organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N'-Benzoyl-3-hydroxy-2-naphthohydrazide

Qi-Feng Liang,^a* Hai-Mei Feng^b and Feng-Qing Li^c

^aDepartment of Chemistry, Jiaying University, Meizhou 514015, People's Republic of China, ^bState Key Laboratory Base of Novel Functional Materials and Preparation Science, Institute of Solid Materials Chemistry, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China, and ^cSchool of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, People's Republic of China Correspondence e-mail: liangqifeng07@yahoo.com.cn

Received 22 March 2008; accepted 1 May 2008

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.005 Å; R factor = 0.048; wR factor = 0.112; data-to-parameter ratio = 8.6.

In the title compound, C₁₈H₁₄N₂O₃, the dihedral angle between the planes of the naphthalene and phenyl ring systems is 2.64 (2)°. Molecules are engaged in $\pi - \pi$ stacking (mean interplanar distance = 3.339 between naphthalene rings and 3.357 Å between benzene rings)and hydrogen-bonding interactions.

Related literature

For related literature, see: Alexiou et al. (2002); Gaynor et al. (2002); Lah & Pecoraro (1989); Lehaire et al. (2002); Liu et al. (2001); Saalfrank et al. (2001).

Experimental

Crystal data

 $C_{18}H_{14}N_2O_3$ $M_r = 306.31$ Monoclinic, P21 a = 4.8049 (10) Åb = 5.0231 (10) Åc = 29.398 (6) Å $\beta = 91.59 (3)^{\circ}$

V = 709.3 (2) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 273 (2) K $0.35 \times 0.24 \times 0.14 \text{ mm}$

Data collection

Rigaku R-AXIS RAPID

diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\rm min} = 0.927, \ T_{\rm max} = 0.984$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	1 restraint
$wR(F^2) = 0.112$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$
1798 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$
208 parameters	

6959 measured reflections

 $R_{\rm int} = 0.044$

1798 independent reflections

1397 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$D1 - H1C \cdots O2^{i}$ $N1 - H1B \cdots O1$ $N2 - H2B \cdots O3^{ii}$	0.82	2.00	2.818 (3)	174
	0.86	1.96	2.652 (4)	137
	0.86	2.09	2.826 (3)	143

Symmetry codes: (i) x - 1, y - 1, z; (ii) x + 1, y, z.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure; software used to prepare material for publication: CrystalStructure.

This project was supported by the Talent Fund of Ningbo University (grant No. 2006668).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2387).

References

- Alexiou, M., Dendrinou-Samara, C., Raptopoulou, C. P., Terzis, A. & Kessissoglou, D. P. (2002). Inorg. Chem. 41, 4732-4735.
- Gaynor, D., Starikova, Z. A., Ostrovsky, S., Haase, W. & Nolan, K. B. (2002). Chem. Commun. pp. 506-507.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Lah, M. S. & Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258-7259.
- Lehaire, M. L., Scopelliti, R., Piotrowski, H. & Severin, K. (2002). Angew. Chem. Int. Ed. 41, 1419-1422.
- Liu, S. X., Lin, S., Lin, B. Z., Lin, C. C. & Huang, J. Q. (2001). Angew. Chem. Int. Ed. 40, 1084-1085.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Saalfrank, R. W., Bernt, I., Chowdhry, M. M., Hampel, F. & Vaughan, G. B. M. (2001). Chem. Eur. J. 7, 2765-2768.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, o1008 [doi:10.1107/S1600536808012919]

N'-Benzoyl-3-hydroxy-2-naphthohydrazide

Qi-Feng Liang, Hai-Mei Feng and Feng-Qing Li

S1. Comment

Metallacrowns are a new class of metallamacrocycles, which have gained increasing attention over the past decade because of their potentially unique properties (Alexiou *et al.*, 2002; Gaynor *et al.*, 2002; Lah & Pecoraro, 1989; Lehaire *et al.*, 2002; Liu *et al.*, 2001; Saalfrank *et al.*, 2001). These metallacrowns exhibit selective recognition of cations and anions (Saalfrank *et al.*, 2001; Lehaire *et al.*, 2002), can display intramolecular magnetic exchange interactions (Liu *et al.*, 2001), and can be used as building blocks for two-dimensional or three-dimensional network structures (Gaynor *et al.*, 2002; Lah & Pecoraro, 1989; Lehaire *et al.*, 2002). The ability to control the generation of metallacrowns with different nuclear numbers, desired structures, and properties is still a substantial challenge. We now report structure of a designed pentadentate ligand, 3-hydroxy-*N*-phenyl-2-naphthalenecarbohydrazide (I).

The molecular structure of (I), $C_{18}H_{14}N_2O_3$, is illustrated in Fig.1. The bond length and bond angles in (I)are within normal ranges. The dihedral angle between the planes of naphthalene and benzene rings is 2.640 (2)°. Atom O2 is only approximately co-planar with the naphthalene plane and deviates from the benzene plane by 0.788 (2)Å. The maximum atomic deviation (O3) from the naphthalene plane is 1.403 (2)Å.

The mean interplanar distance of 3.339Å between naphthalene rings and 3.357Å between benzene rings suggests that the ligands are engaged in π - π stacking interactions (Fig. 2). The crystal structure of (I) is stabilized by O—H···O and N —H···O hydrogen bonding (Table 1).

S2. Experimental

Acetic anhydride (6.8 g, 66.8 mmol) and 3-hydroxy-2-naphthalenecarbohydrazide (11.3 g, 56.0 mmol) were added to 120 ml of chloroform with an external ice-water bath. The reaction mixture was slowly warmed to room temperature and stirred for 8 h. After leaving overnight in a refrigerator, the resulting white precipitate was filtered and rinsed with chloroform and diethyl ether. Yield: 95.3%. Melting point: 492 - 496 K. Calcd. for $C_{18}H_{14}N_2O_3$: C, 70.58; H, 4.61; N, 9.15%; Found: C, 70.24; H, 4.75; N, 9.02%.

S3. Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms (C—H = 0.93%A; N—H = 0.86Å; O—H = 0.82 Å) and U_{iso} (H) values weren taken to be equal to $1.2 U_{eq}$ (C, N) and $1.5U_{eq}$ (O). The hydroxy proton was located from from difference Fourier maps. In the absence of significant anomalous scattering effects, Friedel pairs wer merged.

Figure 1

The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

A view of π - π stacking of (I). H atoms have been omitted.

N'-Benzoyl-3-hydroxy-2-naphthohydrazide

Crystal data

C₁₈H₁₄N₂O₃ $M_r = 306.31$ Monoclinic, P2₁ Hall symbol: P 2yb a = 4.8049 (10) Å b = 5.0231 (10) Å c = 29.398 (6) Å $\beta = 91.59 (3)^{\circ}$ $V = 709.3 (2) \text{ Å}^3$ Z = 2

Data collection

Rigaku R-AXIS RAPID diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi,1995) $T_{\min} = 0.927, T_{\max} = 0.984$ F(000) = 320 $D_x = 1.434 \text{ Mg m}^{-3}$ Melting point = 219–223 K Mo K\alpha radiation, \lambda = 0.71073 Å Cell parameters from 4889 reflections $\theta = 3.5-27.5^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 273 KPlatelet, colorless $0.35 \times 0.24 \times 0.14 \text{ mm}$

6959 measured reflections 1798 independent reflections 1397 reflections with $I > 2\sigma(I)$ $R_{int} = 0.044$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 3.5^{\circ}$ $h = -6 \rightarrow 6$ $k = -6 \rightarrow 5$ $l = -38 \rightarrow 38$ Refinement

0	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from
$wR(F^2) = 0.112$	neighbouring sites
S = 1.05	H-atom parameters constrained
1798 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0467P)^2 + 0.1714P]$
208 parameters	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
1 restraint	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.8504 (7)	-0.1340 (8)	0.04316 (11)	0.0580 (10)
H1A	0.9337	-0.1095	0.0153	0.070*
C2	0.9282 (8)	0.0197 (9)	0.07930 (11)	0.0644 (11)
H2A	1.0645	0.1491	0.0759	0.077*
C3	0.5261 (8)	-0.3656 (8)	0.08826 (12)	0.0646 (11)
H3A	0.3923	-0.4981	0.0909	0.078*
C4	0.6474 (8)	-0.3272 (9)	0.04768 (12)	0.0607 (10)
H4A	0.5941	-0.4312	0.0228	0.073*
C5	0.5989 (6)	-0.2081 (7)	0.12670 (10)	0.0426 (7)
C6	0.8049 (6)	-0.0137 (7)	0.12216 (10)	0.0438 (7)
C7	0.8769 (7)	0.1425 (7)	0.16055 (10)	0.0491 (8)
H7A	1.0142	0.2715	0.1578	0.059*
C8	0.4731 (7)	-0.2387 (8)	0.16918 (11)	0.0512 (8)
H8A	0.3369	-0.3684	0.1724	0.061*
C9	0.5449 (5)	-0.0842 (6)	0.20558 (9)	0.0362 (6)
C10	0.7539 (6)	0.1128 (6)	0.20171 (10)	0.0368 (7)
C11	0.8542 (5)	0.2972 (6)	0.23870 (9)	0.0371 (6)
C12	0.6027 (5)	0.5289 (6)	0.34255 (9)	0.0366 (7)
C13	0.6956 (6)	0.7103 (6)	0.38002 (9)	0.0355 (7)
C14	0.5666 (7)	0.6932 (7)	0.42123 (10)	0.0474 (8)
H14A	0.4253	0.5694	0.4251	0.057*
C15	0.9033 (6)	0.8972 (7)	0.37430 (10)	0.0432 (7)
H15A	0.9915	0.9099	0.3466	0.052*
C16	0.9798 (7)	1.0656 (7)	0.40988 (12)	0.0536 (9)
H16A	1.1171	1.1933	0.4058	0.064*

C17	0.8531 (7)	1.0442 (7)	0.45115 (11)	0.0530 (9)	
H17A	0.9074	1.1549	0.4752	0.064*	
C18	0.6461 (7)	0.8593 (8)	0.45684 (11)	0.0526 (9)	
H18A	0.5595	0.8457	0.4846	0.063*	
N1	0.7200 (5)	0.2895 (6)	0.27768 (8)	0.0417 (6)	
H1B	0.5876	0.1768	0.2812	0.050*	
N2	0.7938 (4)	0.4635 (6)	0.31267 (7)	0.0410 (6)	
H2B	0.9596	0.5276	0.3150	0.049*	
01	0.4183 (4)	-0.1167 (5)	0.24650 (6)	0.0469 (6)	
H1C	0.3089	-0.2417	0.2447	0.070*	
02	1.0522 (4)	0.4497 (5)	0.23390 (7)	0.0525 (6)	
03	0.3630 (4)	0.4405 (6)	0.33929 (7)	0.0533 (6)	

Atomic displacement parameters $(Å^2)$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U^{11}	1	<i>U</i> ²²	U^{33}	U ¹²	U ¹³	U^{23}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.07	071 (2)	0.064 (2)	0.0394 (16)	-0.001 (2)	0.0079 (16)	-0.0050 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.08	084 (3)	0.065 (2)	0.0450 (18)	-0.024 (2)	0.0158 (17)	-0.0074 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.07	071 (2)	0.065 (2)	0.058 (2)	-0.027 (2)	0.0076 (18)	-0.018 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.06	067 (2)	0.069 (3)	0.0462 (19)	-0.005 (2)	-0.0014 (17)	-0.0179 (19)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.04	0429 (15)	0.0430 (18)	0.0419 (15)	-0.0036 (15)	-0.0031 (12)	-0.0026 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.04	0459 (15)	0.0458 (19)	0.0399 (15)	-0.0031 (16)	0.0028 (13)	-0.0007 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.05	0528 (18)	0.049 (2)	0.0455 (17)	-0.0197 (17)	0.0061 (14)	-0.0033 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.05	0546 (19)	0.0474 (19)	0.0517 (19)	-0.0214 (17)	0.0055 (15)	-0.0060 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.03	0339 (13)	0.0352 (16)	0.0394 (14)	-0.0045 (13)	0.0016 (11)	0.0005 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.03	0342 (14)	0.0363 (15)	0.0400 (15)	-0.0056 (13)	-0.0002 (12)	-0.0017 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.03	0318 (13)	0.0403 (16)	0.0394 (14)	-0.0060 (13)	0.0015 (11)	-0.0003 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.02	0287 (13)	0.0412 (16)	0.0400 (15)	-0.0019 (12)	0.0010 (11)	-0.0013 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.03	0306 (13)	0.0372 (17)	0.0386 (15)	0.0016 (12)	-0.0010 (11)	-0.0003 (14)
C15 0.0416 (15) 0.0419 (18) 0.0465 (16) -0.0018 (15) 0.0074 (12) 0.0 C16 0.0467 (18) 0.045 (2) 0.069 (2) -0.0092 (16) 0.0009 (16) -0 C17 0.059 (2) 0.0464 (19) 0.0534 (19) 0.0016 (17) -0.0068 (16) -0 C18 0.0584 (19) 0.057 (2) 0.0426 (16) -0.0035 (18) 0.0054 (15) -0 N1 0.0357 (12) 0.0460 (15) 0.0437 (14) -0.0133 (12) 0.0058 (10) -0 N2 0.0301 (10) 0.0526 (16) 0.0405 (12) -0.0084 (12) 0.0027 (9) -0	0.04	0453 (18)	0.051 (2)	0.0463 (18)	-0.0070 (16)	0.0065 (14)	-0.0036 (17)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.04	0416 (15)	0.0419 (18)	0.0465 (16)	-0.0018 (15)	0.0074 (12)	0.0006 (16)
C17 0.059 (2) 0.0464 (19) 0.0534 (19) 0.0016 (17) -0.0068 (16) -0 C18 0.0584 (19) 0.057 (2) 0.0426 (16) -0.0035 (18) 0.0054 (15) -0 N1 0.0357 (12) 0.0460 (15) 0.0437 (14) -0.0133 (12) 0.0058 (10) -0 N2 0.0301 (10) 0.0526 (16) 0.0405 (12) -0.0084 (12) 0.0027 (9) -0	0.04	0467 (18)	0.045 (2)	0.069 (2)	-0.0092 (16)	0.0009 (16)	-0.0090 (19)
C18 0.0584 (19) 0.057 (2) 0.0426 (16) -0.0035 (18) 0.0054 (15) -0 N1 0.0357 (12) 0.0460 (15) 0.0437 (14) -0.0133 (12) 0.0058 (10) -0 N2 0.0301 (10) 0.0526 (16) 0.0405 (12) -0.0084 (12) 0.0027 (9) -0	0.05)59 (2)	0.0464 (19)	0.0534 (19)	0.0016 (17)	-0.0068 (16)	-0.0136 (18)
N1 0.0357 (12) 0.0460 (15) 0.0437 (14) -0.0133 (12) 0.0058 (10) -0 N2 0.0301 (10) 0.0526 (16) 0.0405 (12) -0.0084 (12) 0.0027 (9) -0	0.05	0584 (19)	0.057 (2)	0.0426 (16)	-0.0035 (18)	0.0054 (15)	-0.0079 (17)
N2 0.0301 (10) 0.0526 (16) 0.0405 (12) -0.0084 (12) 0.0027 (9) -0	0.03	0357 (12)	0.0460 (15)	0.0437 (14)	-0.0133 (12)	0.0058 (10)	-0.0105 (14)
	0.03	0301 (10)	0.0526 (16)	0.0405 (12)	-0.0084 (12)	0.0027 (9)	-0.0116 (13)
O1 0.0505 (12) 0.0464 (13) 0.0443 (11) -0.0205 (11) 0.0082 (9) -0	0.05	0505 (12)	0.0464 (13)	0.0443 (11)	-0.0205 (11)	0.0082 (9)	-0.0030 (11)
O2 0.0529 (12) 0.0588 (15) 0.0463 (11) -0.0268 (12) 0.0101 (9) -0	0.05	0529 (12)	0.0588 (15)	0.0463 (11)	-0.0268 (12)	0.0101 (9)	-0.0080 (12)
O3 0.0277 (9) 0.0729 (16) 0.0592 (12) -0.0083 (11) 0.0034 (9) -0	0.02	0277 (9)	0.0729 (16)	0.0592 (12)	-0.0083 (11)	0.0034 (9)	-0.0176 (14)

Geometric parameters (Å, °)

C1—C2	1.357 (5)	C11—N1	1.331 (4)
C1—C4	1.385 (5)	C12—O3	1.235 (3)
C1—H1A	0.9300	C12—N2	1.330 (3)
С2—С6	1.417 (4)	C12—C13	1.489 (4)
C2—H2A	0.9300	C13—C14	1.379 (4)
C3—C4	1.356 (5)	C13—C15	1.384 (4)

$C_{3}-C_{5}$	1 415 (5)	C14—C18	1 384 (4)
C3—H3A	0.9300	C14—H14A	0.9300
C4—H4A	0.9300	C15-C16	1 387 (4)
C5-C6	1 399 (5)	C15—H15A	0.9300
C_{5}	1.399(3) 1.411(4)	C_{16}	1.377(5)
C6_C7	1.410(4)	C16 H16A	0.0300
$C_0 = C_1$	1.410(4) 1.360(4)	C17 $C18$	1.374(5)
C7 H7A	0.0300	C17 = U17	1.374(3)
C^{2}	0.9300	C_{1} H_{1} A	0.9300
C_{0}	1.559 (4)	NI N2	0.9300
	0.9300	NI-IND	1.388 (3)
C9—01	1.3/3(3)	NI—HIB	0.8600
C9—C10	1.417 (4)	N2—H2B	0.8600
	1.497 (4)	OI—HIC	0.8200
C11—O2	1.233 (3)		
C2—C1—C4	120 2 (3)	Q2-C11-C10	122 4 (3)
$C_2 - C_1 - H_1 A$	119.9	N1-C11-C10	1170(2)
C4-C1-H1A	119.9	O_3 — C_1^2 — N_2^2	1213(3)
C1 - C2 - C6	121.1 (3)	03 - C12 - C13	121.5(3) 122.5(3)
C1 - C2 - H2A	110 5	N_{2} C_{12} C_{13}	122.3(3)
C6-C2-H2A	119.5	C_{14} C_{13} C_{15}	110.2(2) 119.5(3)
C_{4} C_{3} C_{5}	121 3 (4)	$C_{14} = C_{13} = C_{13}$	119.5(3)
$C_4 = C_3 = C_3$	121.3 (4)	$C_{14} = C_{13} = C_{12}$	110.0(3)
C_{4} C_{5} C_{2} H_{2A}	119.5	$C_{13}^{} C_{13}^{} C_{12}^{} C_{1$	121.9(3)
$C_3 = C_4 = C_1$	119.5	$C_{13} = C_{14} = C_{18}$	120.4 (3)
$C_3 = C_4 = C_1$	120.3 (3)	C18 C14 H14A	119.0
C_{3} C_{4} H_{4}	119.0	$C_{18} - C_{14} - H_{14A}$	119.0
CI = C4 = H4A	119.8	C12 - C15 - U15 A	119.9 (5)
$C_{0} = C_{3} = C_{8}$	118.8(3)	C15—C15—H15A	120.0
$C_0 = C_2 = C_3$	118.5 (3)	C16—C15—H15A	120.0
	122.9 (3)	C17 - C16 - C15	120.2 (3)
C5-C6-C7	118.1 (3)	C17 - C16 - H16A	119.9
C5—C6—C2	118.8 (3)	C15—C16—H16A	119.9
C/C6C2	123.1 (3)	C18—C17—C16	119.9 (3)
C10—C7—C6	123.0 (3)	С18—С17—Н17А	120.0
С10—С7—Н7А	118.5	С16—С17—Н17А	120.0
С6—С7—Н7А	118.5	C17—C18—C14	120.1 (3)
C9—C8—C5	122.0 (3)	C17—C18—H18A	120.0
С9—С8—Н8А	119.0	C14—C18—H18A	120.0
С5—С8—Н8А	119.0	C11—N1—N2	120.0 (2)
C8—C9—O1	120.9 (3)	C11—N1—H1B	120.0
C8—C9—C10	120.0 (3)	N2—N1—H1B	120.0
O1—C9—C10	119.1 (2)	C12—N2—N1	118.5 (2)
С7—С10—С9	118.1 (3)	C12—N2—H2B	120.7
C7—C10—C11	115.9 (3)	N1—N2—H2B	120.7
C9—C10—C11	126.0 (2)	C9—O1—H1C	109.5
O2—C11—N1	120.7 (3)		

D—H···A	<i>D</i> —H	Н…А	D···A	D—H···A
01—H1C···O2 ⁱ	0.82	2.00	2.818 (3)	174
N1—H1 <i>B</i> …O1	0.86	1.96	2.652 (4)	137
N2—H2 <i>B</i> ···O3 ⁱⁱ	0.86	2.09	2.826 (3)	143

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) *x*-1, *y*-1, *z*; (ii) *x*+1, *y*, *z*.