (6)$ $0.0556 (5)$ $0.0620 (6)$ $0.0605 (6)$ $0.0567 (5)$ $0.0566 (6)$ $0.1299 (9)$ $0.0577 (5)$ $0.0530 (5)$ $0.0742 (6)$ $0.0546 (5)$ $0.0557 (6)$ $0.1204 (8)$ $0.048 (4)$ $0.032 (4)$ $0.039 (4)$ $0.037 (4)$ $0.065 (5)$ $0.074 (5)$ $0.032 (3)$ $0.026 (3)$ $0.039 (4)$ $0.055 (3)$ $0.042 (3)$ $0.039 (4)$ $0.055 (3)$ $0.042 (3)$ $0.058 (3)$ $0.084 (4)$ $0.044 (4)$ $0.048 (4)$ $0.055 (3)$ $0.059 (4)$ $0.041 (4)$ $0.046 (3)$ $0.035 (3)$ $0.066 (3)$ $0.050 (3)$ $0.055 (4)$ $0.073 (4)$ $0.046 (3)$ $0.078 (4)$ $0.041 (4)$ $0.048 (3)$ $0.031 (3)$ $0.051 (3)$ $0.054 (3)$ $0.035 (3)$ $0.051 (3)$	U^{11} U^{22} U^{33} U^{12} 0.0467 (5)0.0381 (5)0.0484 (6) $-0.0140 (4)$ 0.0440 (5)0.0341 (5)0.0536 (6) $-0.0120 (4)$ 0.0556 (5)0.0620 (6)0.0605 (6) $-0.0290 (4)$ 0.0567 (5)0.0566 (6)0.1299 (9)0.0036 (5)0.0577 (5)0.0530 (5)0.0742 (6) $-0.0261 (4)$ 0.0546 (5)0.0557 (6)0.1204 (8)0.0037 (5)0.048 (4)0.032 (4)0.039 (4) $-0.015 (3)$ 0.037 (4)0.065 (5)0.074 (5) $-0.012 (4)$ 0.032 (3)0.026 (3)0.039 (4) $-0.012 (3)$ 0.056 (4)0.044 (4)0.048 (4) $-0.016 (4)$ 0.055 (3)0.042 (3)0.058 (3) $-0.017 (3)$ 0.084 (4)0.044 (3)0.065 (4) $-0.027 (3)$ 0.108 (4)0.059 (4)0.041 (4)0.007 (3)0.050 (3)0.055 (4)0.073 (4) $-0.013 (3)$ 0.046 (3)0.035 (3)0.066 (4) $-0.011 (3)$ 0.048 (4)0.078 (4)0.041 (4)0.017 (3)0.098 (4)0.078 (4)0.041 (4)0.017 (3)0.048 (3)0.031 (3)0.051 (3) $-0.005 (3)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

C1	0.061 (5)	0.038 (5)	0.037 (5)	-0.021 (5)	-0.003 (4)	0.010 (4)
C2	0.064 (5)	0.049 (5)	0.035 (5)	-0.034 (4)	-0.014 (4)	0.004 (3)
C3	0.059 (5)	0.051 (5)	0.045 (5)	-0.028 (4)	-0.018 (4)	0.000 (3)
C4	0.039 (4)	0.041 (5)	0.046 (5)	-0.024 (4)	-0.007 (4)	-0.003 (4)
C5	0.072 (5)	0.032 (5)	0.037 (5)	-0.018 (4)	0.005 (4)	-0.006 (3)
C6	0.070 (5)	0.025 (4)	0.048 (5)	-0.008 (4)	-0.003 (4)	0.001 (4)
C7	0.046 (4)	0.044 (5)	0.041 (5)	-0.007 (4)	-0.002 (4)	-0.006 (4)
C8	0.045 (4)	0.044 (5)	0.044 (5)	-0.005 (4)	-0.006 (4)	-0.013 (4)
C9	0.038 (4)	0.033 (4)	0.053 (5)	-0.015 (4)	-0.014 (4)	0.002 (4)
C10	0.051 (5)	0.065 (6)	0.027 (4)	-0.036 (5)	-0.014 (4)	0.015 (4)
C11	0.037 (4)	0.032 (4)	0.038 (4)	-0.015 (4)	-0.013 (3)	0.009 (3)
C12	0.054 (5)	0.024 (4)	0.042 (5)	-0.018 (4)	-0.005 (4)	0.007 (3)
C13	0.037 (4)	0.058 (5)	0.043 (5)	-0.025 (4)	-0.006 (3)	0.008 (4)
C14	0.054 (5)	0.030 (5)	0.055 (5)	-0.016 (4)	0.006 (4)	-0.003 (3)
C15	0.045 (5)	0.036 (5)	0.061 (5)	-0.015 (4)	-0.003 (4)	0.012 (4)
C16	0.049 (5)	0.038 (5)	0.054 (5)	-0.022 (4)	-0.006 (4)	0.013 (4)
C17	0.044 (5)	0.067 (6)	0.058 (6)	-0.005 (5)	-0.011 (4)	0.014 (4)
C18	0.076 (6)	0.092 (7)	0.097 (8)	-0.038 (6)	-0.037 (5)	0.019 (5)
C19	0.059 (6)	0.116 (9)	0.169 (11)	-0.004 (6)	-0.033 (6)	-0.046 (7)
C20	0.035 (4)	0.055 (6)	0.046 (5)	-0.016 (5)	0.000 (4)	0.021 (4)
C21	0.042 (4)	0.049 (5)	0.034 (4)	-0.023 (4)	-0.011 (3)	-0.002 (3)
C22	0.045 (4)	0.040 (4)	0.051 (5)	-0.023 (4)	-0.011 (3)	-0.004 (3)
C23	0.039 (4)	0.029 (4)	0.044 (5)	-0.021 (4)	-0.005 (4)	-0.001 (3)
C24	0.037 (4)	0.034 (4)	0.058 (6)	-0.003 (4)	-0.007 (4)	-0.002 (4)
C25	0.050 (5)	0.043 (5)	0.054 (6)	-0.002 (4)	-0.017 (4)	0.005 (4)
C26	0.061 (5)	0.042 (5)	0.042 (5)	-0.014 (4)	-0.010 (4)	0.001 (4)
C27	0.041 (4)	0.050 (5)	0.048 (5)	-0.001 (4)	-0.009 (4)	0.008 (4)
C28	0.035 (4)	0.054 (5)	0.041 (5)	-0.014 (4)	-0.017 (4)	0.011 (4)
C29	0.049 (5)	0.033 (5)	0.035 (4)	-0.015 (4)	0.002 (4)	-0.007 (3)
C30	0.033 (4)	0.035 (4)	0.040 (4)	-0.013 (4)	-0.005 (3)	0.005 (3)
C31	0.039 (4)	0.036 (5)	0.038 (4)	-0.023 (4)	-0.001 (3)	0.002 (3)
C32	0.043 (4)	0.057 (5)	0.041 (5)	-0.033 (4)	-0.005 (4)	0.002 (4)
C33	0.039 (4)	0.051 (5)	0.062 (5)	-0.014 (4)	-0.013 (4)	0.014 (4)
C34	0.045 (5)	0.050 (5)	0.051 (5)	-0.021 (4)	0.001 (4)	0.008 (4)
C35	0.050 (5)	0.037 (5)	0.040 (5)	-0.017 (4)	0.004 (4)	-0.001 (3)
C36	0.057 (5)	0.030 (5)	0.057 (5)	-0.003 (4)	-0.011 (4)	0.006 (4)
C37	0.079 (6)	0.062 (5)	0.052 (5)	-0.027 (5)	-0.001 (4)	-0.013 (4)
C38	0.061 (5)	0.051 (6)	0.103 (7)	0.004 (5)	-0.024 (5)	-0.013 (5)

Geometric parameters (Å, °)

Cu1—O4	1.874 (4)	C10—C11	1.435 (8)	
Cu1—N1	1.893 (5)	C10—H10	0.9300	
Cu1—O5	1.917 (5)	C11—C16	1.393 (8)	
Cu1—O1	1.932 (4)	C11—C12	1.415 (8)	
Cu2—O9	1.874 (4)	C12—C13	1.398 (9)	
Cu2—N3	1.907 (5)	C13—C14	1.371 (8)	
Cu2—O6	1.922 (4)	C14—C15	1.391 (8)	

Cu2—O10	1.932 (5)	C14—H14	0.9300
Br1-C13	1 912 (6)	C15—C16	1 344 (9)
Br2—C15	1,878(7)	C16—H16	0.9300
Br3—C32	1 896 (6)	C17—H17	0.9300
Br4_C34	1.890(0) 1 884(7)	C18—H18A	0.9600
N1 C10	1.004(7)		0.9600
N1 = C2	1.279(7) 1.465(7)		0.9000
N1-C2 N2 C17	1.403(7)		0.9000
N2C10	1.297 (8)	C10_U10D	0.9000
N2	1.440 (9)		0.9600
N2-C18	1.445 (8)		0.9600
N3-C29	1.267 (6)		1.520 (8)
N3—C21	1.454 (6)	C21—C22	1.536 (7)
N4—C36	1.303 (8)	C21—H21	0.9800
N4—C38	1.446 (7)	C22—C23	1.518 (8)
N4—C37	1.451 (7)	C22—H22A	0.9700
01—C1	1.278 (7)	C22—H22B	0.9700
O2—C1	1.245 (7)	C23—C28	1.362 (8)
O3—C7	1.358 (7)	C23—C24	1.387 (7)
O3—H3	0.8200	C24—C25	1.360 (8)
O4—C12	1.305 (7)	C24—H24	0.9300
O5—C17	1.228 (8)	C25—C26	1.361 (8)
O6—C20	1.274 (8)	С25—Н25	0.9300
O7—C20	1.229 (7)	C26—C27	1.386 (8)
O8—C26	1.355 (7)	C27—C28	1.384 (8)
O8—H8	0.8200	С27—Н27	0.9300
O9—C31	1.289 (6)	C28—H28	0.9300
O10—C36	1.245 (7)	C29—C30	1.449 (7)
C1—C2	1.506 (9)	C29—H29	0.9300
C2—C3	1.524 (8)	C30—C35	1,399 (8)
C2—H2	0.9800	C30—C31	1 403 (8)
$C_3 - C_4$	1 513 (8)	$C_{31} - C_{32}$	1 421 (8)
C3—H3A	0.9700	C_{32} C_{33}	1 368 (8)
C3—H3B	0.9700	C_{33} C_{34}	1 391 (8)
C4 C5	1 366 (8)	C33 H33	0.0300
C_{4}	1.300 (8)	C_{33}^{24} C_{35}^{25}	1 350 (8)
C_{4}	1.307(0) 1.282(9)	$C_{34} = C_{35}$	1.339(0)
C5_U5	0.0200	C36 H26	0.9300
	0.9300	C_{27} U_{27}	0.9300
	1.373 (9)	C_{37} H37A	0.9600
	0.9300	С37—Н37В	0.9600
C/-C8	1.354 (8)	$C_3/-H_3/C$	0.9600
C8-C9	1.386 (8)	C38—H38A	0.9600
C8—H8A	0.9300	C38—H38B	0.9600
С9—Н9	0.9300	C38—H38C	0.9600
O4—Cu1—N1	94.3 (2)	C11—C16—H16	119.1
O4—Cu1—O5	92.5 (2)	O5—C17—N2	124.5 (8)
N1—Cu1—O5	173.1 (2)	O5—C17—H17	117.8
O4—Cu1—O1	177.0 (2)	N2—C17—H17	117.8

N1—Cu1—O1	84.6 (2)	N2—C18—H18A	109.5
O5—Cu1—O1	88.5 (2)	N2—C18—H18B	109.5
O9—Cu2—N3	95.0 (2)	H18A—C18—H18B	109.5
O9—Cu2—O6	178.9 (2)	N2—C18—H18C	109.5
N3—Cu2—O6	85.1 (2)	H18A—C18—H18C	109.5
O9—Cu2—O10	90.9 (2)	H18B—C18—H18C	109.5
N3—Cu2—O10	173.7 (2)	N2—C19—H19A	109.5
O6—Cu2—O10	89.0 (2)	N2—C19—H19B	109.5
C10 - N1 - C2	120.1 (5)	H19A—C19—H19B	109.5
C10 - N1 - Cu1	126.0 (4)	N2-C19-H19C	109.5
C2—N1—Cu1	113.9 (4)	H19A—C19—H19C	109.5
C17 - N2 - C19	118.9 (7)	H19B—C19—H19C	109.5
C17 - N2 - C18	122.2(7)	07-C20-O6	123.6 (7)
C19 - N2 - C18	118.9 (6)	07-C20-C21	118.7(7)
$C_{29} = N_{3} = C_{21}$	121.2 (5)	06-C20-C21	117.7 (6)
$C_{29} = N_3 = C_{12}$	125.2 (4)	N3-C21-C20	108.7(5)
C_2 N_3 C_2	113.5(4)	N3-C21-C22	112.6 (4)
$C_{36} N_{4} C_{38}$	120 5 (6)	C_{20} C_{21} C_{22}	112.3(1)
$C_{36} - N_{4} - C_{37}$	121.2 (6)	N3-C21-H21	107.7
C_{38} N4 C_{37}	118 3 (6)	C_{20} C_{21} H_{21}	107.7
C1 - O1 - Cu1	114 8 (4)	$C_{22} = C_{21} = H_{21}$	107.7
C7	109 5	C^{23} C^{22} C^{21} C^{21}	107.7 115.3(5)
$C_{12} - C_{11}$	126.0 (4)	C23—C22—H22A	108.4
C12 = 0.1 = 0.01	123.4(5)	C_{21} C_{22} H_{22A}	108.4
$C_{20} - C_{12}$	115.0 (4)	C_{23} C_{22} H_{22B}	108.4
$C_2 = 08 = H_8$	109 5	C21—C22—H22B	108.4
$C_{31} = 09 = C_{12}$	126.7 (4)	H22A—C22—H22B	107.5
$C_{36} = 0.10 = C_{12}^{-1}$	124.0 (4)	$C_{28} = C_{23} = C_{24}$	118 5 (6)
02-C1-O1	123.5 (7)	$C_{28} = C_{23} = C_{22}$	121.2 (5)
02-C1-C2	119.3 (7)	C_{24} C_{23} C_{22}	120.1 (6)
01-C1-C2	117.1 (6)	C_{25} C_{24} C_{23}	119.9 (6)
N1-C2-C1	108.5 (6)	C25—C24—H24	120.0
N1—C2—C3	112.6 (6)	C23—C24—H24	120.0
C1—C2—C3	110.1 (5)	C24—C25—C26	122.1 (6)
N1—C2—H2	108.5	C24—C25—H25	118.9
C1—C2—H2	108.5	C26—C25—H25	118.9
С3—С2—Н2	108.5	O8—C26—C25	119.7 (6)
C4—C3—C2	114.2 (5)	08-C26-C27	121.8 (7)
C4—C3—H3A	108.7	C25—C26—C27	118.4 (7)
C2—C3—H3A	108.7	C28—C27—C26	119.5 (7)
C4—C3—H3B	108.7	С28—С27—Н27	120.3
C2—C3—H3B	108.7	С26—С27—Н27	120.3
H3A—C3—H3B	107.6	C23—C28—C27	121.4 (6)
C5—C4—C9	117.7 (6)	C23—C28—H28	119.3
C5—C4—C3	121.8 (6)	C27—C28—H28	119.3
C9—C4—C3	120.4 (6)	N3—C29—C30	125.3 (6)
C4—C5—C6	122.3 (6)	N3—C29—H29	117.4
С4—С5—Н5	118.8	С30—С29—Н29	117.4

С6—С5—Н5	118.8	C35—C30—C31	121.0 (6)
C7—C6—C5	119.2 (6)	C35—C30—C29	116.3 (6)
С7—С6—Н6	120.4	C31—C30—C29	122.7 (6)
С5—С6—Н6	120.4	O9—C31—C30	124.6 (6)
C8—C7—O3	117.4 (6)	O9—C31—C32	120.7 (6)
C8—C7—C6	119.5 (7)	C30—C31—C32	114.7 (6)
O3—C7—C6	123.0 (6)	C33—C32—C31	124.1 (6)
C7—C8—C9	121.4 (6)	C33—C32—Br3	119.3 (5)
С7—С8—Н8А	119.3	C31—C32—Br3	116.5 (5)
С9—С8—Н8А	119.3	C32—C33—C34	119.0 (6)
C8—C9—C4	119.9 (6)	С32—С33—Н33	120.5
С8—С9—Н9	120.1	С34—С33—Н33	120.5
С4—С9—Н9	120.1	C35—C34—C33	119.2 (7)
N1—C10—C11	126.0 (6)	C35—C34—Br4	121.5 (6)
N1—C10—H10	117.0	C33—C34—Br4	119.3 (5)
C11—C10—H10	117.0	C34—C35—C30	121.9 (6)
C16—C11—C12	120.7 (6)	С34—С35—Н35	119.0
C16—C11—C10	118.3 (6)	С30—С35—Н35	119.0
C12—C11—C10	121.0 (6)	O10-C36-N4	122.9 (6)
O4—C12—C13	119.7 (6)	O10—C36—H36	118.5
O4—C12—C11	125.0 (6)	N4—C36—H36	118.5
C13—C12—C11	115.3 (6)	N4—C37—H37A	109.5
C14—C13—C12	123.3 (6)	N4—C37—H37B	109.5
C14—C13—Br1	117.9 (5)	Н37А—С37—Н37В	109.5
C12—C13—Br1	118.8 (5)	N4—C37—H37C	109.5
C13—C14—C15	119.5 (6)	Н37А—С37—Н37С	109.5
C13—C14—H14	120.2	Н37В—С37—Н37С	109.5
C15—C14—H14	120.2	N4—C38—H38A	109.5
C16—C15—C14	119.3 (6)	N4—C38—H38B	109.5
C16—C15—Br2	121.4 (6)	H38A—C38—H38B	109.5
C14—C15—Br2	119.2 (6)	N4—C38—H38C	109.5
C15—C16—C11	121.8 (7)	H38A—C38—H38C	109.5
C15—C16—H16	119.1	H38B—C38—H38C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	<i>D</i> —Н··· <i>A</i>
C18—H18C····O7	0.96	2.59	3.364 (9)	137
С37—Н37С…О2	0.96	2.48	3.307 (8)	144
O3—H3···O1 ⁱ	0.82	1.98	2.772 (6)	163
O8—H8…O6 ⁱⁱ	0.82	2.07	2.888 (6)	176
C16—H16…O7 ⁱⁱⁱ	0.93	2.52	3.422 (9)	163
C29—H29····O2 ^{iv}	0.93	2.45	3.291 (8)	150
C35—H35…O2 ^{iv}	0.93	2.59	3.408 (8)	147

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*; (ii) -*x*, -*y*+1, -*z*+1; (iii) *x*+1, *y*, *z*; (iv) *x*, *y*-1, *z*.