Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,2'-[1,1'-(Propane-1,3-diyldioxydinitrilo)diethylidyne]diphenol

Wen-Kui Dong, ${ }^{\text {a* }}$ Xue-Ni He, ${ }^{\text {a }}$ Jin-Kui Zhong, ${ }^{\text {a }}$ Xiao Chen ${ }^{\text {a }}$ and Tian-Zhi Yu ${ }^{\text {b }}$

${ }^{\mathrm{a}}$ School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China, and ${ }^{\mathbf{b}}$ Key Laboratory of OptoElectronic Technology and Intelligent Control, Ministry of Education, Lanzhou 730070, People's Republic of China
Correspondence e-mail: dongwk@mail.Izjtu.cn
Received 21 March 2008; accepted 30 April 2008
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$; R factor $=0.053 ; \omega R$ factor $=0.163 ;$ data-to-parameter ratio $=7.7$.

The title compound, $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$, was synthesized by the reaction of 2^{\prime}-hydroxyacetophenone with 1,3 -bis(aminooxy)propane in ethanol. Intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and weak $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds stabilize the three-dimensional structure. A twofold rotation axis passes through the molecule.

Related literature

For related literature, see: Atkins et al. (1985); Atwood (1997); Costes et al. (2000); Dong \& Feng (2006); Dong et al. (2006a,b, 2007a,b,c,d); Duan et al. (2007); Katsuki (1995); Lacroix (2001); Venkataramanan et al. (2005); Yu et al. (2008); Zhang et al. (2007).

Experimental

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \\
& M_{r}=324.39 \\
& \text { Orthorhombic, } P b a 2 \\
& a=7.4595(15) \AA \\
& b=25.459(2) \AA \\
& c=4.5938(8) \AA
\end{aligned}
$$

$$
V=872.4(2) \AA^{3}
$$

$$
Z=2
$$

Mo $K \alpha$ radiation
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=298$ (2) K
$0.40 \times 0.19 \times 0.17 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.964, T_{\text {max }}=0.985$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052 \quad 1$ restraint
$w R\left(F^{2}\right)=0.162 \quad \mathrm{H}$-atom parameters constrained
$S=1.12$
$\Delta \rho_{\text {max }}=0.17 \mathrm{e}_{\AA^{-3}}$
880 reflections
114 parameters

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H2 \cdots N1	0.82	1.85	$2.570(5)$	146
C3-H3A \cdots O1	0.96	2.17	$2.603(6)$	106

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Support of this work by the Foundation of the Education Department of Gansu Province (No. 0604-01) and the 'Qing Lan' Talent Engineering Funds of Lanzhou Jiaotong University (No. QL-03-01 A) is gratefully acknowledged.

[^0]
References

Atkins, R., Brewer, G., Kokot, E., Mockler, G. M. \& Sinn, E. (1985). Inorg. Chem. 24, 127-134.
Atwood, D. A. (1997). Coord. Chem. Rev. 165, 267-296.
Costes, J.-P., Dahan, F. \& Dupuis, A. (2000). Inorg. Chem. 39, 165-168.
Dong, W. K., Duan, J. G., Dong, C. M., Ren, Z. L. \& Shi, J. Y. (2007a). Z. Kristallogr. New Cryst. Struct. 222, 327-328.
Dong, W. K., Duan, J. G., Wu, H. L., Shi, J. Y. \& Yu, T. Z. (2006a). Z. Kristallogr. New Cryst. Struct. 221, 555-556.
Dong, W.-K. \& Feng, J.-H. (2006). Acta Cryst. E62, o3577-o3578.
Dong, W. K., Feng, J. H. \& Yang, X. Q. (2006b). Z. Kristallogr. New Cryst. Struct. 221, 447-448.
Dong, W. K., Feng, J. H. \& Yang, X. Q. (2007c). Z. Kristallogr. New Cryst. Struct. 222, 50-52.
Dong, W. K., He, X. N., Dong, C. M., Wang, L., Zhong, J. K., Chen, X. \& Yu, T. Z. (2007d). Z. Kristallogr. New Cryst. Struct. 222, 289-290.

Dong, W. K., Shi, J. Y., Sun, Y. X., Wang, L., Duan, J. G., Zhong, J. K. \& Xu, L. (2007b). Anal. Sci. 23, x167-x168.
Duan, J.-G., Dong, C.-M., Shi, J.-Y., Wu, L. \& Dong, W.-K. (2007). Acta Cryst. E63, o2704-o2705.
Katsuki, T. (1995). Coord. Chem. Rev. 140, 189-214.
Lacroix, P. G. (2001). Eur. J. Inorg. Chem. pp. 339-348.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Venkataramanan, N. S., Kuppuraj, G. \& Rajagopal, S. (2005). Coord. Chem. Rev. 249, 1249-1268.
Yu, T. Z., Zhang, K., Zhao, Y., Yang, C. H., Zhang, H., Qian, L., Fan, D. W., Dong, W. K., Chen, L. L. \& Qiu, Y. Q. (2008). Inorg. Chim. Acta, 361, 233240.

Zhang, Y.-P., Chen, X., Shi, J.-Y., Xu, L. \& Dong, W.-K. (2007). Acta Cryst. E63, o3852.

supporting information

Acta Cryst. (2008). E64, o1098 [doi:10.1107/S1600536808012701]

2,2'-[1,1'-(Propane-1,3-diyldioxydinitrilo)diethylidyne]diphenol

Wen-Kui Dong, Xue-Ni He, Jin-Kui Zhong, Xiao Chen and Tian-Zhi Yu

S1. Comment

Salen-type compounds have been intensively used as versatile chelating ligands in the formation of transition metal complexes (Yu et al., 2008). Some of them or their metal complexes are used in various organic reaction processes as catalysts (Venkataramanan et al., 2005), models of reaction centers of metalloenzymes (Katsuki et al., 1995), have fascinating magnetic properties (Costes et al., 2000) and are nonlinear optical materials (Lacroix et al., 2001). They can also be used as biological models in understanding the structure of biomolecules and biological processes (Atkins et al., 1985, Atwood et al., 1997). Most of their important features of these compounds are their preparative accessibility, diversity and structural variability, which make them more attractive.
In recent years, we have been very much interested in the synthesis and study of salen-type bisoxime derivatives, such as 2,2'-[(1,4-butylene)dioxybis(nitrilomethylidyne)]dinaphthol (Dong et al., 2006a), 4,4'-dibromo-2,2'-[ethylenedioxybis(nitrilomethylidyne)]diphenol (Dong \& Feng, 2006), 4,4'-dibromo-2, 2'-[(1,3-propylene) dioxybis(nitrilomethylidyne)]diphenol (Dong et al., 2006b), 2,2'-[(1,4-butylene)dioxybis(nitrilomethylidyne)]diphenol (Dong et al., 2007a), 4,4'-dichloro-2,2'-[(1,4-butylene)dioxybis(nitrilomethylidyne)]diphenol (Dong et al., 2007b), 4,4'6,6'-tetra(tert-butyl)-2,2'-[(1,4-butylene)dioxybis (nitrilomethylidyne)]diphenol (Dong et al., 2007c), 2,2'-[(1,4-butylene)dioxybis(nitriloethylidyne)]diphenol (Dong et al., 2007d), 2, 2'-[(propane-1,3-diyldioxy)bis(nitrilomethylidyne)]diphenol (Duan et al., 2007), and 5, 5^{\prime}-bis(diethylamino)-2,2'-[ethylenedioxybis(nitrilomethylidyne)]diphenol (Zhang et al., 2007). In this paper, a novel bisoxime ligand, 2, 2^{\prime}-[(propane-1,3-diyldioxy)bis(nitriloethylidyne)]diphenol (I) was designed and synthesized, and shown in Fig. 1.
The single-crystal structure of (I) is built up by discrete $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$ molecules (Fig. 1), in which all bond lengths are in normal ranges. There is a crystallographic twofold rotation axis passing through the middle point (symmetry code: $-\mathrm{x},-\mathrm{y}$, z) of the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ unit. The molecule adopts a trans conguration in which two phenoldoxime moieties adopts an extended form, where the oxime, methyl groups and phenolic alcohols lie in trans positions relative to the C 2 atom in the $\mathrm{N}-\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{N}$ linkage, which is similar to what is observed in our previously reported salen-type bisoxime of 2,2'-[(propane-1,3-diyldioxy)bis(nitrilomethylidyne)]diphenol (Duan et al., 2007). There is an intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond between the N 1 atom and the hydroxy proton (Table 1) generating a six membered ring, which with weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds, stabilizes the three-dimensional structure of (I).

S2. Experimental

$2,2^{\prime}-[($ Propane-1,3-diyldioxy)bis(nitriloethylidyne)]diphenol was synthesized according to an analogous method reported earlier (Dong et al., 2007d). To an ethanol solution (5 ml) of 2^{\prime}-hydroxyacetophenone ($280.9 \mathrm{mg}, 2.01 \mathrm{mmol}$) was added an ethanol (3 ml) solution of 1,3-bis(aminooxy)propane ($105.5 \mathrm{mg}, 1.00 \mathrm{mmol}$). The mixture solution was stirred at 328 K for 3 h . After cool to room temperature, the precipitate was formed, which was filtered, and washed successively with ethanol and ethanol/hexane (1:4), respectively. The product was dried under vacuum and to yield 64.90 mg of the title
compound. Yield, 19.1%. mp. 363-363.5 K. Anal. Calc. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 66.65; H, 6.48; N, 8.18. Found: C, 66.76; H, 6.39 ; N, 7.97. Colorless needle-shaped single crystals suitable for X-ray diffraction studies were obtained after three months by slow evaporation from an ethanol solution (10 ml) of 2, 2^{\prime}-[(propane-1,3-diyldioxy)bis(nitriloethylidyne)]diphenol.

S3. Refinement

H atoms were treated as riding atoms with distances $\mathrm{C}-\mathrm{H}=0.97\left(\mathrm{CH}_{2}\right)$, or $0.93 \AA(\mathrm{CH}), O-\mathrm{H}=0.82 \AA$, and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\mathrm{eq}}(\mathrm{C})$ and $1.5 U_{\mathrm{eq}}(\mathrm{O})$. The hydroxyl protons were located directly from a Fourier map.

Figure 1

Molecule structure of (I) possessing a crystallographic twofold rotation axis passing through the middle point of the C -$\mathrm{C}-\mathrm{C}$ unit (symmetry code: $-\mathrm{x}+1,-\mathrm{y}, \mathrm{z}$), Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.

2,2'-[1,1'-(Propane-1,3-diyldioxydinitrilo)diethylidyne]diphenol

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}$
$M_{r}=342.39$
Orthorhombic, Pba 2
Hall symbol: P $2-2 \mathrm{ab}$
$a=7.4595$ (15) \AA
$b=25.459$ (2) \AA
$c=4.5938$ (8) \AA
$V=872.4(2) \AA^{3}$
$Z=2$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.964, T_{\text {max }}=0.985$
$F(000)=364$
$D_{\mathrm{x}}=1.303 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1047 reflections
$\theta=2.4-22.9^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Needle-shaped, colorless
$0.40 \times 0.19 \times 0.17 \mathrm{~mm}$

3761 measured reflections
880 independent reflections
601 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.080$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=1.6^{\circ}$
$h=-8 \rightarrow 4$
$k=-30 \rightarrow 28$
$l=-5 \rightarrow 5$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.162$
$S=1.12$
880 reflections
114 parameters
1 restraint
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier
\quad map
Hydrogen site location: inferred from
\quad neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.09 P)^{2}\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.18$ e \AA^{-3}
$\Delta \rho_{\min }=-0.20$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
N1	0.7665 (5)	0.07883 (13)	0.2794 (9)	0.0424 (10)	
O1	0.6235 (4)	0.06405 (11)	0.0997 (8)	0.0497 (10)	
O 2	1.0675 (4)	0.06514 (11)	0.5410 (10)	0.0613 (12)	
H2	0.9857	0.0579	0.4284	0.092*	
C1	0.6621 (6)	0.01443 (16)	-0.0329 (12)	0.0447 (13)	
H1A	0.6845	-0.0120	0.1148	0.054*	
H1B	0.7671	0.0171	-0.1564	0.054*	
C2	0.5000	0.0000	-0.2107 (16)	0.0479 (18)	
H2A	0.5305	-0.0294	-0.3353	0.058*	0.50
H2B	0.4695	0.0294	-0.3353	0.058*	0.50
C3	0.5696 (7)	0.15361 (18)	0.3585 (17)	0.0660 (17)	
H3A	0.5088	0.1406	0.1891	0.099*	
H3B	0.5989	0.1900	0.3308	0.099*	
H3C	0.4931	0.1500	0.5254	0.099*	
C4	0.7390 (6)	0.12265 (17)	0.4060 (10)	0.0406 (12)	
C5	0.8802 (6)	0.14197 (16)	0.5999 (11)	0.0380 (11)	
C6	1.0350 (6)	0.11254 (15)	0.6663 (11)	0.0396 (12)	
C7	1.1585 (6)	0.1310 (2)	0.8622 (13)	0.0540 (15)	
H7	1.2586	0.1107	0.9065	0.065*	
C8	1.1363 (6)	0.1787 (2)	0.9934 (16)	0.0582 (15)	
H8	1.2207	0.1908	1.1263	0.070*	
C9	0.9884 (8)	0.2086 (2)	0.9277 (16)	0.0649 (18)	
H9	0.9733	0.2414	1.0135	0.078*	
C10	0.8645 (7)	0.19013 (18)	0.7369 (13)	0.0521 (15)	
H10	0.7646	0.2108	0.6966	0.063*	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.038(2)$	$0.047(2)$	$0.043(2)$	$-0.0020(17)$	$-0.005(2)$	$0.002(2)$
O1	$0.0458(18)$	$0.0516(19)$	$0.052(2)$	$-0.0039(14)$	$-0.0123(19)$	$-0.0063(18)$
O2	$0.053(2)$	$0.054(2)$	$0.077(3)$	$0.0138(15)$	$-0.018(2)$	$-0.0045(19)$
C1	$0.048(3)$	$0.041(2)$	$0.045(3)$	$-0.004(2)$	$0.005(3)$	$-0.001(2)$
C2	$0.068(5)$	$0.046(3)$	$0.030(4)$	$-0.007(3)$	0.000	0.000
C3	$0.051(3)$	$0.060(3)$	$0.087(5)$	$0.009(2)$	$-0.021(4)$	$-0.015(3)$
C4	$0.038(2)$	$0.042(2)$	$0.042(3)$	$0.000(2)$	$-0.005(2)$	$0.004(2)$
C5	$0.035(2)$	$0.045(2)$	$0.034(3)$	$-0.001(2)$	$-0.001(2)$	$0.004(2)$
C6	$0.035(2)$	$0.042(2)$	$0.042(3)$	$-0.002(2)$	$-0.002(2)$	$0.010(2)$
C7	$0.036(3)$	$0.066(3)$	$0.060(4)$	$0.002(2)$	$-0.015(3)$	$0.009(3)$
C8	$0.046(3)$	$0.072(3)$	$0.057(4)$	$-0.015(3)$	$-0.011(3)$	$-0.001(3)$
C9	$0.057(3)$	$0.056(3)$	$0.082(5)$	$-0.003(3)$	$-0.017(4)$	$-0.016(3)$
C10	$0.043(3)$	$0.056(3)$	$0.057(4)$	$0.006(2)$	$-0.004(3)$	$0.003(3)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

N1-C4	1.275 (5)	C3-H3B	0.9600
N1-O1	1.400 (5)	C3-H3C	0.9600
O1-C1	1.432 (5)	C4-C5	1.464 (6)
O2-C6	1.359 (5)	C5-C10	1.383 (6)
O2-H2	0.8200	C5-C6	1.410 (6)
$\mathrm{C} 1-\mathrm{C} 2$	1.505 (6)	C6-C7	1.370 (7)
C1-H1A	0.9700	C7-C8	1.366 (7)
C1-H1B	0.9700	C7-H7	0.9300
$\mathrm{C} 2-\mathrm{C} 1^{\mathrm{i}}$	1.505 (6)	C8-C9	1.374 (7)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700	C8-H8	0.9300
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9700	C9-C10	1.358 (8)
C3-C4	1.505 (6)	C9—H9	0.9300
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9600	C10-H10	0.9300
C4-N1-O1	112.4 (3)	N1-C4-C5	117.1 (4)
$\mathrm{N} 1-\mathrm{O} 1-\mathrm{C} 1$	109.5 (3)	N1-C4-C3	121.8 (4)
C6-O2-H2	109.5	C5-C4-C3	121.1 (4)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	106.5 (3)	C10-C5-C6	116.2 (4)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	110.4	C10-C5-C4	120.9 (4)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	110.4	C6-C5-C4	122.8 (4)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	110.4	O2-C6-C7	117.6 (4)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	110.4	O2-C6-C5	121.7 (4)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.6	C7-C6-C5	120.7 (4)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 1^{\mathrm{i}}$	114.3 (6)	C8-C7-C6	120.8 (5)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.7	C8-C7-H7	119.6
$\mathrm{C} 1{ }^{\mathrm{i}}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.7	C6-C7-H7	119.6
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.7	C7-C8-C9	119.6 (5)
$\mathrm{C} 1{ }^{\text {i }} \mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.7	C7-C8-H8	120.2
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.6	C9-C8-H8	120.2

supporting information

$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.5	C10-C9-C8	119.7 (5)
C4-C3-H3B	109.5	C10-C9-H9	120.1
H3A-C3-H3B	109.5	C8-C9-H9	120.1
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5	C9-C10-C5	122.9 (5)
H3A-C3-H3C	109.5	C9-C10-H10	118.5
$\mathrm{H} 3 \mathrm{~B}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	109.5	C5-C10-H10	118.5
C4-N1-O1-C1	-179.4 (4)	C4-C5-C6-O2	3.6 (7)
$\mathrm{N} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	177.5 (4)	C10-C5-C6-C7	1.7 (7)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl}^{\text {i }}$	-70.3 (3)	C4-C5-C6-C7	-176.2 (4)
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	180.0 (3)	O2-C6-C7-C8	178.9 (5)
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	-0.3 (7)	C5-C6-C7-C8	-1.3 (8)
N1-C4-C5-C10	177.4 (5)	C6-C7-C8-C9	-0.1 (9)
C3-C4-C5-C10	-2.3 (7)	C7-C8-C9-C10	1.1 (10)
N1-C4-C5-C6	-4.9 (6)	C8-C9-C10-C5	-0.7 (9)
C3-C4-C5-C6	175.4 (5)	C6-C5-C10-C9	-0.7 (8)
C10-C5-C6-O2	-178.6 (4)	C4-C5-C10-C9	177.2 (5)

Symmetry code: (i) $-x+1,-y, z$.

Hydrogen-bond geometry ($\hat{A},{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1$	0.82	1.85	$2.570(5)$	146
$\mathrm{C} 3 — \mathrm{H} 3 A \cdots \mathrm{O} 1$	0.96	2.17	$2.603(6)$	106

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2386).

