

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Chloro-N-phenylacetamide

B. Thimme Gowda,^a* Jozef Kožíšek,^b Miroslav Tokarčík^b and Hartmut Fuess^c

^aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, ^bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and ^cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany

Correspondence e-mail: gowdabt@yahoo.com

Received 29 April 2008; accepted 30 April 2008

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.009 Å; R factor = 0.037; wR factor = 0.086; data-to-parameter ratio = 10.1.

In the title compound, C_8H_8CINO , the conformations of the N-H and C=O bonds are *anti* to each other, but the C-Cl and C=O bonds in the side chain are *syn*. The molecules are linked by N-H···O hydrogen bonds into infinite chains running in the [101] direction.

Related literature

For the synthesis, see: Gowda *et al.* (2003). For related structures, see: Gowda *et al.* (2007, 2008).

Experimental

Crystal data

 C_8H_8CINO $M_r = 169.6$ Monoclinic, Cca = 5.0623 (15) Åb = 18.361 (6) Åc = 9.115 (2) Å $<math>\beta$ = 102.13 (3)°

Data collection

Oxford Diffraction Xcalibur diffractometer Absorption correction: analytical [*CrysAlis RED* (Oxford Diffraction, 2006), using a multifaceted crystal model based on expressions derived by Clark & $V = 828.3 (4) Å^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.40 \text{ mm}^{-1}$ T = 297 (2) K 0.41 \times 0.24 \times 0.17 mm

Reid (1995)] $T_{min} = 0.905$, $T_{max} = 0.938$ 2388 measured reflections 1067 independent reflections 385 reflections with $I > 2\sigma(I)$ $R_{int} = 0.046$

Refinement

$P[F^2 = 2 (F^2)] = 0.026$	TT
$R[F > 2\sigma(F)] = 0.036$	H-atom parameters constrained
$wR(F^2) = 0.086$	$\Delta \rho_{\rm max} = 0.1 \ {\rm e} \ {\rm A}^{-3}$
S = 0.96	$\Delta \rho_{\rm min} = -0.11 \text{ e } \text{\AA}^{-3}$
1067 reflections	Absolute structure: Flack (1983),
106 parameters	254 Friedel pairs
2 restraints	Flack parameter: 0.04 (11)

Table 1Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$
 $N1-H1N\cdots O1^i$ 0.86 2.05 2.848 (5)
 155

 Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}.$

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2006); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2006); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2002); software used to prepare material for publication: *SHELXL97*, *PLATON* (Spek, 2003) and *WinGX* (Farrugia, 1999).

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for the resumption of his research fellowship. JK and MT thank the Grant Agency of the Slovak Republic (grant No. VEGA 1/0817/08) and the Structural Funds, Interreg IIIA, for financial support for the purchase of the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2728).

References

- Brandenburg, K. (2002). DIAMOND. Bonn, Germany.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, 04611.
- Gowda, B. T., Svoboda, I., Foro, S., Dou, S. & Fuess, H. (2008). Acta Cryst. E64, 0208.
- Gowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801–806.
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supporting information

Acta Cryst. (2008). E64, o987 [doi:10.1107/S160053680801266X]

2-Chloro-N-phenylacetamide

B. Thimme Gowda, Jozef Kožíšek, Miroslav Tokarčík and Hartmut Fuess

S1. Comment

In the present work, the structure of the title compoud, (I), 2-chloro-*N*-(phenyl)-acetamide (NPCA) has been determined, as part of a study of the effect of ring and side chain substitutions on the solid state geometry of aromatic amides (Gowda *et al.*, 2007; 2008). The conformations of the N—H and C=O bonds are *anti* to each other, but the C—Cl and C=O bonds in the side chain are *syn* to each other (Fig. 1), similar to that observed in 2-chloro-*N*-(2-chlorophenyl)-acetamide (Gowda *et al.*, 2007)and 2-chloro-*N*-(3-methylphenyl)-acetamide (Gowda *et al.*, 2008) with similar bond parameters. Further, the amide group –NHCO– in (I) makes a dihedral angle of 16.0 (8)° with the phenyl ring.

Part of the packing for (I) viewed down the *b* axis is shown in Fig. 2. Infinite chains running along the base vector [101] are formed by N-H…O hydrogen bonds (Table 1).

S2. Experimental

The title compound was prepared according to the literature method (Gowda *et al.*, 2003) and colourless prisms of (I) were recrystallised from an ethanol solution.

S3. Refinement

The H atoms were placed in calculated positions (C-H = 0.93Å, N-H = 0.86Å) and refined as riding with $U_{iso}(H) = 1.2U_{ed}(C,N)$.

Figure 1

Molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.

Figure 2

Part of the packing for (I) viewed down the *b* axis showing the chains arising from N-H···O hydrogen bonds Symmetry code (i): x - 1/2, -y + 1/2, z - 1/2.

2-Chloro-N-phenylacetamide

Crystal data	
C ₈ H ₈ ClNO	$V = 828.3 (4) \text{ Å}^3$
$M_r = 169.6$	Z = 4
Monoclinic, Cc	F(000) = 352
Hall symbol: C -2yc	$D_{\rm x} = 1.36 {\rm ~Mg} {\rm ~m}^{-3}$
a = 5.0623 (15) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 18.361 (6) Å	Cell parameters from 159 reflections
c = 9.115 (2) Å	$\theta = 4.9 - 25.1^{\circ}$
$\beta = 102.13 \ (3)^{\circ}$	$\mu=0.40~\mathrm{mm^{-1}}$

T = 297 KPrism, colorless

- - 11 - - 43

Data collection			
Oxford Diffraction Xcalibur System diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 10.4340 pixels mm ⁻¹ ω scans Absorption correction: analytical [<i>CrysAlis RED</i> (Oxford Diffraction, 2006), using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)]	$T_{\min} = 0.905, T_{\max} = 0.938$ 2388 measured reflections 1067 independent reflections 385 reflections with $I > 2\sigma(I)$ $R_{int} = 0.046$ $\theta_{max} = 26^{\circ}, \theta_{min} = 4.3^{\circ}$ $h = -6 \rightarrow 6$ $k = -22 \rightarrow 22$ $l = -9 \rightarrow 11$		
Refinement			
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.086$ S = 0.96 1067 reflections 106 parameters 2 restraints Primary atom site location: structure-invariant direct methods	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $[\exp(3.70(\sin\theta/\lambda)^2)]/[\sigma^2(F_o^2) + (0.035P)^2]$ where $P = 0.33333F_o^2 + 0.66667F_c^2$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.1$ e Å ⁻³ $\Delta\rho_{min} = -0.11$ e Å ⁻³ Absolute structure: Flack (1983), 254 Friedel pairs Absolute structure parameter: 0.04 (11)		
Secondary atom site location: difference Fourier map	Absolute structure parameter: 0.04 (11)		

 $0.41 \times 0.24 \times 0.17 \text{ mm}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit *S* are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Z	$U_{ m iso}*/U_{ m eq}$	
Cl1	1.3492 (4)	0.15000 (9)	0.9151 (2)	0.1082 (7)	
C1	1.0871 (11)	0.1998 (3)	0.8076 (6)	0.0824 (18)	
H1A	1.1488	0.2215	0.7237	0.099*	
H1B	0.939	0.1671	0.7672	0.099*	
C2	0.9849 (11)	0.2595 (3)	0.8961 (6)	0.0629 (17)	
N1	0.7939 (8)	0.3008 (2)	0.8086 (4)	0.0642 (13)	
H1N	0.7565	0.2897	0.7149	0.077*	
01	1.0653 (7)	0.26846 (19)	1.0314 (3)	0.0833 (13)	
C3	0.6481 (10)	0.3597 (3)	0.8507 (6)	0.0517 (13)	
C4	0.7302 (11)	0.3975 (3)	0.9862 (6)	0.0670 (17)	
H4	0.888	0.3845	1.0536	0.08*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C5	0.5727 (15)	0.4542 (3)	1.0177 (7)	0.082 (2)
H5	0.6222	0.478	1.1094	0.099*
C6	0.3490 (16)	0.4762 (3)	0.9197 (10)	0.0824 (18)
H6	0.2513	0.516	0.9428	0.099*
C7	0.2640 (13)	0.4399 (4)	0.7850 (7)	0.082 (2)
H7	0.1068	0.4538	0.7183	0.099*
C8	0.4153 (10)	0.3835 (4)	0.7525 (6)	0.0676 (16)
H8	0.3614	0.3598	0.6609	0.081*

Atomic displacement parameters $(Å^2)$
--

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.1120 (13)	0.1207 (13)	0.0829 (10)	0.0402 (13)	-0.0004 (9)	0.0083 (13)
C1	0.079 (4)	0.091 (4)	0.067 (4)	0.022 (4)	-0.006 (3)	0.006 (4)
C2	0.070 (4)	0.071 (4)	0.045 (3)	-0.003 (3)	0.005 (3)	0.004 (4)
N1	0.066 (3)	0.084 (3)	0.035 (3)	0.012 (3)	-0.006 (2)	0.003 (3)
01	0.102 (3)	0.097 (3)	0.039 (2)	0.010 (2)	-0.013 (2)	-0.005 (2)
C3	0.051 (4)	0.062 (4)	0.041 (3)	-0.001 (3)	0.008 (3)	0.002 (3)
C4	0.055 (4)	0.084 (4)	0.059 (4)	0.005 (4)	0.007 (3)	-0.004 (3)
C5	0.083 (5)	0.097 (5)	0.073 (5)	-0.005 (5)	0.029 (4)	-0.014 (4)
C6	0.078 (5)	0.071 (4)	0.101 (5)	0.002 (5)	0.027 (4)	0.005 (5)
C7	0.066 (5)	0.094 (5)	0.081 (5)	0.019 (5)	0.005 (4)	0.020 (5)
C8	0.053 (4)	0.090 (5)	0.058 (4)	0.003 (3)	0.006 (3)	0.014 (3)

Geometric parameters (Å, °)

Cl1—C1	1.735 (5)	C4—C5	1.378 (7)
C1—C2	1.515 (6)	C4—H4	0.93
C1—H1A	0.97	C5—C6	1.349 (8)
C1—H1B	0.97	С5—Н5	0.93
C2—O1	1.226 (6)	C6—C7	1.384 (9)
C2—N1	1.350 (6)	С6—Н6	0.93
N1—C3	1.407 (6)	C7—C8	1.357 (7)
N1—H1N	0.86	C7—H7	0.93
С3—С8	1.392 (6)	C8—H8	0.93
C3—C4	1.401 (7)		
C2—C1—Cl1	112.8 (4)	C5—C4—C3	118.7 (6)
C2C1H1A	109	C5—C4—H4	120.7
Cl1—C1—H1A	109	C3—C4—H4	120.7
C2C1H1B	109	C6—C5—C4	122.0 (6)
Cl1—C1—H1B	109	C6—C5—H5	119
H1A—C1—H1B	107.8	C4—C5—H5	119
01—C2—N1	124.3 (6)	C5—C6—C7	120.3 (6)
01—C2—C1	123.7 (6)	С5—С6—Н6	119.8
N1-C2-C1	112.0 (5)	С7—С6—Н6	119.8
C2—N1—C3	128.5 (5)	C8—C7—C6	118.5 (6)
C2—N1—H1N	115.7	С8—С7—Н7	120.8

C3—N1—H1N	115.7	С6—С7—Н7	120.8	
C8—C3—C4	117.8 (5)	C7—C8—C3	122.6 (6)	
C8—C3—N1	119.2 (5)	С7—С8—Н8	118.7	
C4—C3—N1	123.0 (5)	C3—C8—H8	118.7	
Cl1—C1—C2—O1	-4.8 (7)	N1—C3—C4—C5	-179.6 (5)	
Cl1—C1—C2—N1	175.8 (4)	C3—C4—C5—C6	-2.8 (9)	
O1—C2—N1—C3	-1.1 (9)	C4—C5—C6—C7	2.7 (9)	
C1—C2—N1—C3	178.3 (5)	C5—C6—C7—C8	-2.0 (9)	
C2—N1—C3—C8	-164.2 (5)	C6—C7—C8—C3	1.7 (8)	
C2—N1—C3—C4	17.8 (8)	C4—C3—C8—C7	-1.8 (8)	
C8—C3—C4—C5	2.3 (8)	N1—C3—C8—C7	-180.0 (5)	

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	D····A	D—H···A
N1—H1 <i>N</i> ···O1 ⁱ	0.86	2.05	2.848 (5)	155

Symmetry code: (i) x-1/2, -y+1/2, z-1/2.