

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-{[1-(4-Ethoxyphenyl)-5-methyl-1H-1,2,3-triazol-4-yl]diphenylmethyl}morpholine

Jian-Guo Wu,^a Hong-Ru Dong,^a Heng-Shan Dong^a* and Seik Weng Ng^b

^aState Key Laboratory of Applied Organic Chemistry, Institute of Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: donghengshan@lzu.edu.cn

Received 15 April 2008; accepted 30 April 2008

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.003 Å; R factor = 0.047; wR factor = 0.127; data-to-parameter ratio = 14.4.

The title compound, C₂₈H₃₀N₄O₂, synthesized from 4-[1-(4ethoxyphenyl)-5-methyl-1H-1,2,3-triazol-4-yl]diphenylmethanol and morpholine, consists of a subsituted triazolyl group and a morpholinyl group that crowd the aliphatic C atom of a diphenylmethyl unit $[C_{triaz}-C-N_{morph} = 110.1 (1)^{\circ}$ and $C_{phenvl} - C - C_{phenvl} = 103.9 (1)^{\circ}$]. The morpholine ring adopts a chair conformation.

Related literature

For background literature on the synthesis of the precursor (1-aryl-5-methyl-1H-1,2,3-triazol-4-yl)diarylmethanols, see: Dong et al. (2008).

4437 independent reflections 2830 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.019$

Experimental

Crystal data

$C_{28}H_{30}N_4O_2$	$\gamma = 81.547 (1)^{\circ}$
$M_r = 454.56$	V = 1227.4 (2) Å ³
Triclinic, P1	Z = 2
a = 9.406 (1) Å	Mo $K\alpha$ radiation
b = 10.125 (1) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 13.670 (2) Å	T = 294 (2) K
$\alpha = 81.408 \ (1)^{\circ}$	$0.28 \times 0.25 \times 0.20$ mm
$\beta = 73.621 \ (1)^{\circ}$	

Data collection

Bruker APEXII diffractometer Absorption correction: none 6395 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$	309 parameters
$wR(F^2) = 0.126$	H-atom parameters constrained
S = 0.99	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
4437 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

The authors thank the State Key Laboratory of Applied Organic Chemistry, Lanzhou University, and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2394).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA

Dong, H.-S., Huo, G.-Y. & Ma, Z.-T. (2008). Indian J. Chem. Sect. B, 47, 171-174

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2008). publCIF. In preparation.

supporting information

Acta Cryst. (2008). E64, o1067 [doi:10.1107/S1600536808012725]

4-{[1-(4-Ethoxyphenyl)-5-methyl-1*H*-1,2,3-triazol-4-yl]diphenylmethyl}-morpholine

Jian-Guo Wu, Hong-Ru Dong, Heng-Shan Dong and Seik Weng Ng

S1. Comment

We have recently reported the synthesis of some (1-aryl-5-methyl-1*H*-1,2,3-triazol-4-yl)diarylmethanols and characterized one of them, 1-(4-tolyl)-5-methyl-1*H*-1,2,3-triazol-4-yl]bis(3-chlorophenyl)methanol, by X-ray crystallography (Dong *et al.*, 2008). In the present study, the methanolic –OH group of [1-(4-ethoxyphenyl)-5-methyl-1*H*-1,2,3-triazol-4-yl]diphenylmethanol is replaced by a morpholinyl ring in the expectation that the resulting compound (Scheme I) will possess enhanced biological activity. The compound, $C_{28}H_{30}N_4O_2$ (Fig. 1), consists of a subsituted triazolyl part and a morpholinyl part that crowd the aliphatic carbon atom of the diphenylmethyl entity, the crowding depressing the C_{phenyl} –C– C_{phenyl} angle [103.9 (1)°] from the idealized angle. The morpholinyl ring adopts a chair conformation.

S2. Experimental

[1-(4-Ethoxyphenyl)-5-methyl-1*H*-1,2,3-triazol-4-yl]diphenylmethanol, which was synthesized by a modification of a published procedure (Dong *et al.*, 2008) (1.2 g, 3.2 mmol), was dissolved in benzene (30 ml); dry hydrogen chloride gas was passed into the refluxing solution until the theoretical quantity of water was formed. Morpholine (0.4 ml) and triethylamine (0.7 ml) were added and the mixture kept at 318 K for two hours. Removal of the solvent gave a solid; this was washed with water, dried and recrystallized from ethyl acetate to give the pure compound, m.p. 456–458 K in 90% yield. The formulation was established by ¹H-NMR and mass spectrosopic analyses. ¹H-NMR(300 MHz, CDCl₃): 1.422–1.469 (t, 3H, J = 6.9 Hz, ArOCH₂–CH₃), 2.049 (s, 3H, triazolyl–CH₃), 2.456 (br, 4H, –N(CH₂)₂–), 3.829–3.859 (t, 4H, J = 4.5 Hz, –CH₂OCH₂–), 4.044–4.114 (q, 2H, J = 6.9 Hz, ArO–CH₂–), 6.975–7.006 (d, 2H, J = 9.3 Hz, C₂H₅OAr–3,5*H*), 7.143–7.192 (t, 2H, J = 7.5 Hz, Ar–4H), 7.258–7.352 (m, 6H, C₂H₅OAr–2,6*H*, Ar–3,5*H*), 7.557–7.583 (d, 4H, J = 7.8 Hz, Ar–2,6*H*) p.p.m.. MS (%): 454 (M^+ , 0.88%), 369 (68), 340 (59), 312 (17), 310 (13), 264 (7.3), 252 (7.1), 224 (4.8), 219 (3.1), 205 (9.9), 191 (6.7), 178 (18), 165 (15), 162 (100), 151 (16), 149 (40), 134 (19), 121 (12), 93 (11), 91 (16), 77 (17).

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to $1.5U_{eq}(C)$. The methyl groups were rotated to fit the electron density.

Figure 1

50% Probability thermal ellipsoid plot (Barbour, 2001) of $C_{28}H_{30}N_4O_2$. Hydrogen atoms are drawn as spheres of arbitrary radii.

4-{[1-(4-Ethoxyphenyl)-5-methyl-1H-1,2,3-triazol-4-yl]diphenylmethyl}morpholine

Crystal data

 $C_{28}H_{30}N_4O_2$ $M_r = 454.56$ Triclinic, *P*1 Hall symbol: -P 1 a = 9.406 (1) Å b = 10.125 (1) Å c = 13.670 (2) Å $a = 81.408 (1)^{\circ}$ $\beta = 73.621 (1)^{\circ}$ $\gamma = 81.547 (1)^{\circ}$ $V = 1227.4 (2) \text{ Å}^3$

Data collection

Bruker APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans 6395 measured reflections 4437 independent reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.126$ S = 0.994437 reflections 309 parameters Z = 2 F(000) = 484 $D_x = 1.230 \text{ Mg m}^{-3}$ Melting point: 457 K Mo K\alpha radiation, \lambda = 0.71073 Å Cell parameters from 1386 reflections $\theta = 2.3-22.5^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 294 KRhombohedron, colorless $0.28 \times 0.25 \times 0.20 \text{ mm}$

2830 reflections with $I > 2\sigma(I)$ $R_{int} = 0.019$ $\theta_{max} = 25.0^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = -7 \rightarrow 11$ $k = -9 \rightarrow 12$ $l = -16 \rightarrow 16$

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.001$
$w = 1/[\sigma^2(F_o^2) + (0.0614P)^2]$	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	-0.01051 (14)	0.78624 (14)	0.99479 (11)	0.0597 (4)
O2	1.10986 (17)	0.31482 (19)	0.68284 (13)	0.0761 (5)
N1	0.43338 (16)	0.39052 (15)	0.83355 (11)	0.0395 (4)
N2	0.49124 (17)	0.30714 (16)	0.90338 (12)	0.0462 (4)
N3	0.59072 (17)	0.21953 (16)	0.85227 (11)	0.0447 (4)
N4	0.86454 (15)	0.19704 (15)	0.66019 (11)	0.0392 (4)
C1	0.31717 (19)	0.49423 (18)	0.86992 (14)	0.0391 (5)
C2	0.1836 (2)	0.5083 (2)	0.84476 (14)	0.0468 (5)
H2	0.1686	0.4521	0.8015	0.056*
C3	0.0710 (2)	0.6066 (2)	0.88424 (15)	0.0479 (5)
H3	-0.0188	0.6173	0.8665	0.057*
C4	0.0926 (2)	0.68869 (19)	0.94988 (14)	0.0428 (5)
C5	0.2269 (2)	0.6723 (2)	0.97548 (15)	0.0495 (5)
Н5	0.2415	0.7266	1.0202	0.059*
C6	0.3386 (2)	0.57633 (19)	0.93530 (15)	0.0458 (5)
H6	0.4290	0.5666	0.9522	0.055*
C7	-0.1432 (2)	0.8214 (2)	0.96182 (15)	0.0538 (6)
H7A	-0.2016	0.7458	0.9783	0.065*
H7B	-0.1189	0.8464	0.8882	0.065*
C8	-0.2296 (3)	0.9376 (2)	1.01669 (19)	0.0735 (7)
H8A	-0.3161	0.9686	0.9920	0.110*
H8B	-0.1679	1.0092	1.0042	0.110*
H8C	-0.2602	0.9095	1.0891	0.110*
C9	0.4629 (2)	0.4427 (2)	0.64574 (15)	0.0570 (6)
H9A	0.4425	0.5350	0.6592	0.086*
H9B	0.3771	0.4150	0.6329	0.086*
H9C	0.5466	0.4334	0.5867	0.086*
C10	0.49787 (19)	0.35671 (18)	0.73669 (14)	0.0389 (5)
C11	0.59709 (19)	0.24503 (18)	0.75005 (14)	0.0372 (4)
C12	0.71084 (18)	0.15980 (18)	0.67455 (13)	0.0365 (4)
C13	0.8762 (2)	0.3413 (2)	0.63607 (17)	0.0545 (6)
H13A	0.8234	0.3869	0.6957	0.065*
H13B	0.8308	0.3771	0.5807	0.065*
C14	1.0384 (2)	0.3658 (2)	0.60466 (18)	0.0663 (7)
H14A	1.0893	0.3234	0.5432	0.080*
H14B	1.0454	0.4617	0.5885	0.080*
C15	1.0936 (2)	0.1761 (3)	0.71158 (19)	0.0702 (7)
H15A	1.1395	0.1434	0.7672	0.084*
H15B	1.1456	0.1267	0.6538	0.084*
C16	0.9328 (2)	0.1497 (2)	0.74525 (16)	0.0557 (6)
H16A	0.9261	0.0542	0.7647	0.067*

H16B	0.8805	0.1964	0.8044	0.067*
C17	0.70954 (19)	0.00784 (18)	0.71035 (13)	0.0381 (4)
C18	0.5995 (2)	-0.0457 (2)	0.78943 (16)	0.0498 (5)
H18	0.5237	0.0118	0.8264	0.060*
C19	0.5992 (2)	-0.1829 (2)	0.81513 (17)	0.0607 (6)
H19	0.5233	-0.2163	0.8689	0.073*
C20	0.7093 (3)	-0.2706 (2)	0.76228 (17)	0.0586 (6)
H20	0.7092	-0.3629	0.7800	0.070*
C21	0.8192 (3)	-0.2191 (2)	0.68285 (17)	0.0607 (6)
H21	0.8944	-0.2771	0.6460	0.073*
C22	0.8196 (2)	-0.0820 (2)	0.65696 (16)	0.0531 (5)
H22	0.8952	-0.0491	0.6027	0.064*
C23	0.6762 (2)	0.17581 (18)	0.56946 (14)	0.0398 (5)
C24	0.5331 (2)	0.1628 (2)	0.56461 (17)	0.0549 (6)
H24	0.4577	0.1505	0.6250	0.066*
C25	0.5019 (3)	0.1679 (2)	0.4711 (2)	0.0690 (7)
H25	0.4054	0.1605	0.4691	0.083*
C26	0.6119 (3)	0.1836 (2)	0.3817 (2)	0.0746 (8)
H26	0.5905	0.1873	0.3189	0.089*
C27	0.7536 (3)	0.1939 (2)	0.38524 (17)	0.0708 (7)
H27	0.8290	0.2035	0.3245	0.085*
C28	0.7858 (2)	0.1903 (2)	0.47848 (15)	0.0534 (6)
H28	0.8826	0.1977	0.4797	0.064*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	<i>U</i> ³³	<i>U</i> ¹²	<i>U</i> ¹³	<i>U</i> ²³
01	0.0467 (9)	0.0636 (10)	0.0720 (10)	0.0161 (7)	-0.0198 (7)	-0.0315 (8)
02	0.0700 (11)	0.0936 (14)	0.0784 (12)	-0.0350 (9)	-0.0273 (9)	-0.0124 (10)
N1	0.0391 (9)	0.0370 (9)	0.0405 (9)	0.0024 (7)	-0.0088 (7)	-0.0084 (7)
N2	0.0482 (10)	0.0465 (10)	0.0431 (9)	0.0064 (8)	-0.0137 (8)	-0.0107 (8)
N3	0.0453 (10)	0.0457 (10)	0.0420 (9)	0.0050 (7)	-0.0114 (8)	-0.0120 (8)
N4	0.0350 (9)	0.0435 (10)	0.0399 (9)	-0.0056 (7)	-0.0097 (7)	-0.0063 (7)
C1	0.0363 (11)	0.0372 (11)	0.0418 (11)	0.0000 (8)	-0.0074 (8)	-0.0080 (9)
C2	0.0460 (12)	0.0499 (13)	0.0486 (12)	-0.0020 (9)	-0.0143 (10)	-0.0184 (10)
C3	0.0385 (11)	0.0556 (14)	0.0518 (12)	-0.0004 (9)	-0.0143 (9)	-0.0139 (10)
C4	0.0386 (11)	0.0416 (12)	0.0458 (11)	0.0027 (8)	-0.0075 (9)	-0.0115 (9)
C5	0.0497 (12)	0.0472 (13)	0.0580 (13)	0.0045 (9)	-0.0210 (10)	-0.0230 (10)
C6	0.0398 (11)	0.0442 (12)	0.0574 (13)	-0.0011 (9)	-0.0173 (9)	-0.0140 (10)
C7	0.0433 (12)	0.0603 (15)	0.0537 (13)	0.0073 (10)	-0.0133 (10)	-0.0062 (11)
C8	0.0607 (15)	0.0736 (18)	0.0824 (17)	0.0250 (12)	-0.0215 (13)	-0.0245 (14)
C9	0.0676 (14)	0.0489 (14)	0.0469 (12)	0.0082 (10)	-0.0117 (10)	-0.0025 (10)
C10	0.0394 (11)	0.0376 (11)	0.0374 (11)	-0.0010 (8)	-0.0064 (8)	-0.0072 (9)
C11	0.0357 (10)	0.0387 (11)	0.0381 (11)	-0.0021 (8)	-0.0101 (8)	-0.0088 (8)
C12	0.0343 (10)	0.0371 (11)	0.0368 (10)	-0.0013 (8)	-0.0071 (8)	-0.0075 (8)
C13	0.0529 (13)	0.0483 (14)	0.0624 (14)	-0.0114 (10)	-0.0118 (11)	-0.0078 (11)
C14	0.0630 (15)	0.0685 (17)	0.0713 (16)	-0.0269 (12)	-0.0161 (13)	-0.0038 (13)
C15	0.0514 (14)	0.093 (2)	0.0739 (16)	-0.0184 (13)	-0.0269 (12)	-0.0018 (15)

C16	0.0476 (13)	0.0729 (16)	0.0506 (13)	-0.0136 (10)	-0.0192 (10)	-0.0004 (11)
C17	0.0371 (10)	0.0389 (11)	0.0397 (11)	-0.0016 (8)	-0.0124 (9)	-0.0072 (9)
C18	0.0435 (12)	0.0436 (13)	0.0573 (13)	-0.0032 (9)	-0.0037 (10)	-0.0107 (10)
C19	0.0583 (14)	0.0498 (15)	0.0693 (16)	-0.0149 (11)	-0.0071 (12)	-0.0021 (12)
C20	0.0746 (16)	0.0380 (13)	0.0671 (15)	-0.0085 (11)	-0.0260 (13)	-0.0023 (11)
C21	0.0698 (15)	0.0442 (14)	0.0623 (14)	0.0079 (11)	-0.0113 (12)	-0.0139 (11)
C22	0.0539 (13)	0.0446 (13)	0.0516 (13)	0.0006 (9)	-0.0016 (10)	-0.0065 (10)
C23	0.0460 (11)	0.0324 (11)	0.0425 (11)	0.0013 (8)	-0.0145 (9)	-0.0090 (8)
C24	0.0554 (14)	0.0533 (14)	0.0637 (14)	-0.0053 (10)	-0.0261 (11)	-0.0110 (11)
C25	0.0843 (18)	0.0559 (16)	0.0863 (19)	-0.0046 (12)	-0.0538 (16)	-0.0121 (13)
C26	0.120 (2)	0.0568 (16)	0.0623 (17)	0.0066 (15)	-0.0526 (17)	-0.0146 (13)
C27	0.096 (2)	0.0720 (18)	0.0433 (13)	0.0057 (14)	-0.0225 (13)	-0.0090 (12)
C28	0.0586 (14)	0.0582 (14)	0.0418 (12)	0.0035 (10)	-0.0134 (10)	-0.0101 (10)

Geometric parameters (Å, °)

01—C4	1.363 (2)	C12—C23	1.541 (2)
O1—C7	1.424 (2)	C12—C17	1.544 (2)
O2—C14	1.414 (3)	C13—C14	1.512 (3)
O2—C15	1.419 (3)	C13—H13A	0.9700
N1—N2	1.3554 (19)	C13—H13B	0.9700
N1-C10	1.364 (2)	C14—H14A	0.9700
N1—C1	1.434 (2)	C14—H14B	0.9700
N2—N3	1.3126 (19)	C15—C16	1.504 (3)
N3—C11	1.368 (2)	C15—H15A	0.9700
N4—C13	1.462 (2)	C15—H15B	0.9700
N4—C16	1.469 (2)	C16—H16A	0.9700
N4—C12	1.500 (2)	C16—H16B	0.9700
C1—C2	1.376 (2)	C17—C18	1.376 (3)
C1—C6	1.379 (3)	C17—C22	1.388 (2)
C2—C3	1.390 (2)	C18—C19	1.381 (3)
С2—Н2	0.9300	C18—H18	0.9300
C3—C4	1.383 (3)	C19—C20	1.372 (3)
С3—Н3	0.9300	C19—H19	0.9300
C4—C5	1.384 (2)	C20—C21	1.370 (3)
C5—C6	1.372 (2)	C20—H20	0.9300
С5—Н5	0.9300	C21—C22	1.381 (3)
С6—Н6	0.9300	C21—H21	0.9300
С7—С8	1.499 (3)	C22—H22	0.9300
C7—H7A	0.9700	C23—C28	1.378 (3)
С7—Н7В	0.9700	C23—C24	1.392 (3)
C8—H8A	0.9600	C24—C25	1.382 (3)
C8—H8B	0.9600	C24—H24	0.9300
C8—H8C	0.9600	C25—C26	1.366 (3)
C9—C10	1.495 (2)	C25—H25	0.9300
С9—Н9А	0.9600	C26—C27	1.367 (3)
С9—Н9В	0.9600	C26—H26	0.9300
С9—Н9С	0.9600	C27—C28	1.385 (3)

C10—C11	1.381 (2)	C27—H27	0.9300
C11—C12	1.525 (2)	C28—H28	0.9300
C4—O1—C7	118.54 (15)	N4—C13—H13A	109.7
C14—O2—C15	110.11 (17)	C14—C13—H13A	109.7
N2—N1—C10	111.22 (14)	N4—C13—H13B	109.7
N2—N1—C1	118.18 (14)	C14—C13—H13B	109.7
C10—N1—C1	130.58 (15)	H13A—C13—H13B	108.2
N3—N2—N1	106.67 (14)	O2—C14—C13	111.94 (19)
N2—N3—C11	109.81 (14)	O2—C14—H14A	109.2
C13—N4—C16	107.06 (16)	C13—C14—H14A	109.2
C13—N4—C12	113.90 (13)	O2—C14—H14B	109.2
C16—N4—C12	116.16 (14)	C13—C14—H14B	109.2
C2-C1-C6	120.09 (17)	H14A—C14—H14B	107.9
C2-C1-N1	121.16 (16)	02-C15-C16	112,19 (19)
C6-C1-N1	118 67 (16)	Ω^2 —C15—H15A	109.2
C1-C2-C3	119.83 (18)	C_{16} C_{15} H_{15A}	109.2
C1 - C2 - H2	120.1	Ω^2 — $C15$ —H15B	109.2
C_{3} C_{2} H_{2}	120.1	C16-C15-H15B	109.2
$C_{4} - C_{3} - C_{2}$	110 00 (18)	$H_{15} - C_{15} - H_{15} B$	107.9
C4 - C3 - H3	120.0	N4-C16-C15	107.9
C2_C3_H3	120.0	N4 C16 H16A	100.90 (17)
$C_2 = C_3 = H_3$	125.0	C_{15} C_{16} H_{16A}	109.9
01 - 04 - 05	125.11(17) 115.27(17)	NA CI6 HI6P	109.9
$C_{1}^{2} = C_{1}^{2} = C_{2}^{2}$	113.37(17) 110.51(17)	$\Gamma_{1} = \Gamma_{1} = \Pi_{1} = \Pi_{1$	109.9
$C_{3} - C_{4} - C_{3}$	119.31(17) 120.41(18)		109.9
C6 C5 U5	120.41 (16)	$\begin{array}{cccc} \text{HI0A} & \text{CI0} & \text{HI0B} \\ \text{CI8} & \text{CI7} & \text{C22} \\ \end{array}$	100.3
	119.8	$C_{10} = C_{17} = C_{22}$	117.13 (18)
C4 - C5 - H3	119.8	C18 - C17 - C12	123.02(10)
	120.10 (18)	$C_{22} = C_{17} = C_{12}$	119.13 (17)
С5—С6—Н6	119.9	C17 - C18 - C19	121.45 (18)
C1—C6—H6	119.9	C17-C18-H18	119.3
01-07-08	107.35 (17)	C19—C18—H18	119.3
01—C'/—H'/A	110.2	C20—C19—C18	120.8 (2)
С8—С7—Н7А	110.2	С20—С19—Н19	119.6
01—C7—H7B	110.2	С18—С19—Н19	119.6
C8—C7—H7B	110.2	C21—C20—C19	118.5 (2)
H7A—C7—H7B	108.5	C21—C20—H20	120.7
С7—С8—Н8А	109.5	C19—C20—H20	120.7
С7—С8—Н8В	109.5	C20—C21—C22	120.7 (2)
H8A—C8—H8B	109.5	C20—C21—H21	119.6
С7—С8—Н8С	109.5	C22—C21—H21	119.6
H8A—C8—H8C	109.5	C21—C22—C17	121.3 (2)
H8B—C8—H8C	109.5	C21—C22—H22	119.3
С10—С9—Н9А	109.5	C17—C22—H22	119.3
С10—С9—Н9В	109.5	C28—C23—C24	117.90 (18)
Н9А—С9—Н9В	109.5	C28—C23—C12	122.05 (17)
С10—С9—Н9С	109.5	C24—C23—C12	119.77 (17)
Н9А—С9—Н9С	109.5	C25—C24—C23	120.8 (2)

Н9В—С9—Н9С	109.5	C25—C24—H24	119.6
N1—C10—C11	104.16 (15)	C23—C24—H24	119.6
N1—C10—C9	120.80 (16)	C26—C25—C24	120.4 (2)
C11—C10—C9	134.81 (17)	С26—С25—Н25	119.8
N3—C11—C10	108.11 (15)	C24—C25—H25	119.8
N3—C11—C12	119.18 (15)	C25—C26—C27	119.5 (2)
C10—C11—C12	132.53 (16)	C25—C26—H26	120.2
N4—C12—C11	110.13 (14)	С27—С26—Н26	120.2
N4—C12—C23	109.34 (14)	C26—C27—C28	120.5 (2)
C11—C12—C23	112.04 (13)	С26—С27—Н27	119.7
N4—C12—C17	108.86 (13)	C28—C27—H27	119.7
C11—C12—C17	112.32 (14)	C23—C28—C27	120.8 (2)
C23—C12—C17	103.93 (14)	С23—С28—Н28	119.6
N4—C13—C14	109.61 (16)	С27—С28—Н28	119.6
C10—N1—N2—N3	-0.7 (2)	C10—C11—C12—C23	-20.6 (3)
C1—N1—N2—N3	177.98 (16)	N3—C11—C12—C17	48.4 (2)
N1—N2—N3—C11	-0.4 (2)	C10-C11-C12-C17	-137.1 (2)
N2—N1—C1—C2	-126.47 (19)	C16—N4—C13—C14	60.2 (2)
C10—N1—C1—C2	51.9 (3)	C12—N4—C13—C14	-169.95 (15)
N2—N1—C1—C6	50.3 (2)	C15—O2—C14—C13	55.7 (2)
C10—N1—C1—C6	-131.3 (2)	N4-C13-C14-O2	-59.1 (2)
C6-C1-C2-C3	0.9 (3)	C14—O2—C15—C16	-56.5 (2)
N1—C1—C2—C3	177.65 (17)	C13—N4—C16—C15	-60.5 (2)
C1—C2—C3—C4	-1.0 (3)	C12—N4—C16—C15	170.98 (17)
C7—O1—C4—C3	-9.5 (3)	O2—C15—C16—N4	59.9 (2)
C7—O1—C4—C5	171.69 (18)	N4—C12—C17—C18	134.58 (18)
C2-C3-C4-01	-178.55 (18)	C11—C12—C17—C18	12.3 (2)
C2—C3—C4—C5	0.2 (3)	C23—C12—C17—C18	-108.97 (19)
O1—C4—C5—C6	179.58 (18)	N4—C12—C17—C22	-49.4 (2)
C3—C4—C5—C6	0.7 (3)	C11—C12—C17—C22	-171.63 (16)
C4—C5—C6—C1	-0.8 (3)	C23—C12—C17—C22	67.1 (2)
C2-C1-C6-C5	0.0 (3)	C22—C17—C18—C19	0.5 (3)
N1—C1—C6—C5	-176.83 (17)	C12—C17—C18—C19	176.55 (18)
C4—O1—C7—C8	-175.31 (18)	C17—C18—C19—C20	0.0 (3)
N2-N1-C10-C11	1.4 (2)	C18—C19—C20—C21	-0.4(3)
C1—N1—C10—C11	-177.04 (18)	C19—C20—C21—C22	0.3 (3)
N2—N1—C10—C9	-173.86 (17)	C20—C21—C22—C17	0.2 (3)
C1—N1—C10—C9	7.7 (3)	C18—C17—C22—C21	-0.6(3)
N2—N3—C11—C10	1.3 (2)	C12—C17—C22—C21	-176.84 (18)
N2—N3—C11—C12	177.05 (16)	N4—C12—C23—C28	14.1 (2)
N1—C10—C11—N3	-1.6 (2)	C11—C12—C23—C28	136.44 (19)
C9—C10—C11—N3	172.7 (2)	C17—C12—C23—C28	-102.1(2)
N1—C10—C11—C12	-176.61 (18)	N4—C12—C23—C24	-172.18 (15)
C9—C10—C11—C12	-2.3 (4)	C11—C12—C23—C24	-49.8 (2)
C13—N4—C12—C11	-50.70 (19)	C17—C12—C23—C24	71.71 (19)
C16—N4—C12—C11	74.41 (19)	C28—C23—C24—C25	-1.7 (3)
C13—N4—C12—C23	72.82 (18)	C12—C23—C24—C25	-175.68 (18)
	- (-)		()

C16—N4—C12—C23	-162.07 (15)	C23—C24—C25—C26	1.1 (3)
C16—N4—C12—C17 C16—N4—C12—C17	-49.1 (2)	C24—C25—C26—C27 C25—C26—C27—C28	-0.8 (3)
N3—C11—C12—N4 C10—C11—C12—N4	-73.2 (2) 101.4 (2)	C24—C23—C28—C27 C12—C23—C28—C27	1.0 (3) 174.90 (18)
N3—C11—C12—C23	164.90 (16)	C26—C27—C28—C23	0.2 (3)