organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-N-(6-Chloro-3-pyridylmethyl)-Nethyl-N'-methyl-2-nitroethylene-1,1diamine

Liang-Zhong Xu,* Zhi Yang, Xu Yi and Guang-Wei An

College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China Correspondence e-mail: gknhs@yahoo.com.cn

Received 23 April 2008; accepted 6 May 2008

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.034; wR factor = 0.090; data-to-parameter ratio = 13.6.

In the title compound, C₁₁H₁₅ClN₄O₂, the amino group is involved in intra- and intermolecular N-H···O hydrogen bonds. The former contributes to the molecular conformation, while the latter link the molecules into centrosymmetric dimers. The crystal structure also exhibits weak intermolecular $C-H\cdots O$ interactions.

Related literature

For the properties of neonicotinoid insecticides, see: Wang et al. (2001); Isao et al. (1993). For related crystal structures, see: Jiang et al. (2007); Xia et al. (2007).

Experimental

Crystal data C11H15CIN4O2

 $M_{\rm r} = 270.72$

Monoclinic, $P2_1/n$ $a = 7.7252 (15) \text{\AA}$ b = 7.9281 (16) Å c = 20.787 (4) Å $\beta = 92.34 (3)^{\circ}$ V = 1272.0 (4) Å³

Data collection

Rigaku Saturn diffractometer	7120 measured reflections
Absorption correction: multi-scan	2238 independent reflections
(CrystalClear; Rigaku, 2005)	1970 reflections with $I > 2\sigma(I)$
$T_{\rm min} = 0.959, T_{\rm max} = 0.988$	$R_{\rm int} = 0.031$
	int

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	165 parameters
$wR(F^2) = 0.089$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
2238 reflections	$\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$

Z = 4

Mo $K\alpha$ radiation

 $0.14 \times 0.12 \times 0.04 \text{ mm}$

 $\mu = 0.30 \text{ mm}^-$

T = 113 (2) K

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3-H3A\cdots O1$	0.86	2.12	2.6376 (16)	118
$N3-H3A\cdotsO1^{i}$	0.86	2.38	3.0778 (17)	138
$C6-H6A\cdotsO1^{ii}$	0.97	2.58	3.508 (2)	160
$C3 - H3 \cdots O2^{iii}$	0.93	2.50	3.1101 (19)	123

Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) -x, -y + 2, -z; (iii) x, y - 1, z.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2407).

References

Isao, M., Koichi, I. & Takanori, T. (1993). J. Pesticide Sci. 18, 41-48.

Jiang, H., Yu, C.-X., Tu, S.-J., Wang, X.-S. & Yao, C.-S. (2007). Acta Cryst. E63, 0298-0299.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, J. J., Han, Z. J. & Wang, Y. C. (2001). Zhiwu Baohu Xuebao, 28, 178-182

Xia, Y., Ding, X.-L., Ge, Y.-Q., Liu, L.-D. & Zhao, B.-X. (2007). Acta Cryst. E63, 0394-0395.

 $> 2\sigma(I)$

supporting information

Acta Cryst. (2008). E64, o1074 [doi:10.1107/S1600536808013317]

(*E*)-*N*-(6-Chloro-3-pyridylmethyl)-*N*-ethyl-*N*'-methyl-2-nitroethylene-1,1-diamine

Liang-Zhong Xu, Zhi Yang, Xu Yi and Guang-Wei An

S1. Comment

Nitenpyram is a new chloro-nicotine type insecticide (Wang *et al.*, 2001) possessing a wide spectum of useful properties (Isao *et al.*, 1993). We report here the crystal structure of the title compound (I).

In (I) (Fig. 1), all bond lengths and angles are in agreement with those reported for the related structures (Jiang *et al.*, 2007; Xia *et al.*, 2007). The pyridine ring and plane N2/N3/C9/C11 form a dihedral angle of 48.8 (2)°. The amino group is involved in intra- and intermolecular N-H…O hydrogen bonds (Table 1). The intermolecular N-H…O hydrogen bonds link the molecules into centrosymmetric dimers. The crystal packing exhibits also weak intermolecular C—H…O interactions (Table 1).

S2. Experimental

A solution comprising *N*-((6-chloropyridin-3-yl)methyl)ethanamine(0.1 mol) in trichloromethane(30 ml) was slowly added from a dropping-funnel to a mixture of 1,1,1-trichloro-2-nitro-ethane(0.15 mol), trichloromethane(30 ml) and an aqueous solution of sodium carbonate(40%, 53 g) in a flask equipped with stirrer and reflux condenser. After the mixture was stirred for 1 h while maintaining the temperature at 273–280k, an aqueous solution of methylamine(30%, 30 g) was then added dropwise, followed by a two hours stirring at room temperature. The reaction mixture were extracted with trichloromethane, the title compound (16.2 g, yield 60%) could be afforded after ethyl oxide was added to the concentration remnants on cooling. The single-crystal suitable for X-ray measurements was obtained by recrystallization from trichloromethane-ethyl acetate(1:1) at room temperature.

S3. Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H and C—H distances of 0.86 and 0.93–0.97 Å, respectively, and with $U_{iso}(H) = 1.2U_{eq}(C, N)$ for the aryl, methylene and N H atoms and $1.5U_{eq}(C)$ for the methyl H atoms.

Figure 1

The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 40% probability level.

(E)-N-(6-Chloro-3-pyridylmethyl)-N-ethyl-N'-methyl-2-nitroethylene-1,1-diamine

Crystal data	
$C_{11}H_{15}ClN_4O_2$ $M_r = 270.72$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn $a = 7.7252 (15) \text{ Å}$ $b = 7.9281 (16) \text{ Å}$ $c = 20.787 (4) \text{ Å}$ $\beta = 92.34 (3)^{\circ}$ $V = 1272.0 (4) \text{ Å}^3$	F(000) = 568 $D_x = 1.414 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3653 reflections $\theta = 2.0-27.9^{\circ}$ $\mu = 0.30 \text{ mm}^{-1}$ T = 113 K Block, yellow $0.14 \times 0.12 \times 0.04 \text{ mm}$
Z = 4	
Data collection Rigaku Saturn diffractometer Radiation source: rotating anode Confocal monochromator ω scans Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2005) $T_{min} = 0.959, T_{max} = 0.988$	7120 measured reflections 2238 independent reflections 1970 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.8^{\circ}$ $h = -9 \rightarrow 5$ $k = -8 \rightarrow 9$ $l = -24 \rightarrow 23$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from
$wR(F^2) = 0.089$	neighbouring sites
S = 1.05	H-atom parameters constrained
2238 reflections	$w = 1/[\sigma^2(F_o^2) + (0.053P)^2 + 0.2942P]$
165 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.33 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C11	-0.46834 (6)	0.13093 (5)	0.15973 (2)	0.03277 (16)
O1	0.31814 (14)	1.08651 (13)	-0.00180 (6)	0.0256 (3)
O2	0.11880 (15)	1.26510 (13)	0.02461 (6)	0.0297 (3)
N1	-0.37165 (16)	0.43140 (16)	0.19759 (6)	0.0218 (3)
N2	0.10858 (15)	0.74385 (14)	0.12607 (6)	0.0154 (3)
N3	0.34655 (15)	0.80473 (14)	0.06527 (6)	0.0164 (3)
H3A	0.4171	0.8837	0.0555	0.020*
N4	0.19059 (16)	1.12460 (14)	0.03211 (6)	0.0187 (3)
C1	-0.34845 (19)	0.31625 (19)	0.15333 (7)	0.0194 (3)
C2	-0.23838 (19)	0.33022 (19)	0.10271 (8)	0.0193 (3)
H2	-0.2261	0.2429	0.0734	0.023*
C3	-0.14779 (18)	0.47891 (18)	0.09762 (7)	0.0183 (3)
Н3	-0.0727	0.4941	0.0642	0.022*
C4	-0.16921 (18)	0.60648 (17)	0.14276 (7)	0.0157 (3)
C5	-0.28034 (19)	0.57502 (19)	0.19164 (7)	0.0193 (3)
Н5	-0.2931	0.6584	0.2225	0.023*
C6	-0.07572 (18)	0.77266 (17)	0.13772 (7)	0.0170 (3)
H6A	-0.1280	0.8384	0.1027	0.020*
H6B	-0.0863	0.8360	0.1773	0.020*
C7	0.20362 (19)	0.64947 (18)	0.17777 (7)	0.0177 (3)
H7A	0.2889	0.5772	0.1586	0.021*
H7B	0.1228	0.5777	0.1996	0.021*
C8	0.2939 (2)	0.7633 (2)	0.22653 (9)	0.0301 (4)
H8A	0.3829	0.8259	0.2062	0.045*
H8B	0.3449	0.6965	0.2608	0.045*

H8C	0.2115	0.8402	0.2436	0.045*	
C9	0.19636 (18)	0.85310 (17)	0.08850 (7)	0.0142 (3)	
C10	0.4040 (2)	0.63299 (18)	0.05466 (8)	0.0206 (3)	
H10A	0.4731	0.5955	0.0913	0.031*	
H10B	0.4718	0.6292	0.0170	0.031*	
H10C	0.3050	0.5607	0.0486	0.031*	
C11	0.12900 (18)	1.01529 (17)	0.07620 (7)	0.0169 (3)	
H11	0.0359	1.0503	0.0999	0.020*	

Atomic displacement parameters (A	Ų)
-----------------------------------	----

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0374 (3)	0.0288 (2)	0.0319 (3)	-0.01993 (18)	0.00009 (19)	0.00218 (17)
01	0.0213 (6)	0.0257 (6)	0.0307 (7)	0.0037 (5)	0.0121 (5)	0.0098 (5)
O2	0.0367 (7)	0.0148 (5)	0.0384 (8)	0.0088 (5)	0.0118 (6)	0.0096 (5)
N1	0.0195 (6)	0.0264 (7)	0.0195 (7)	-0.0078 (6)	0.0008 (5)	0.0030 (6)
N2	0.0126 (6)	0.0143 (6)	0.0191 (7)	0.0006 (5)	0.0006 (5)	0.0041 (5)
N3	0.0137 (6)	0.0119 (6)	0.0241 (7)	-0.0011 (5)	0.0041 (5)	0.0007 (5)
N4	0.0191 (7)	0.0145 (6)	0.0226 (7)	0.0014 (5)	0.0033 (5)	0.0023 (5)
C1	0.0171 (7)	0.0202 (7)	0.0203 (8)	-0.0049 (6)	-0.0052 (6)	0.0054 (6)
C2	0.0197 (7)	0.0172 (7)	0.0208 (8)	0.0025 (6)	-0.0012 (6)	0.0005 (6)
C3	0.0149 (7)	0.0202 (8)	0.0199 (8)	0.0017 (6)	0.0028 (6)	0.0032 (6)
C4	0.0115 (7)	0.0170 (7)	0.0183 (8)	0.0018 (6)	-0.0023 (6)	0.0040 (6)
C5	0.0179 (7)	0.0218 (7)	0.0181 (8)	-0.0025 (6)	0.0003 (6)	-0.0006 (6)
C6	0.0147 (7)	0.0154 (7)	0.0211 (8)	0.0012 (6)	0.0033 (6)	0.0022 (6)
C7	0.0171 (7)	0.0176 (7)	0.0183 (8)	0.0002 (6)	-0.0006 (6)	0.0053 (6)
C8	0.0348 (9)	0.0279 (9)	0.0267 (10)	-0.0077 (7)	-0.0094 (7)	0.0053 (7)
C9	0.0141 (7)	0.0134 (7)	0.0148 (8)	-0.0016 (6)	-0.0018 (6)	-0.0010 (5)
C10	0.0200 (8)	0.0165 (7)	0.0252 (9)	0.0052 (6)	0.0026 (7)	-0.0012 (6)
C11	0.0163 (7)	0.0150 (7)	0.0197 (8)	0.0005 (6)	0.0056 (6)	0.0008 (6)

Geometric parameters (Å, °)

Cl1—C1	1.7447 (15)	C4—C5	1.379 (2)
O1—N4	1.2711 (16)	C4—C6	1.508 (2)
O2—N4	1.2512 (16)	С5—Н5	0.9300
N1-C1	1.314 (2)	C6—H6A	0.9700
N1C5	1.3478 (19)	С6—Н6В	0.9700
N2—C9	1.3650 (18)	С7—С8	1.507 (2)
N2—C6	1.4717 (17)	С7—Н7А	0.9700
N2—C7	1.4796 (19)	С7—Н7В	0.9700
N3—C9	1.3313 (18)	C8—H8A	0.9600
N3—C10	1.4517 (18)	C8—H8B	0.9600
N3—H3A	0.8600	C8—H8C	0.9600
N4	1.3613 (18)	C9—C11	1.4066 (19)
C1—C2	1.384 (2)	C10—H10A	0.9600
C2—C3	1.377 (2)	C10—H10B	0.9600
С2—Н2	0.9300	C10—H10C	0.9600

C3—C4	1.394 (2)	C11—H11	0.9300
С3—Н3	0.9300		
C1—N1—C5	115.85 (13)	N2—C6—H6B	109.6
C9—N2—C6	120.14 (12)	C4—C6—H6B	109.6
C9—N2—C7	119.54 (12)	H6A—C6—H6B	108.1
C6—N2—C7	114.44 (11)	N2—C7—C8	112.82 (12)
C9—N3—C10	126.98 (12)	N2—C7—H7A	109.0
C9—N3—H3A	116.5	С8—С7—Н7А	109.0
C10—N3—H3A	116.5	N2—C7—H7B	109.0
O2—N4—O1	119.49 (12)	С8—С7—Н7В	109.0
O2—N4—C11	119.03 (12)	H7A—C7—H7B	107.8
O1—N4—C11	121.48 (12)	С7—С8—Н8А	109.5
N1—C1—C2	125.63 (13)	С7—С8—Н8В	109.5
N1—C1—C11	116.35 (11)	H8A—C8—H8B	109.5
C2—C1—C11	118.03 (12)	С7—С8—Н8С	109.5
C3—C2—C1	117.18 (14)	H8A—C8—H8C	109.5
С3—С2—Н2	121.4	H8B—C8—H8C	109.5
C1—C2—H2	121.4	N3—C9—N2	119.04 (12)
C2—C3—C4	119.65 (14)	N3—C9—C11	121.26 (13)
С2—С3—Н3	120.2	N2—C9—C11	119.69 (12)
С4—С3—Н3	120.2	N3—C10—H10A	109.5
C5—C4—C3	117.33 (13)	N3—C10—H10B	109.5
C5—C4—C6	121.56 (13)	H10A-C10-H10B	109.5
C3—C4—C6	121.10 (13)	N3—C10—H10C	109.5
N1—C5—C4	124.34 (14)	H10A-C10-H10C	109.5
N1—C5—H5	117.8	H10B-C10-H10C	109.5
С4—С5—Н5	117.8	N4—C11—C9	124.57 (13)
N2—C6—C4	110.19 (11)	N4—C11—H11	117.7
N2—C6—H6A	109.6	С9—С11—Н11	117.7
С4—С6—Н6А	109.6		
C5—N1—C1—C2	0.8 (2)	C3—C4—C6—N2	-47.41 (19)
C5—N1—C1—Cl1	-179.06 (11)	C9—N2—C7—C8	58.95 (17)
N1—C1—C2—C3	-1.3 (2)	C6—N2—C7—C8	-94.11 (15)
Cl1—C1—C2—C3	178.57 (11)	C10—N3—C9—N2	23.9 (2)
C1—C2—C3—C4	0.3 (2)	C10—N3—C9—C11	-157.47 (15)
C2—C3—C4—C5	1.0 (2)	C6—N2—C9—N3	-163.24 (13)
C2—C3—C4—C6	-178.39 (13)	C7—N2—C9—N3	45.24 (19)
C1—N1—C5—C4	0.7 (2)	C6—N2—C9—C11	18.2 (2)
C3—C4—C5—N1	-1.6 (2)	C7—N2—C9—C11	-133.36 (14)
C6—C4—C5—N1	177.82 (13)	O2—N4—C11—C9	179.01 (14)
C9—N2—C6—C4	145.80 (13)	O1—N4—C11—C9	-0.4 (2)
C7—N2—C6—C4	-61.31 (16)	N3—C9—C11—N4	11.8 (2)
C5-C4-C6-N2	133.23 (14)	N2-C9-C11-N4	-169.61 (14)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
N3—H3A…O1	0.86	2.12	2.6376 (16)	118
N3—H3A···O1 ⁱ	0.86	2.38	3.0778 (17)	138
C6—H6A···O1 ⁱⁱ	0.97	2.58	3.508 (2)	160
С3—Н3…О2 ^{ііі}	0.93	2.50	3.1101 (19)	123

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*; (ii) -*x*, -*y*+2, -*z*; (iii) *x*, *y*-1, *z*.