Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3,5-Dichloro-2-hydroxybenzaldehyde

Ying Fan, ${ }^{\text {a }}$ Wei You, ${ }^{\text {a }}$ Jian-Lan Liu, ${ }^{\text {a }}$ Hui-Fen Qian ${ }^{\text {a }}$ and Wei Huang ${ }^{\text {b }}$ *

${ }^{\text {a }}$ College of Sciences, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and ${ }^{\mathbf{b}}$ State Key Laboratory of Coordination Chemistry,
Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
Correspondence e-mail: whuang@nju.edu.cn
Received 5 May 2008; accepted 9 May 2008
Key indicators: single-crystal X-ray study; $T=291 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.036 ; w R$ factor $=0.097$; data-to-parameter ratio $=14.7$.

The title compound, $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{O}_{2}$, exhibits a layer crystal structure; molecules within each layer are linked by weak C $\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds. There is also an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond.

Related literature

For a related compound, see: Fan et al. (2008).

Experimental

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{O}_{2}$
$M_{r}=191.00$
Monoclinic, $P 2_{1} / c$ $a=8.3359$ (16) A

$$
\begin{aligned}
& b=13.884(3) \AA \\
& c=7.2341(14) \AA \\
& \beta=114.519(2)^{\circ} \\
& V=761.7(3) \AA^{\circ} \\
& Z=4
\end{aligned}
$$

Mo $K \alpha$ radiation
$\mu=0.79 \mathrm{~mm}^{-1}$
$T=291$ (2) K
$0.14 \times 0.12 \times 0.10 \mathrm{~mm}$

Data collection
Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.897, T_{\text {max }}=0.925$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.097$
$S=0.99$
1487 reflections
101 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.27 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.23 \mathrm{e} \mathrm{A}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$	0.82	1.92	2.630 (2)	145
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 1^{\text {i }}$	0.93	2.51	3.428 (3)	168
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 2^{\text {ii }}$	0.93	2.56	3.394 (3)	149

Symmetry codes: (i) $x+1, y, z$; (ii) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$.
Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

WH acknowledges the National Natural Science Foundation of China (No. 20301009) and the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2566).

References

Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Fan, Y., You, W., Qian, H.-F., Liu, J.-L. \& Huang, W. (2008). Acta Cryst. E64, o799.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, o1080 [doi:10.1107/S1600536808013901]

3,5-Dichloro-2-hydroxybenzaldehyde

Ying Fan, Wei You, Jian-Lan Liu, Hui-Fen Qian and Wei Huang

S1. Comment

We have newly reported the X-ray single-crystal structure of 3,5-dibromo-2-hydroxybenzaldehyde (Fan et al., 2008). In this paper, we report the X-ray single-crystal structure of 3,5-dichloro-2- hydroxybenzaldehyde.
The molecular structure of (I) is illustrated in Fig. 1. The selected bond distances and bond angles are normal. Different from 3,5-dibromo-2-hydroxybenzaldehyde, there is only one crystallographically independent molecule in the asymmetric unit. The molecular geometry of slicylaldehyde unit of (I) is comparable with that of 3,5-dibromo-2-hydroxybenzaldehyde.

In the crystal packing of (I), there are two sets of molecules with the dihedral angle of $6.52(2)^{\circ}$ and molecules in every layer are linked by intermolecular $\mathrm{CO}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bondings (Fig. 2). A layer packing structure is formed with the mean interlayer separation of 3.428 (2) \AA (Fig. 3.). However, no $\pi-\pi$ stacking interactions can be observed in (I), which is different from those in 3,5-dibromo-2-hydroxybenzaldehyde.

S2. Experimental

The title compound was obtained as received. Single crystals suitable for X-ray diffraction measurement were formed after 6 days in methanol by slow evaporation at room temperature in air. Analysis calculated for $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{2} \mathrm{Cl}_{2}$: $\mathrm{C} 44.02, \mathrm{H}$ 2.11%. Found: C 44.18, H, 2.24\%. FT—IR (KBr pellets, cm^{-1}): 3066(versus), 2856(s), 1666(versus), 1604(m), 1428(s), 1375(versus), 1276(s), 1208(s), 1171(s), 1103(m), 935(s), 891(versus), 735(s), 703(s), 566(m), and 515(m).

S3. Refinement

The H atoms were placed in geometrically idealized positions $(\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA)$ and refined as riding atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{O})$.

Figure 1
An ORTEP drawing of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
A perspective view of the intralayer intermolecular hydrogen-bond contacts among molecules in the title compound.
Hydrogen bonds and $\mathrm{Cl} \cdots \mathrm{Cl}$ interactions are shown as dashed lines. [Symmetry codes: (i) $x+1, y, z$; (ii) $-x+1, y+1 / 2$, $z+1 / 2$; (iii) $-x+2, y-1 / 2,-z+1 / 2]$.

Figure 3

A perspective view of the layer packing structure of (I) together with the unit cell.

3,5-Dichloro-2-hydroxybenzaldehyde

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{O}_{2}$
$M_{r}=191.00$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=8.3359$ (16) \AA
$b=13.884$ (3) \AA
$c=7.2341(14) \AA$
$\beta=114.519(2)^{\circ}$
$V=761.7$ (3) \AA^{3}
$Z=4$
$F(000)=384$
$D_{\mathrm{x}}=1.666 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1691 reflections
$\theta=2.7-26.8^{\circ}$
$\mu=0.79 \mathrm{~mm}^{-1}$
$T=291 \mathrm{~K}$
Block, yellow
$0.14 \times 0.12 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\min }=0.898, T_{\text {max }}=0.925$

> 4063 measured reflections
> 1487 independent reflections
> 1181 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.055$
> $\theta_{\max }=26.0^{\circ}, \theta_{\min }=2.7^{\circ}$
> $h=-10 \rightarrow 10$
> $k=-16 \rightarrow 16$
> $l=-7 \rightarrow 8$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.097$
$S=0.99$
1487 reflections
101 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C1	$0.4748(2)$	$0.35190(14)$	$0.2605(3)$	$0.0419(5)$
C2	$0.5509(2)$	$0.26110(14)$	$0.2721(3)$	$0.0383(4)$
C3	$0.7213(2)$	$0.25643(14)$	$0.2822(3)$	$0.0379(4)$
C4	$0.8119(2)$	$0.33830(13)$	$0.2774(3)$	$0.0422(5)$
H4	0.9261	0.3341	0.2858	0.051^{*}
C5	$0.7313(2)$	$0.42742(15)$	$0.2599(3)$	$0.0422(5)$
C6	$0.5658(3)$	$0.43474(15)$	$0.2547(3)$	$0.0445(5)$
H6	0.5145	0.4949	0.2474	0.053^{*}
C7	$0.2987(3)$	$0.35981(17)$	$0.2606(3)$	$0.0536(6)$
H7	0.2525	0.4210	0.2579	0.064^{*}
C11	$0.81885(7)$	$0.14449(4)$	$0.29976(9)$	$0.0542(2)$
C12	$0.84604(7)$	$0.52989(4)$	$0.24617(10)$	$0.0612(2)$
O1	$0.21042(19)$	$0.29062(13)$	$0.2640(3)$	$0.0678(5)$
O2	$0.46796(18)$	$0.17843(10)$	$0.2737(2)$	$0.0519(4)$
H2	0.3694	0.1904	0.2670	0.078^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0364(10)$	$0.0424(12)$	$0.0505(11)$	$0.0021(8)$	$0.0216(9)$	$0.0031(9)$
C2	$0.0405(10)$	$0.0354(11)$	$0.0423(10)$	$-0.0011(8)$	$0.0206(8)$	$0.0018(8)$
C3	$0.0389(10)$	$0.0360(11)$	$0.0428(10)$	$0.0048(8)$	$0.0209(8)$	$0.0000(8)$
C4	$0.0357(10)$	$0.0470(14)$	$0.0483(12)$	$0.0007(8)$	$0.0218(9)$	$0.0033(9)$
C5	$0.0410(11)$	$0.0383(11)$	$0.0492(11)$	$-0.0052(8)$	$0.0209(9)$	$0.0034(9)$
C6	$0.0432(11)$	$0.0367(11)$	$0.0568(12)$	$0.0050(8)$	$0.0240(10)$	$0.0045(9)$
C7	$0.0427(12)$	$0.0502(14)$	$0.0746(15)$	$0.0042(10)$	$0.0310(11)$	$0.0076(11)$
C11	$0.0576(4)$	$0.0406(3)$	$0.0719(4)$	$0.0126(2)$	$0.0344(3)$	$0.0019(2)$
C12	$0.0515(3)$	$0.0438(4)$	$0.0914(5)$	$-0.0092(2)$	$0.0327(3)$	$0.0102(3)$
O1	$0.0463(8)$	$0.0642(12)$	$0.1052(13)$	$-0.0007(8)$	$0.0437(8)$	$0.0073(9)$
O2	$0.0475(8)$	$0.0370(8)$	$0.0773(10)$	$-0.0056(6)$	$0.0319(8)$	$0.0020(7)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 6$	$1.388(3)$	$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{C} 1-\mathrm{C} 2$	$1.398(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.369(3)$
$\mathrm{C} 1-\mathrm{C} 7$	$1.472(3)$	$\mathrm{C} 5-\mathrm{Cl} 2$	$1.740(2)$
$\mathrm{C} 2-\mathrm{O} 2$	$1.342(2)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 2-\mathrm{C} 3$	$1.393(2)$	$\mathrm{C} 7-\mathrm{O} 1$	$1.217(3)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.373(3)$	$\mathrm{C} 7-\mathrm{H} 7$	0.9300
$\mathrm{C} 3-\mathrm{C} 11$	$1.7340(19)$	$\mathrm{O} 2-\mathrm{H} 2$	0.8200
$\mathrm{C} 4-\mathrm{C} 5$	$1.388(3)$		120.3
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$			$120.85(18)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7$	$120.59(18)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	$120.63(16)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	$119.71(18)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$118.52(14)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$119.68(18)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{Cl} 2$	$119.68(18)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	$118.51(17)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 12$	120.2
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$118.29(16)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	120.2
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$121.30(17)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	$123.6(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Cl} 1$	$119.86(13)$	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$	118.2
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{Cl} 11$	$118.84(15)$	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 1$	118.2
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 7$	109.5		
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	$119.34(17)$	$\mathrm{C} 1-\mathrm{C} 7-\mathrm{H} 7$	

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2 — \mathrm{H} 2 \cdots \mathrm{O} 1$	0.82	1.92	$2.630(2)$	145
$\mathrm{C} 4 — \mathrm{H} 4 \cdots 1^{\mathrm{i}}$	0.93	2.51	$3.428(3)$	168
$\mathrm{C} 6 — \mathrm{H} 6 \cdots \mathrm{O}^{\mathrm{ii}}$	0.93	2.56	$3.394(3)$	149

Symmetry codes: (i) $x+1, y, z$; (ii) $-x+1, y+1 / 2,-z+1 / 2$.

