organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Hydroxymethyl-1-methylethanaminium chloride

Yu-Feng Li, Mei-Li Feng, Shan Liu, Hai-Yu Yang and Hong-Jun Zhu*

Department of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China Correspondence e-mail: zhuhj@njut.edu.cn

Received 14 May 2008; accepted 18 May 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.041; wR factor = 0.154; data-to-parameter ratio = 18.5.

The asymmetric unit of the title compound, $C_4H_{12}NO^+ \cdot Cl^-$, contains two independent ion pairs. Weak intramolecular C- $H \cdots O$ and $N - H \cdots O$ hydrogen bonds result in the formation of three five-membered rings, which have envelope conformations. The crystal structure contains intermolecular O- $H \cdots Cl, N - H \cdots O, N - H \cdots Cl$ and $O - H \cdots O$ hydrogen bonds.

Related literature

For related literature, see: Senkus (1948). For general background, see: Pazenok (2007). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data $C_4H_{12}NO^+ \cdot Cl^ M_r = 125.60$ Monoclinic, $P2_1/n$ a = 6.4940 (13) Åb = 9.5230(19) Å c = 21.903 (4) Å $\beta = 91.88 (3)^{\circ}$

V = 1353.8 (5) Å³ Z = 8Mo $K\alpha$ radiation $\mu = 0.46 \text{ mm}^{-1}$ T = 298 (2) K $0.30 \times 0.20 \times 0.20$ mm


```
Enraf-Nonius CAD-4
   diffractometer
Absorption correction: \psi scan
   (North et al., 1968)
   T_{\rm min} = 0.874, T_{\rm max} = 0.913
2651 measured reflections
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.153$ S = 1.012421 reflections 131 parameters 1 restraint

2421 independent reflections 1857 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.020$ 3 standard reflections frequency: 120 min intensity decay: none

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1-H1A\cdots Cl1$	0.82 (3)	2.25 (4)	3.067 (2)	174 (3)
$N1 - H1B \cdots O2$	0.89	2.02	2.876 (3)	161
$N1 - H1C \cdot \cdot \cdot Cl1^{i}$	0.89	2.33	3.216 (3)	171
$N1 - H1G \cdot \cdot \cdot Cl1^{ii}$	0.89	2.42	3.261 (2)	157
$O2-H2D\cdots O1^{iii}$	0.82	1.91	2.731 (3)	175
$N2 - H2E \cdot \cdot \cdot Cl1$	0.89	2.53	3.391 (2)	163
$N2 - H2E \cdot \cdot \cdot O2$	0.89	2.49	2.811 (3)	102
$N2-H2F\cdots Cl2^{iv}$	0.89	2.24	3.130 (2)	177
$N2 - H2G \cdot \cdot \cdot Cl2$	0.89	2.27	3.144 (2)	169
$C2-H2A\cdots O1$	0.96	2.53	2.880 (4)	102
$C6-H6A\cdots O2$	0.96	2.59	2.933 (4)	101

Symmetry codes: (i) x + 1, y, z; (ii) -x, -y, -z + 1; (iii) -x, -y + 1, -z + 1; (iv) $-x - \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$

Data collection: CAD-4 Software (Enraf-Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2463).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359

Pazenok, S. (2007). Bayer Cropscience A.-G., Germany. WO patent 2007 022 900.

Senkus, M. (1948). Ind. Engineering Chem. 40, 506-508. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, o1150 [doi:10.1107/S1600536808015018]

1-Hydroxymethyl-1-methylethanaminium chloride

Yu-Feng Li, Mei-Li Feng, Shan Liu, Hai-Yu Yang and Hong-Jun Zhu

S1. Comment

The title compound, (I), is an important intermediate for the synthesis of 2-amino-2-methylpropylsulfate, which can be used to synthese 2-methyl-1-(methyl- thio)propane-2-amine (Pazenok, 2007). We report herein the crystal structure of the title compound, (I).

The asymmetric unit of (I) contains two independent molecules (Fig. 1). The bond lengths (Allen *et al.*, 1987) and angles are within normal ranges . The weak intramolecular C-H···O and N-H···O hydrogen bonds (Table 1) result in the formation of three five-membered rings A (C2-C4/O1/H2A), B (C6-C8/O2/H6A) and C (C7/C8/O2/N2/H2E). They adopt envelope conformations, with C3 and C7 atoms displaced by -0.637 (3), -0.686 (4) and 0.711 (3) Å from the planes of the other ring atoms, respectively.

In the crystal structure, intramolecular O-H···Cl, N-H···O and N-H···Cl and intermolecular N-H···Cl and O-H···O hydrogen bonds (Table 1) link the molecules to form a three dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure.

S2. Experimental

The title compound, (I), was synthesized according to the literature method (Senkus, 1948). Crystals suitable for X-ray analysis were obtained by dissolving (I) (0.30 g, 2.4 mmol) in methanol (25 ml) and evaporating the solvent slowly at room temperature for about 4 d.

S3. Refinement

H1A atom (for OH) was located in a difference syntheses and refined [O1-H1A = 0.82 (3) Å and $U_{iso}(H) = 0.070$ Å²]. The remaining H atoms were positioned geometrically, with O-H = 0.82 Å (for OH), N-H = 0.89 Å (for NH₃) and C-H = 0.97 and 0.96 Å for methylene and methyl H, respectively, and constrained to ride on their parent atoms with $U_{iso}(H) = xU_{eq}(C,O,N)$, where x = 1.2 for methylene H, and x = 1.5 for all other H atoms.

Figure 1

The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Hydrogen bonds are shown as dashed lines.

Figure 2

A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

1-Hydroxymethyl-1-methylethanaminium chloride

$V = 1353.8 (5) \text{ Å}^3$
Z = 8
F(000) = 544
$D_{\rm x} = 1.232 {\rm ~Mg} {\rm ~m}^{-3}$
Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Cell parameters from 25 reflections
$\theta = 11 - 14^{\circ}$
$\mu = 0.46 \text{ mm}^{-1}$

T = 298 KBlock, colorless

Data collection

Enraf-Nonius CAD-4	2421 independent reflections
diffractometer	1857 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.020$
Graphite monochromator	$\theta_{\rm max} = 25.2^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$
$\omega/2\theta$ scans	$h = 0 \rightarrow 7$
Absorption correction: ψ scan	$k = 0 \rightarrow 11$
(North <i>et al.</i> , 1968)	$l = -26 \rightarrow 26$
$T_{\min} = 0.874, \ T_{\max} = 0.913$	3 standard reflections every 120 min
2651 measured reflections	intensity decay: none
Refinement	
Refinement on F^2	Hydrogen site location: inferred from

 $0.30 \times 0.20 \times 0.20 \text{ mm}$

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H atoms treated by a mixture of independent
$wR(F^2) = 0.154$	and constrained refinement
S = 1.01	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2 + 0.25P]$
2421 reflections	where $P = (F_o^2 + 2F_c^2)/3$
131 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
1 restraint	$\Delta ho_{ m max} = 0.26$ e Å ⁻³
Primary atom site location: structure-invariant	$\Delta ho_{ m min}$ = -0.28 e Å ⁻³
direct methods	Extinction correction: SHELXL97 (Sheldrick,
Secondary atom site location: difference Fourier	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.018 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates an	d isotropic or	equivalent is	sotropic dis	placement	parameters ($(Å^2)$	
	1	1	1 .		1	. /	

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	-0.24225 (12)	0.14202 (8)	0.53408 (3)	0.0414 (3)	
Cl2	-0.24989 (15)	0.01158 (9)	0.76365 (4)	0.0527 (3)	
01	-0.0723 (3)	0.3564 (2)	0.44418 (11)	0.0468 (6)	
H1A	-0.121 (6)	0.304 (4)	0.4694 (14)	0.070*	
O2	0.1531 (3)	0.3696 (2)	0.58458 (8)	0.0383 (5)	
H2D	0.1269	0.4503	0.5738	0.057*	
N1	0.2905 (4)	0.1957 (2)	0.48659 (10)	0.0313 (6)	
H1B	0.2196	0.2435	0.5138	0.047*	
H1C	0.4221	0.1910	0.4990	0.047*	
H1G	0.2393	0.1093	0.4830	0.047*	
N2	-0.0750 (4)	0.2407 (2)	0.67597 (10)	0.0304 (6)	
H2E	-0.1178	0.2352	0.6370	0.046*	

H2F	-0.1221	0.3195	0.6923	0.046*
H2G	-0.1221	0.1672	0.6964	0.046*
C1	0.3962 (6)	0.1829 (4)	0.38056 (15)	0.0485 (9)
H1D	0.3885	0.2266	0.3411	0.073*
H1E	0.3397	0.0899	0.3777	0.073*
H1F	0.5376	0.1778	0.3947	0.073*
C2	0.3599 (5)	0.4154 (3)	0.43319 (14)	0.0410 (7)
H2A	0.2787	0.4665	0.4615	0.061*
H2B	0.3559	0.4628	0.3945	0.061*
H2C	0.4998	0.4101	0.4486	0.061*
C3	0.2741 (4)	0.2692 (3)	0.42531 (12)	0.0300 (6)
C4	0.0495 (5)	0.2723 (3)	0.40505 (14)	0.0383 (7)
H4A	0.0375	0.3090	0.3638	0.046*
H4B	-0.0039	0.1771	0.4044	0.046*
C5	0.2240 (5)	0.2504 (4)	0.74660 (14)	0.0467 (8)
H5A	0.1744	0.3366	0.7635	0.070*
H5B	0.3717	0.2483	0.7502	0.070*
H5C	0.1685	0.1724	0.7684	0.070*
C6	0.2298 (5)	0.1056 (3)	0.65041 (15)	0.0464 (8)
H6A	0.1841	0.1034	0.6083	0.070*
H6B	0.1740	0.0265	0.6714	0.070*
H6C	0.3776	0.1016	0.6530	0.070*
C7	0.1566 (4)	0.2409 (3)	0.67977 (12)	0.0305 (6)
C8	0.2295 (5)	0.3699 (3)	0.64625 (13)	0.0369 (7)
H8A	0.1820	0.4536	0.6667	0.044*
H8B	0.3789	0.3717	0.6470	0.044*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0418 (5)	0.0385 (5)	0.0435 (5)	-0.0061 (3)	-0.0065 (3)	0.0059 (3)
Cl2	0.0708 (6)	0.0471 (5)	0.0406 (5)	-0.0228 (4)	0.0074 (4)	0.0050 (3)
01	0.0390 (12)	0.0394 (13)	0.0628 (15)	0.0087 (10)	0.0117 (11)	0.0180 (10)
02	0.0545 (13)	0.0310 (11)	0.0296 (11)	0.0003 (10)	0.0050 (9)	0.0044 (8)
N1	0.0321 (13)	0.0338 (12)	0.0281 (12)	0.0047 (10)	0.0007 (10)	0.0042 (10)
N2	0.0340 (13)	0.0274 (12)	0.0299 (12)	0.0009 (10)	0.0042 (10)	-0.0003 (9)
C1	0.059 (2)	0.053 (2)	0.0340 (16)	0.0105 (17)	0.0127 (15)	-0.0028 (14)
C2	0.0424 (18)	0.0367 (17)	0.0435 (17)	-0.0089 (14)	-0.0020 (14)	0.0048 (13)
C3	0.0355 (15)	0.0314 (15)	0.0230 (13)	-0.0019 (12)	0.0018 (11)	0.0026 (11)
C4	0.0381 (17)	0.0379 (16)	0.0385 (16)	-0.0033 (14)	-0.0065 (13)	0.0047 (13)
C5	0.052 (2)	0.057 (2)	0.0313 (16)	-0.0046 (17)	-0.0061 (14)	0.0075 (14)
C6	0.056 (2)	0.0366 (17)	0.0473 (19)	0.0154 (15)	0.0069 (16)	0.0066 (14)
C7	0.0299 (14)	0.0332 (15)	0.0284 (14)	0.0004 (12)	0.0029 (11)	0.0015 (11)
C8	0.0416 (17)	0.0365 (16)	0.0328 (15)	-0.0097 (14)	0.0020 (13)	0.0024 (12)

Geometric parameters (Å, °)

01—C4	1.430 (4)	O2—C8	1.424 (3)	
O1—H1A	0.82 (3)	O2—H2D	0.8200	
N1—C3	1.515 (3)	N2—C7	1.503 (4)	
N1—H1B	0.8900	N2—H2E	0.8900	
N1—H1C	0.8900	N2—H2F	0.8900	
N1—H1G	0.8900	N2—H2G	0.8900	
C1—C3	1.522 (4)	C5—C7	1.517 (4)	
C1—H1D	0.9600	C5—H5A	0.9600	
C1—H1E	0.9600	C5—H5B	0.9600	
C1—H1F	0.9600	C5—H5C	0.9600	
С2—С3	1.507 (4)	C6—C7	1.523 (4)	
C2—H2A	0.9600	C6—H6A	0.9600	
C2—H2B	0.9600	C6—H6B	0.9600	
C2—H2C	0.9600	С6—Н6С	0.9600	
C3—C4	1.511 (4)	C7—C8	1.515 (4)	
C4—H4A	0.9700	C8—H8A	0.9700	
C4—H4B	0.9700	C8—H8B	0.9700	
C4—O1—H1A	107 (3)	C8—O2—H2D	109.5	
C3—N1—H1B	109.5	C7—N2—H2E	109.5	
C3—N1—H1C	109.5	C7—N2—H2F	109.5	
H1B—N1—H1C	109.5	H2E—N2—H2F	109.5	
C3—N1—H1G	109.5	C7—N2—H2G	109.5	
H1B—N1—H1G	109.5	H2E—N2—H2G	109.5	
H1C—N1—H1G	109.5	H2F—N2—H2G	109.5	
C3—C1—H1D	109.5	C7—C5—H5A	109.5	
C3—C1—H1E	109.5	C7—C5—H5B	109.5	
H1D—C1—H1E	109.5	H5A—C5—H5B	109.5	
C3—C1—H1F	109.5	C7—C5—H5C	109.5	
H1D—C1—H1F	109.5	H5A—C5—H5C	109.5	
H1E—C1—H1F	109.5	H5B—C5—H5C	109.5	
C3—C2—H2A	109.5	С7—С6—Н6А	109.5	
С3—С2—Н2В	109.5	C7—C6—H6B	109.5	
H2A—C2—H2B	109.5	H6A—C6—H6B	109.5	
C3—C2—H2C	109.5	С7—С6—Н6С	109.5	
H2A—C2—H2C	109.5	H6A—C6—H6C	109.5	
H2B—C2—H2C	109.5	H6B—C6—H6C	109.5	
C2—C3—C4	111.4 (2)	N2—C7—C8	107.6 (2)	
C2-C3-N1	108.1 (2)	N2—C7—C5	108.1 (2)	
C4—C3—N1	107.9 (2)	C8—C7—C5	109.5 (2)	
C2—C3—C1	112.0 (3)	N2—C7—C6	107.5 (2)	
C4—C3—C1	109.9 (3)	C8—C7—C6	112.0 (2)	
N1—C3—C1	107.3 (2)	C5—C7—C6	112.0 (2)	
O1—C4—C3	112.5 (2)	O2—C8—C7	110.7 (2)	
O1—C4—H4A	109.1	O2—C8—H8A	109.5	
C3—C4—H4A	109.1	C7—C8—H8A	109.5	

supporting information

O1—C4—H4B	109.1	O2—C8—H8B	109.5
C3—C4—H4B	109.1	C7—C8—H8B	109.5
H4A—C4—H4B	107.8	H8A—C8—H8B	108.1
C2—C3—C4—O1	-53.1 (3)	N2—C7—C8—O2	-57.7 (3)
N1—C3—C4—O1	65.4 (3)	C5—C7—C8—O2	-174.9 (2)
C1—C3—C4—O1	-177.8 (2)	C6—C7—C8—O2	60.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
O1—H1A···Cl1	0.82 (3)	2.25 (4)	3.067 (2)	174 (3)
N1—H1 <i>B</i> ···O2	0.89	2.02	2.876 (3)	161
N1—H1C···Cl1 ⁱ	0.89	2.33	3.216 (3)	171
N1—H1G···Cl1 ⁱⁱ	0.89	2.42	3.261 (2)	157
O2—H2 <i>D</i> …O1 ⁱⁱⁱ	0.82	1.91	2.731 (3)	175
N2—H2 <i>E</i> ···Cl1	0.89	2.53	3.391 (2)	163
N2—H2 <i>E</i> ···O2	0.89	2.49	2.811 (3)	102
N2—H2F···Cl2 ^{iv}	0.89	2.24	3.130 (2)	177
N2—H2 <i>G</i> ···Cl2	0.89	2.27	3.144 (2)	169
C2—H2A…O1	0.96	2.53	2.880 (4)	102
С6—Н6А…О2	0.96	2.59	2.933 (4)	101

Symmetry codes: (i) x+1, y, z; (ii) -x, -y, -z+1; (iii) -x, -y+1, -z+1; (iv) -x-1/2, y+1/2, -z+3/2.