

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[di-µ-cis-cyclohexane-1,4dicarboxylato-µ-trans-cyclohexane-1,4dicarboxylato-bis[dipyrido[3,2-a:2',3'-c]phenazine]trimanganese(II)]

Wen-Zhi Zhang^a* and Xiao-Huan Yuan^b

^aCollege of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, Heilongjiang Province, People's Republic of China, and ^bHeilongjiang Key Laboratory of Fibrosis Biotherapy, Mudanjiang Medical College, Mudanjiang 157011, Heilongjiang Province, People's Republic of China Correspondence e-mail: zhangwenzhi1968@yahoo.com.cn

Received 26 April 2008; accepted 30 April 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.060; wR factor = 0.176; data-to-parameter ratio = 15.5.

In the title compound, $[Mn_3(C_8H_{10}O_4)_3(C_{18}H_{10}N_4)_2]$, one Mn atom and one cyclohexane-1,4-dicarboxylate (chdc) ligand are located on centres of inversion. One of the two independent Mn atoms is seven-coordinate, binding to five carboxylate O atoms from different chdc ligands and two phenanthrene N atoms from a dipyrido[3,2-*a*:2',3'-*c*]phenazine (*L*) ligand, while the second Mn atom is six-coordinate, binding to six carboxylate O atoms from different chdc ligands. The *cis*-chdc ligands bridge the trinuclear Mn^{II} clusters, forming chains, which are further linked into a three-dimensional network.

Related literature

For related structures, see: De (2007); Li (2007).

 $\gamma = 82.67 \ (3)^{\circ}$

Z = 1

V = 1298.6 (4) Å³

Mo $K\alpha$ radiation

 $0.33 \times 0.22 \times 0.19 \text{ mm}$

12776 measured reflections

5830 independent reflections

3707 reflections with $I > 2\sigma(I)$

 $\mu = 0.80 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.061$

Experimental

Crystal data

$$\begin{split} & \left[\mathrm{Mn}_3(\mathrm{C_8H_{10}O_4})_3(\mathrm{C_{18}H_{10}N_4})_2 \right] \\ & M_r = 1239.90 \\ & \mathrm{Triclinic}, \ P\overline{1} \\ & a = 8.5730 \ (17) \ \mathring{\mathrm{A}} \\ & b = 10.614 \ (2) \ \mathring{\mathrm{A}} \\ & c = 14.846 \ (3) \ \mathring{\mathrm{A}} \\ & \alpha = 77.34 \ (3)^\circ \\ & \beta = 81.99 \ (3)^\circ \end{split}$$

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\rm min} = 0.762, T_{\rm max} = 0.863$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.060$ 376 parameters $wR(F^2) = 0.176$ H-atom parameters constrainedS = 1.05 $\Delta \rho_{max} = 0.64 \text{ e } \text{\AA}^{-3}$ 5830 reflections $\Delta \rho_{min} = -0.74 \text{ e } \text{\AA}^{-3}$

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *PROCESS-AUTO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL-Plus* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

The work was supported by the Program for Young Academic Backbone in Heilongjiang Provincial University (No. 1152 G053).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2704).

metal-organic compounds

References

De, G. (2007). Acta Cryst. E63, m1748-m1749. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Li, Y.-J. (2007). Acta Cryst. E63, m1654–m1655. Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supporting information

Acta Cryst. (2008). E64, m781-m782 [doi:10.1107/S1600536808012737]

Poly[di-*µ*-cis-cyclohexane-1,4-dicarboxylato-*µ*-trans-cyclohexane-1,4-dicarboxylato-bis[dipyrido[3,2-a:2',3'-c]phenazine]trimanganese(II)]

Wen-Zhi Zhang and Xiao-Huan Yuan

S1. Comment

1,4-Cyclohexanedicarboxylic acid (H₂chdc), as a flexible multidentate ligand, has been extensively studied in the chemistry of coordination polymers (De, 2007; Li, 2007). Here, we report a new Mn^{II} coordination polymer with chdc ligand, namely [Mn₃(cis-chdc)₃(trans-chdc)(L)₂] (I), where L = dipyrido[3,2-a:2',3'-c]-phenazine.

In (I) the Mn1 atom is seven-coordinate binding to five carboxylate O atoms from different chdc ligands, and two phenanthrene N atoms from *L* ligand (Fig. 1 and Table 1). The Mn2 atom is six-coordinate binding to six carboxylate O atoms from different chdc ligands (Fig. 1 and Table 1). Interestingly, the chdc ligands bridge neighboring Mn^{II} atoms to give a trinuclear Mn^{II} cluster. The cis-chdc ligands bridge the trinuclear Mn^{II} clusters to form a chain structure, which are further linked into a 3D network structure (Fig. 2). One Mn atom and one 1,4-cyclohexanedicarboxylate molecule are located on a centre of inversion.

S2. Experimental

A mixture of $Mn(NO_3)_2 H_2O$ (1 mmol), H_2chdc (1 mmol) and *L* (1 mmol) was dissolved in 12 ml distilled water, followed by addition of triethylamine until the pH value of the system was approximately 5.5. The resulting solution was sealed in a 23-ml Teflon-lined stainless steel autoclave and heated at 175°C for 8 days under autogenous pressure. The reaction vessel was then slowly cooled to room temperature. Pale yellow block-like crystals of (I) suitable for singlecrystal X-ray diffraction analysis were obtained from the resulting solution.

S3. Refinement

C-bound H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The structure of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry codes: (i) x-1, y, z; (ii) 2-x, 1-y, -z; (iii) 3-x, 1-y, -z; (iv) 2-x, 2-y, -z.

Figure 2

Packing diagram of (I).

Poly[di-µ-cis-cyclohexane-1,4-dicarboxylato-µ-trans-cyclohexane-1,4- dicarboxylato-bis[dipyrido[3,2-a:2',3'c]phenazine]trimanganese(II)]

Z = 1

F(000) = 637

 $\theta = 3.0-27.5^{\circ}$

 $\mu = 0.80 \text{ mm}^{-1}$

Block, pale yellow

 $0.33 \times 0.22 \times 0.19$ mm

 $\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$

12776 measured reflections

5830 independent reflections

3707 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.062$

 $h = -11 \rightarrow 11$

 $k = -13 \rightarrow 13$

 $D_{\rm x} = 1.585 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 8527 reflections

Crystal data

 $[Mn_3(C_8H_{10}O_4)_3(C_{18}H_{10}N_4)_2]$ $M_r = 1239.90$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.5730 (17) Åb = 10.614 (2) Åc = 14.846(3) Å $\alpha = 77.34 (3)^{\circ}$ $\beta = 81.99 (3)^{\circ}$ $v = 82.67 (3)^{\circ}$ V = 1298.6 (4) Å³

Data collection

Rigaku R-AXIS RAPID diffractometer Radiation source: rotating anode Graphite monochromator Detector resolution: 10.0 pixels mm⁻¹ ω scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\rm min} = 0.762, T_{\rm max} = 0.863$

Refinement

 $l = -16 \rightarrow 19$ Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.060$ Hydrogen site location: inferred from $wR(F^2) = 0.176$ neighbouring sites S = 1.05H-atom parameters constrained 5830 reflections $w = 1/[\sigma^2(F_0^2) + (0.0908P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$ 376 parameters 0 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.64 \text{ e } \text{\AA}^{-3}$ Primary atom site location: structure-invariant direct methods $\Delta \rho_{\rm min} = -0.74 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and	l isotropic or	· equivalent	isotropic	displacement	parameters	$(Å^2)$)
	1	1	1	1	1	\ /	

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	1.3154 (5)	0.6357 (5)	0.2263 (4)	0.0481 (12)
H1	1.3426	0.6017	0.1729	0.058*

C2	1.4234 (5)	0.7038 (5)	0.2518 (4)	0.0542 (13)
H2	1.5216	0.7137	0.2169	0.065*
C3	1.3834 (5)	0.7570 (5)	0.3297 (4)	0.0513 (13)
Н3	1.4535	0.8044	0.3476	0.062*
C4	1.2354 (5)	0.7384 (4)	0.3817 (3)	0.0361 (9)
C5	1.1352 (4)	0.6662 (4)	0.3517 (3)	0.0322 (9)
C6	0.9812 (5)	0.6398 (4)	0.4043 (3)	0.0312 (8)
C7	0.7506 (5)	0.5439 (4)	0.4195 (3)	0.0428 (10)
H7	0.6873	0.4949	0.3977	0.051*
C8	0.6944 (5)	0.5891 (5)	0.5002 (3)	0.0448 (11)
H8	0.5957	0.5702	0.5314	0.054*
С9	0.7855 (5)	0.6617 (4)	0.5334 (3)	0.0405 (10)
H9	0.7504	0.6915	0.5879	0.049*
C10	0.9314 (5)	0.6901 (4)	0.4842 (3)	0.0334 (9)
C11	1.0314 (5)	0.7716 (4)	0.5137 (3)	0.0320 (9)
C12	1.1837 (5)	0.7951 (4)	0.4643 (3)	0.0361 (9)
C13	1.2187 (5)	0.9248 (4)	0.5624 (3)	0.0368 (9)
C14	1.3088 (5)	1.0088 (5)	0.5907(4)	0.0467 (11)
H14	1.4085	1.0250	0.5597	0.056*
C15	1.2492 (5)	1.0660 (4)	0.6635 (3)	0.0455 (11)
H15	1.3096	1.1204	0.6821	0.055*
C16	1.0994 (6)	1.0448 (4)	0.7108 (3)	0.0451 (11)
H16	1.0602	1.0862	0.7596	0.054*
C17	1.0108 (6)	0.9640(5)	0.6856 (3)	0.0459 (11)
H17	0.9116	0.9492	0.7178	0.055*
C18	1.0681 (5)	0.9021 (4)	0.6110 (3)	0.0372 (9)
C19	1.2088 (4)	0.3188 (4)	0.1441 (3)	0.0330(9)
C20	1.3374 (4)	0.2042 (4)	0.1547 (3)	0.0329 (9)
H20	1.2888	0.1277	0.1496	0.039*
C21	1.4043 (5)	0.1721 (4)	0.2488 (3)	0.0371 (9)
H21A	1.3173	0.1678	0.2983	0.044*
H21B	1.4648	0.0875	0.2559	0.044*
C22	1.5100 (4)	0.2725 (4)	0.2577(3)	0.0329 (9)
H22A	1.5559	0.2449	0.3158	0.039*
H22B	1.4464	0.3547	0.2590	0.039*
C23	1.6420 (4)	0.2913 (4)	0.1774 (3)	0.0344 (9)
H23	1.7047	0.2070	0.1790	0.041*
C24	1.7540 (5)	0.3865 (4)	0.1871 (3)	0.0371 (10)
C25	1 5739 (5)	0.3280(4)	0.0842(3)	0.0389(10)
H25A	1.5112	0.4115	0.0797	0.047*
H25B	1 6598	0 3359	0.0340	0.047*
C26	1 4706 (5)	0.2260(5)	0.0744(3)	0.0416(10)
H26A	1.5359	0.1447	0.0726	0.050*
H26B	1.4248	0.2535	0.0161	0.050*
C27	0.9657(5)	0.7352(4)	0.0992(3)	0.0360 (9)
C28	0.9835(5)	0.8607(4)	0.0286(3)	0.0426(10)
H28	1.0018	0.8391	-0.0332	0.051*
C29	1 1322 (5)	0.9177(4)	0.0332	0.0400(10)
227	1.1322 (3)		0.0150 (5)	0.0100 (10)

H29A	1.1198	0.9368	0.1047	0.048*
H29B	1.2236	0.8544	0.0383	0.048*
C30	0.8404 (5)	0.9579 (4)	0.0298 (3)	0.0423 (10)
H30A	0.8166	0.9787	0.0910	0.051*
H30B	0.7501	0.9206	0.0172	0.051*
N1	1.1746 (4)	0.6163 (3)	0.2743 (2)	0.0364 (8)
N2	0.8915 (4)	0.5678 (3)	0.3718 (2)	0.0340 (8)
N3	1.2766 (4)	0.8696 (4)	0.4881 (3)	0.0407 (9)
N4	0.9733 (4)	0.8249 (3)	0.5858 (2)	0.0380 (8)
01	1.1606 (4)	0.3541 (3)	0.0659 (2)	0.0532 (9)
O2	1.1563 (3)	0.3674 (3)	0.2134 (2)	0.0397 (7)
03	1.8227 (4)	0.4527 (4)	0.1177 (3)	0.0595 (10)
O4	1.7807 (4)	0.3935 (3)	0.2666 (2)	0.0532 (9)
05	0.8733 (4)	0.7288 (3)	0.1720 (2)	0.0461 (8)
O6	1.0573 (3)	0.6357 (3)	0.0822 (2)	0.0365 (7)
Mn1	0.97563 (7)	0.51832 (6)	0.22819 (4)	0.02964 (19)
Mn2	1.0000	0.5000	0.0000	0.0292 (2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.043 (2)	0.049 (3)	0.057 (3)	-0.008 (2)	0.005 (2)	-0.025 (2)
C2	0.038 (2)	0.069 (3)	0.063 (3)	-0.019 (2)	0.008 (2)	-0.031 (3)
C3	0.039 (2)	0.059 (3)	0.066 (3)	-0.016 (2)	0.001 (2)	-0.031 (3)
C4	0.036 (2)	0.034 (2)	0.040 (2)	-0.0096 (17)	0.0023 (18)	-0.0130 (19)
C5	0.033 (2)	0.031 (2)	0.036 (2)	-0.0062 (16)	-0.0048 (17)	-0.0108 (18)
C6	0.038 (2)	0.0253 (19)	0.033 (2)	-0.0071 (16)	-0.0100 (17)	-0.0067 (17)
C7	0.042 (2)	0.041 (2)	0.050 (3)	-0.0163 (19)	-0.006(2)	-0.013 (2)
C8	0.035 (2)	0.057 (3)	0.047 (3)	-0.017 (2)	0.007 (2)	-0.020 (2)
C9	0.042 (2)	0.044 (3)	0.039 (2)	-0.0143 (19)	0.0044 (19)	-0.015 (2)
C10	0.036 (2)	0.029 (2)	0.038 (2)	-0.0105 (16)	-0.0045 (18)	-0.0087 (18)
C11	0.038 (2)	0.029 (2)	0.033 (2)	-0.0069 (16)	-0.0070 (17)	-0.0105 (17)
C12	0.036 (2)	0.035 (2)	0.042 (2)	-0.0061 (17)	-0.0077 (18)	-0.015 (2)
C13	0.038 (2)	0.032 (2)	0.044 (3)	-0.0054 (17)	-0.0104 (19)	-0.0127 (19)
C14	0.037 (2)	0.054 (3)	0.058 (3)	-0.010 (2)	-0.005 (2)	-0.028 (2)
C15	0.047 (3)	0.042 (3)	0.057 (3)	-0.008(2)	-0.013 (2)	-0.023 (2)
C16	0.057 (3)	0.043 (3)	0.042 (3)	-0.007(2)	-0.007(2)	-0.020(2)
C17	0.052 (3)	0.051 (3)	0.040 (3)	-0.019 (2)	0.004 (2)	-0.020(2)
C18	0.041 (2)	0.034 (2)	0.040 (2)	-0.0120 (18)	-0.0062 (19)	-0.0084 (19)
C19	0.033 (2)	0.0235 (19)	0.044 (2)	-0.0064 (16)	-0.0099 (18)	-0.0058 (18)
C20	0.031 (2)	0.0238 (19)	0.047 (2)	-0.0073 (15)	-0.0061 (18)	-0.0107 (18)
C21	0.036 (2)	0.030(2)	0.044 (3)	-0.0092 (17)	-0.0082 (18)	0.0013 (19)
C22	0.0299 (19)	0.037 (2)	0.034 (2)	-0.0113 (16)	-0.0075 (16)	-0.0051 (18)
C23	0.0288 (19)	0.030(2)	0.047 (3)	-0.0068 (16)	-0.0013 (18)	-0.0136 (19)
C24	0.031 (2)	0.037 (2)	0.047 (3)	-0.0098 (17)	0.0017 (19)	-0.017 (2)
C25	0.038 (2)	0.044 (2)	0.037 (2)	-0.0093 (18)	-0.0001 (18)	-0.013 (2)
C26	0.035 (2)	0.052 (3)	0.044 (3)	-0.0067 (19)	-0.0022 (19)	-0.022 (2)
C27	0.047 (2)	0.028 (2)	0.037 (2)	-0.0106 (18)	-0.009 (2)	-0.0073 (18)

C28	0.053 (3)	0.026 (2)	0.048 (3)	-0.0078 (18)	-0.001 (2)	-0.0045 (19)
C29	0.039 (2)	0.031 (2)	0.047 (3)	-0.0050 (18)	-0.003 (2)	-0.003 (2)
C30	0.045 (2)	0.032 (2)	0.050 (3)	-0.0124 (18)	-0.005 (2)	-0.004 (2)
N1	0.0386 (18)	0.0342 (19)	0.039 (2)	-0.0080 (15)	-0.0005 (15)	-0.0128 (16)
N2	0.0337 (17)	0.0320 (18)	0.040 (2)	-0.0101 (14)	-0.0060 (15)	-0.0099 (16)
N3	0.0353 (18)	0.045 (2)	0.049 (2)	-0.0119 (15)	-0.0009 (16)	-0.0233 (19)
N4	0.0442 (19)	0.041 (2)	0.0338 (19)	-0.0150 (16)	-0.0048 (16)	-0.0112 (16)
01	0.069 (2)	0.0470 (19)	0.048 (2)	0.0177 (16)	-0.0304 (17)	-0.0172 (16)
O2	0.0408 (16)	0.0360 (16)	0.0435 (18)	0.0027 (12)	-0.0073 (14)	-0.0129 (14)
03	0.055 (2)	0.063 (2)	0.063 (2)	-0.0343 (18)	0.0056 (17)	-0.0086 (19)
O4	0.0518 (19)	0.061 (2)	0.059 (2)	-0.0265 (16)	-0.0042 (16)	-0.0263 (18)
05	0.0587 (19)	0.0331 (16)	0.0444 (19)	-0.0054 (14)	0.0034 (16)	-0.0088 (14)
O6	0.0482 (16)	0.0239 (14)	0.0425 (17)	-0.0089 (12)	-0.0098 (13)	-0.0115 (13)
Mn1	0.0326 (3)	0.0273 (3)	0.0316 (4)	-0.0081 (2)	-0.0036 (3)	-0.0088 (3)
Mn2	0.0341 (4)	0.0253 (4)	0.0306 (5)	-0.0070 (3)	-0.0073 (4)	-0.0067 (4)

Geometric parameters (Å, °)

C1—N1	1.329 (5)	C21—H21A	0.9700
C1—C2	1.383 (6)	C21—H21B	0.9700
C1—H1	0.9300	C22—C23	1.523 (6)
C2—C3	1.379 (6)	C22—H22A	0.9700
С2—Н2	0.9300	C22—H22B	0.9700
C3—C4	1.403 (6)	C23—C24	1.520 (5)
С3—Н3	0.9300	C23—C25	1.529 (6)
C4—C5	1.396 (5)	С23—Н23	0.9800
C4—C12	1.472 (5)	C24—O3	1.234 (5)
C5—N1	1.351 (5)	C24—O4	1.253 (5)
C5—C6	1.464 (5)	C25—C26	1.526 (6)
C6—N2	1.351 (5)	C25—H25A	0.9700
C6—C10	1.397 (5)	С25—Н25В	0.9700
C7—N2	1.337 (5)	C26—H26A	0.9700
С7—С8	1.389 (6)	C26—H26B	0.9700
С7—Н7	0.9300	C27—O5	1.243 (5)
C8—C9	1.368 (6)	C27—O6	1.283 (5)
С8—Н8	0.9300	C27—C28	1.514 (6)
C9—C10	1.391 (6)	C28—C30	1.500 (6)
С9—Н9	0.9300	C28—C29	1.539 (6)
C10—C11	1.461 (5)	C28—H28	0.9800
C11—N4	1.325 (5)	C29—C30 ⁱ	1.533 (6)
C11—C12	1.428 (6)	С29—Н29А	0.9700
C12—N3	1.322 (5)	С29—Н29В	0.9700
C13—N3	1.365 (5)	C30—C29 ⁱ	1.533 (6)
C13—C18	1.411 (6)	С30—Н30А	0.9700
C13—C14	1.414 (6)	C30—H30B	0.9700
C14—C15	1.360 (6)	N1—Mn1	2.356 (3)
C14—H14	0.9300	N2—Mn1	2.303 (3)
C15—C16	1.395 (7)	O1—Mn2	2.102 (3)

С15—Н15	0.9300	O2—Mn1	2.107 (3)
C16—C17	1.356 (6)	O3—Mn2 ⁱⁱ	2.165 (3)
C16—H16	0.9300	O3—Mn1 ⁱⁱ	2.495 (4)
C17—C18	1.408 (6)	O4—Mn1 ⁱⁱ	2.200 (3)
С17—Н17	0.9300	O5—Mn1	2.312 (3)
C18—N4	1.364 (5)	O6—Mn2	2.218 (3)
C19—O1	1 251 (5)	O6—Mn1	2.314(3)
C19-02	1.251(5) 1.253(5)	$Mn1-O4^{iii}$	2.311(3)
C_{19} C_{20}	1.233(5)	$Mn1 O3^{iii}$	2.200(3)
$C_{19} = C_{20}$	1.531(5) 1 531(6)	$Mn^2 = O1iv$	2.493(4)
$C_{20} = C_{20}$	1.531(0) 1.526(6)	$Mr^2 = O^2 y$	2.102(3)
C_{20} U_{20}	1.550 (0)		2.105(3)
C20—H20	0.9800	$Mn2 - O3^{m}$	2.165 (3)
C21—C22	1.521 (5)	$Mn2-O6^{iv}$	2.218 (3)
N1—C1—C2	123.2 (4)	C23—C25—H25A	109.5
N1—C1—H1	118.4	С26—С25—Н25В	109.5
C2—C1—H1	118.4	C23—C25—H25B	109.5
C3—C2—C1	119.0 (4)	H25A—C25—H25B	108.0
C3—C2—H2	120.5	C25—C26—C20	111.9 (3)
C1—C2—H2	120.5	C25—C26—H26A	109.2
$C_2 - C_3 - C_4$	119.0 (4)	C20—C26—H26A	109.2
C2—C3—H3	120.5	C25—C26—H26B	109.2
$C_4 - C_3 - H_3$	120.5	C20_C26_H26B	109.2
$C_{5} = C_{4} = C_{3}^{2}$	120.5 118 0 (4)	H26A C26 H26B	107.0
$C_{5} = C_{4} = C_{5}$	110.0(4)	1120A - C20 - 1120B	107.9
C_{3} C_{4} C_{12}	120.2(3)	05 - 027 - 00	121.1(4) 122.5(4)
C3-C4-C12	121.8 (4)	05 - 027 - 028	122.5 (4)
NI-C5-C4	122.5 (4)	06-027-028	116.3 (4)
NI-C5-C6	116.7 (3)	C30—C28—C27	114.1 (4)
C4—C5—C6	120.8 (3)	C30—C28—C29	111.5 (3)
N2—C6—C10	122.6 (4)	C27—C28—C29	108.7 (4)
N2—C6—C5	117.5 (3)	C30—C28—H28	107.4
C10—C6—C5	119.9 (3)	C27—C28—H28	107.4
N2—C7—C8	122.9 (4)	C29—C28—H28	107.4
N2—C7—H7	118.5	C30 ⁱ —C29—C28	110.7 (4)
С8—С7—Н7	118.5	C30 ⁱ —C29—H29A	109.5
C9—C8—C7	119.5 (4)	С28—С29—Н29А	109.5
С9—С8—Н8	120.3	C30 ⁱ —C29—H29B	109.5
С7—С8—Н8	120.3	С28—С29—Н29В	109.5
C8—C9—C10	118.8 (4)	H29A—C29—H29B	108.1
С8—С9—Н9	120.6	C28—C30—C29 ⁱ	111.0 (4)
С10—С9—Н9	120.6	C28—C30—H30A	109.4
C9-C10-C6	118 5 (4)	$C29^{i}$ $C30$ $H30A$	109.4
C9-C10-C11	121 6 (4)	C_{28} C_{30} H_{30B}	109.4
C6-C10-C11	1199(3)	$C_{29^{i}}$ C_{30} H_{30B}	109.4
N4-C11-C12	121 9 (4)	H_{30A} C_{30} H_{30B}	102.4
N4 C11 C10	121.7(7) 117A(A)	C1 N1 $C5$	118 2 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.6 (2)	$C_1 = N_1 = C_3$	110.2(4) 125.1(2)
$ \begin{array}{c} 12 \\ 12 \\ 12 \\ 12 \\ 11 \\ 11 \\ 11 \\ 11 $	120.0(3)	$C_1 = N_1 = N_1 = 1$	123.1(3)
INJ	122.4 (3)		110.4 (2)

N3—C12—C4	119.1 (4)	C7—N2—C6	117.6 (3)
C11—C12—C4	118.5 (3)	C7—N2—Mn1	124.1 (3)
N3—C13—C18	121.2 (4)	C6—N2—Mn1	117.8 (3)
N3—C13—C14	120.0 (4)	C12—N3—C13	116.4 (3)
C18—C13—C14	118.8 (4)	C11—N4—C18	116.3 (3)
C15—C14—C13	119.8 (4)	C19—O1—Mn2	137.6 (3)
C15—C14—H14	120.1	C19—O2—Mn1	130.2 (3)
C13—C14—H14	120.1	C24—O3—Mn2 ⁱⁱ	158.1 (3)
C14—C15—C16	121.5 (4)	C24—O3—Mn1 ⁱⁱ	86.0 (3)
C14—C15—H15	119.3	$Mn2^{ii}$ — $O3$ — $Mn1^{ii}$	93.87 (12)
С16—С15—Н15	119.3	C24—O4—Mn1 ⁱⁱ	99.5 (3)
C17—C16—C15	120.0 (4)	C27—O5—Mn1	91.5 (2)
С17—С16—Н16	120.0	C27—O6—Mn2	124.5(3)
C15—C16—H16	120.0	C27—O6—Mn1	90.3 (2)
C16—C17—C18	120.5 (4)	Mn2-O6-Mn1	97.62 (11)
C16—C17—H17	119.8	Ω_{2} Mn1 Ω_{4}	95.86 (12)
C18—C17—H17	119.8	Ω^2 —Mn1—N2	120.52(12)
N4—C18—C17	118.7 (4)	$O4^{iii}$ —Mn1—N2	82.87 (12)
N4-C18-C13	121.8 (4)	Ω_{2} Mn1 Ω_{2}	147.38 (12)
C17—C18—C13	119.5 (4)	$O4^{iii}$ —Mn1—O5	108.96 (13)
01	124.9 (4)	N2—Mn1—O5	84.24 (12)
01-C19-C20	116.1 (3)	Ω_{2} Mn1 $-\Omega_{6}$	91.43 (11)
02-C19-C20	118.9 (4)	$O4^{iii}$ —Mn1—O6	127.44 (12)
C19—C20—C26	110.3 (4)	N2-Mn1-O6	135.18 (11)
C19—C20—C21	114.4 (3)	O5—Mn1—O6	56.78 (10)
C26—C20—C21	110.8 (3)	O2—Mn1—N1	84.36 (11)
С19—С20—Н20	107.0	$O4^{iii}$ —Mn1—N1	148.93 (13)
С26—С20—Н20	107.0	N2—Mn1—N1	70.66 (12)
С21—С20—Н20	107.0	O5—Mn1—N1	84.83 (12)
C22—C21—C20	112.2 (3)	O6—Mn1—N1	83.54 (12)
C22—C21—H21A	109.2	O2—Mn1—O3 ⁱⁱⁱ	91.42 (12)
C20—C21—H21A	109.2	O4 ⁱⁱⁱ —Mn1—O3 ⁱⁱⁱ	54.17 (12)
C22—C21—H21B	109.2	N2—Mn1—O3 ⁱⁱⁱ	129.79 (12)
C20—C21—H21B	109.2	O5—Mn1—O3 ⁱⁱⁱ	86.59 (12)
H21A—C21—H21B	107.9	O6—Mn1—O3 ⁱⁱⁱ	73.72 (11)
C21—C22—C23	111.7 (3)	N1—Mn1—O3 ⁱⁱⁱ	156.77 (12)
C21—C22—H22A	109.3	O1 ^{iv} —Mn2—O1	180.00 (17)
C23—C22—H22A	109.3	$O1^{iv}$ —Mn2— $O3^{v}$	89.57 (15)
C21—C22—H22B	109.3	O1—Mn2—O3 ^v	90.43 (15)
C23—C22—H22B	109.3	O1 ^{iv} —Mn2—O3 ⁱⁱⁱ	90.43 (15)
H22A—C22—H22B	107.9	O1—Mn2—O3 ⁱⁱⁱ	89.57 (15)
C24—C23—C22	112.7 (3)	O3 ^v —Mn2—O3 ⁱⁱⁱ	180.0 (2)
C24—C23—C25	112.4 (4)	O1 ^{iv} —Mn2—O6	89.89 (11)
C22—C23—C25	110.7 (3)	O1—Mn2—O6	90.11 (11)
C24—C23—H23	106.9	O3 ^v —Mn2—O6	97.56 (12)
C22—C23—H23	106.9	O3 ⁱⁱⁱ —Mn2—O6	82.44 (12)
С25—С23—Н23	106.9	$O1^{iv}$ —Mn2—O6 ^{iv}	90.11 (11)
O3—C24—O4	120.0 (4)	O1-Mn2-O6 ^{iv}	89.89 (11)

O3—C24—C23	120.7 (4)	O3 ^v —Mn2—O6 ^{iv}	82.44 (12)
O4—C24—C23	119.2 (4)	O3 ⁱⁱⁱ —Mn2—O6 ^{iv}	97.56 (12)
C26—C25—C23	110.9 (4)	O6—Mn2—O6 ^{iv}	180.00 (11)
C26—C25—H25A	109.5		

Symmetry codes: (i) -*x*+2, -*y*+2, -*z*; (ii) *x*+1, *y*, *z*; (iii) *x*-1, *y*, *z*; (iv) -*x*+2, -*y*+1, -*z*; (v) -*x*+3, -*y*+1, -*z*.