

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[bis[(2-carboxybenzoato- κO)silver(I)](Ag—Ag)]bis(μ -isonicotinic acid- $\kappa^2 N$:O)]

Xiao-Feng Li,* Yan An and Yan-Sheng Yin

Institute of Marine Materials and Engineering, Shanghai Maritime University, Shanghai 200135, People's Republic of China Correspondence e-mail: lxf_shmtu@yahoo.com.cn

Received 20 February 2008; accepted 7 April 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.043; wR factor = 0.120; data-to-parameter ratio = 15.3.

The title compound, $[Ag(C_8H_5O_4)(C_6H_5NO_2)]_n$, contains one Ag^I atom, one phthalate ligand and one isonicotinic acid molecule in the asymmetric unit. Each Ag atom is three-coordinated in a T-shaped geometry by two O atoms and one N atom from one phthalate ligand and two isonicotinic acid ligands. The isonicotinic acid ligand bridges two Ag atoms, forming a one-dimensional chain. Adjacent chains are linked by Ag-Ag interactions, leading to a double-chain. These double-chains are further linked *via* hydrogen bonds into a two-dimensional layer.

Related literature

For related literature, see: He et al. (2007); Xie et al. (2005).

Experimental

Crvstal data

Ag(C ₈ H ₅ O ₄)(C ₆ H ₅ NO ₂)] $M_r = 396.10$ Monoclinic, C2/c r = 13.540 (3) Å $\rho = 8.160$ (2) Å r = 24.223 (5) Å B = 99.546 (15)°	$V = 2639 (1) Å^{3}$ Z = 8 Mo K\alpha radiation \mmu = 1.56 mm ⁻¹ T = 293 (2) K 0.37 \times 0.32 \times 0.27 mm
Data collection	
Siemens P4 four-circle diffractometer Absorption correction: ψ scan (North <i>et al.</i> , 1968) $T_{min} = 0.597, T_{max} = 0.680$ 909 measured reflections	3037 independent reflections 1879 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ 3 standard reflections every 97 reflections intensity decay: 1.0%
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.042$ $\nu R(F^2) = 0.119$ S = 1.00 0037 reflections	199 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.99 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.71 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

'9 (4) Ag1-0	2621(3)
	52 2.021 (5)
35 (3) Ag1	Ag1 ⁱⁱ 3.2123 (11
.57 (14) O3-A	g1-O2 ⁱ 101.74 (11
.52 (12)	
	$\begin{array}{c} Ag1 - Ag1 -$

Symmetry codes: (i) x, y - 1, z; (ii) $-x + 1, y, -z + \frac{3}{2}$.

Table 2

Hydrogen-bond geometry (Å, $^\circ).$

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O1 - H1A \cdots O6^{iii} \\ O5 - H5A \cdots O4 \end{array}$	0.82 0.82	1.80 1.57	2.616 (5) 2.390 (5)	175 180
	. 1			

Symmetry code: (iii) $x, -y + 1, z - \frac{1}{2}$.

Data collection: *XSCANS* (Siemens, 1994); cell refinement: *XSCANS*; data reduction: *XSCANS*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2008).

The authors thank Shanghai Maritime University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2121).

References

- Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
- He, Y.-K., Han, Z.-B., Ma, Y. & Zhang, X.-D. (2007). *Inorg. Chem. Commun.* **10**, 829–832.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Westrip, S. P. (2008). publCIF. In preparation.
- Xie, F.-T., Bie, H.-Y., Duan, L.-M., Li, G.-H., Zhang, X. & Xu, J.-Q. (2005). J. Solid State Chem. 178, 2858–2866.

supporting information

Acta Cryst. (2008). E64, m779 [doi:10.1107/S1600536808009586]

catena-Poly[[bis[(2-carboxybenzoato- κO)silver(I)](*Ag*—*Ag*)]bis(μ -isonicotinic acid- $\kappa^2 N$:*O*)]

Xiao-Feng Li, Yan An and Yan-Sheng Yin

S1. Comment

Silver ion reacts with isonicotinic acid and imidazole under hydrothermal conditions to form $[Ag_8(in)_6(NO_3)_2]$ and $[Ag(in)(Hin)]_{0.5}[Ag(in)]$ (Hin = isonicotinic acid) (Xie *et al.*, 2005). With phthalic acid in place of imidazole, the reaction yields the title compound.

In the title compound, the Ag^I atom is three-coordinated by two O atoms and one N atom from one phthalate ligand and two isonicotinic acid ligands in a T-like geometry, with an O—Ag—N bond angle being 164.57 (14)° (Fig. 1; Table 1), giving a chain structure. Furthermore, the adjacent chains are linked by Ag…Ag interactions (He *et al.*, 2007) to form a one-dimensional double-chain (Fig. 2). These double-chains are further linked *via* O—H…O hydrogen bonds (Table 2) into a two-dimensional layer. The hydrogen bonding interactions enhance the stability of the complex.

S2. Experimental

A mixture of Ag(NO₃) (0.085 g, 0.5 mmol), isonicotinic acid (0.123 g, 1 mmol), phthalic acid (0.166 g, 1 mmol) and water (10 ml) was sealed in a 23 ml Teflon-lined reactor, which was heated at 473 K for 4 d and then cooled to room temperature at a rate of 5 K h⁻¹ (yield 72%). Analysis calculated for $C_{14}H_{10}AgNO_6$: C 42.45, H 2.54, N 3.54%; found: C 42.39, H 2.61, N 3.48%.

S3. Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 and O—H = 0.82Å and $U_{iso}(H) = 1.2U_{eq}(C,O)$.

Figure 1

The coordination geometry of the Ag atom in the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) x, -1 + y, z.]

Figure 2

The one-dimensional double-chain connected by Ag…Ag interactions.

catena-Poly[[bis[(2-carboxybenzoato- κ O)silver(I)](Ag—Ag)]bis(μ -isonicotinic acid- $\kappa^2 N$:O)]

Crystal data	
$[Ag(C_8H_5O_4)(C_6H_5NO_2)]$	c = 24.223 (5) Å
$M_r = 396.10$	$\beta = 99.546 (15)^{\circ}$
Monoclinic, $C2/c$	$V = 2639 (1) \text{ Å}^3$
Hall symbol: -C 2yc	Z = 8
a = 13.540(3) Å	F(000) = 1568
b = 8.160 (2) Å	$D_{\rm x} = 1.994 {\rm ~Mg} {\rm ~m}^{-3}$

Mo *Ka* radiation, $\lambda = 0.71073$ Å Cell parameters from 28 reflections $\theta = 5.2-12.4^{\circ}$ $\mu = 1.56$ mm⁻¹

Data collection

Siemens P4 four-circle diffractometer Radiation source: medium-focus sealed tube Graphite monochromator ω -2 θ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.597, T_{\max} = 0.680$ 3909 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.119$ S = 1.003037 reflections 199 parameters 0 restraints Primary atom site location: structure-invariant direct methods T = 293 K Block, purple $0.37 \times 0.32 \times 0.27$ mm

3037 independent reflections 1879 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 1.7^{\circ}$ $h = -17 \rightarrow 1$ $k = -1 \rightarrow 10$ $l = -31 \rightarrow 31$ 3 standard reflections every 97 reflections intensity decay: 1.0%

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0526P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.99$ e Å⁻³ $\Delta\rho_{min} = -0.72$ e Å⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Agl	0.40822 (3)	0.04719 (5)	0.698630 (15)	0.05417 (17)	
C1	0.4164 (4)	0.7535 (6)	0.58243 (19)	0.0405 (11)	
C2	0.4211 (3)	0.5872 (5)	0.60835 (17)	0.0347 (10)	
C3	0.4339 (4)	0.4453 (6)	0.57882 (17)	0.0397 (10)	
H3A	0.4417	0.4514	0.5415	0.048*	
C4	0.4348 (4)	0.2962 (6)	0.60478 (18)	0.0413 (11)	
H4A	0.4430	0.2020	0.5844	0.050*	
C5	0.4137 (4)	0.4183 (6)	0.68640 (19)	0.0442 (12)	
H5B	0.4070	0.4087	0.7239	0.053*	
C6	0.4119 (4)	0.5724 (6)	0.66396 (19)	0.0455 (12)	
H6A	0.4046	0.6644	0.6856	0.055*	
C7	0.3575 (4)	-0.0952 (6)	0.80056 (17)	0.0383 (11)	
C8	0.3373 (3)	-0.2215 (5)	0.84252 (16)	0.0307 (9)	
C9	0.3225 (3)	-0.3796 (6)	0.82196 (17)	0.0368 (10)	
H9A	0.3240	-0.3975	0.7842	0.044*	
C10	0.3056 (4)	-0.5119 (6)	0.8547 (2)	0.0437 (11)	
H10A	0.2958	-0.6164	0.8394	0.052*	
C11	0.3036 (4)	-0.4842 (6)	0.9109 (2)	0.0453 (12)	
H11A	0.2927	-0.5711	0.9340	0.054*	
C12	0.3177 (4)	-0.3304 (6)	0.93258 (18)	0.0403 (11)	
H12A	0.3159	-0.3145	0.9704	0.048*	

C13	0.3346 (3)	-0.1963 (5)	0.89994 (17)	0.0321 (9)
C14	0.3497 (4)	-0.0355 (6)	0.93203 (18)	0.0411 (11)
N1	0.4245 (3)	0.2820 (5)	0.65827 (15)	0.0414 (9)
01	0.3992 (3)	0.7496 (5)	0.52779 (12)	0.0626 (11)
H1A	0.3896	0.8431	0.5156	0.094*
O2	0.4267 (3)	0.8778 (4)	0.60899 (13)	0.0513 (9)
03	0.3817 (3)	-0.1459 (4)	0.75691 (13)	0.0579 (10)
O4	0.3483 (3)	0.0565 (4)	0.80925 (14)	0.0619 (11)
05	0.3438 (3)	0.1015 (4)	0.90631 (14)	0.0579 (10)
H5A	0.3454	0.0858	0.8730	0.087*
06	0.3672 (3)	-0.0408 (4)	0.98320 (13)	0.0641 (11)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag1	0.0797 (3)	0.0432 (2)	0.0430 (2)	0.0001 (2)	0.02032 (19)	0.01176 (18)
C1	0.046 (3)	0.038 (3)	0.037 (2)	0.002 (2)	0.007 (2)	0.002 (2)
C2	0.037 (2)	0.037 (2)	0.030(2)	-0.001 (2)	0.0055 (18)	0.0028 (18)
C3	0.055 (3)	0.036 (2)	0.028 (2)	-0.003 (2)	0.008 (2)	0.0023 (19)
C4	0.055 (3)	0.037 (2)	0.034 (2)	0.000(2)	0.012 (2)	-0.0002 (19)
C5	0.061 (3)	0.039 (3)	0.034 (2)	-0.002 (2)	0.012 (2)	0.0022 (19)
C6	0.065 (3)	0.042 (3)	0.031 (2)	0.005 (3)	0.014 (2)	-0.002 (2)
C7	0.046 (3)	0.042 (3)	0.027 (2)	-0.001 (2)	0.0060 (19)	0.0026 (19)
C8	0.038 (2)	0.028 (2)	0.0250 (18)	-0.0007 (19)	0.0035 (17)	0.0007 (17)
С9	0.050 (3)	0.034 (2)	0.0278 (19)	-0.001 (2)	0.0098 (19)	-0.0021 (18)
C10	0.045 (3)	0.027 (2)	0.057 (3)	-0.003 (2)	0.004 (2)	-0.001 (2)
C11	0.058 (3)	0.037 (3)	0.042 (2)	-0.005 (2)	0.009 (2)	0.010(2)
C12	0.051 (3)	0.040 (3)	0.030(2)	-0.003 (2)	0.007 (2)	0.0033 (19)
C13	0.038 (2)	0.028 (2)	0.031 (2)	0.002 (2)	0.0056 (18)	0.0000 (17)
C14	0.053 (3)	0.036 (3)	0.035 (2)	-0.004 (2)	0.012 (2)	-0.006 (2)
N1	0.053 (2)	0.038 (2)	0.0349 (18)	-0.0020 (19)	0.0101 (18)	0.0034 (17)
O1	0.112 (3)	0.042 (2)	0.0295 (16)	-0.002 (2)	-0.0001 (19)	0.0104 (15)
02	0.075 (3)	0.0364 (18)	0.0425 (18)	0.0043 (19)	0.0082 (17)	0.0005 (16)
O3	0.101 (3)	0.0417 (19)	0.0379 (17)	0.004 (2)	0.0313 (19)	0.0044 (16)
O4	0.116 (3)	0.0339 (18)	0.0379 (17)	-0.003 (2)	0.019 (2)	0.0053 (15)
05	0.107 (3)	0.0303 (17)	0.0380 (17)	-0.006(2)	0.017 (2)	-0.0037 (15)
O6	0.117 (3)	0.047 (2)	0.0278 (15)	-0.004(2)	0.0086 (19)	-0.0078 (16)

Geometric parameters (Å, °)

Ag1—N1	2.179 (4)	С7—О4	1.265 (6)
Ag1—O3	2.185 (3)	C7—C8	1.504 (6)
Ag1—O2 ⁱ	2.621 (3)	C8—C9	1.385 (6)
Ag1—Ag1 ⁱⁱ	3.2123 (11)	C8—C13	1.412 (5)
C1—O2	1.197 (6)	C9—C10	1.380 (6)
C101	1.306 (5)	С9—Н9А	0.9300
C1—C2	1.492 (6)	C10—C11	1.387 (7)
C2—C6	1.379 (6)	C10—H10A	0.9300

C2—C3	1.386 (6)	C11—C12	1.361 (7)
C3—C4	1.368 (6)	C11—H11A	0.9300
С3—НЗА	0.9300	C12—C13	1.391 (6)
C4—N1	1.331 (5)	C12—H12A	0.9300
C4—H4A	0.9300	C13—C14	1.521 (6)
C5—N1	1.325 (6)	C14—O6	1.223 (5)
C5—C6	1.368 (7)	C14—O5	1.276 (6)
С5—Н5В	0.9300	O1—H1A	0.8200
С6—Н6А	0.9300	05—H5A	0.8200
C7—O3	1.229 (5)		
N1—Ag1—O3	164.57 (14)	C9—C8—C7	115.3 (3)
N1—Ag1—O2 ⁱ	93.52 (12)	C13—C8—C7	127.1 (4)
O3—Ag1—O2 ⁱ	101.74 (11)	C10—C9—C8	123.4 (4)
N1—Ag1—Ag1 ⁱⁱ	102.98 (11)	С10—С9—Н9А	118.3
O3—Ag1—Ag1 ⁱⁱ	71.85 (11)	С8—С9—Н9А	118.3
02-01-01	123.4 (4)	C9—C10—C11	117.9 (4)
O2—C1—C2	123.5 (4)	C9—C10—H10A	121.0
01—C1—C2	113.1 (4)	C11—C10—H10A	121.0
C6—C2—C3	118.0 (4)	C12—C11—C10	120.3 (4)
C6—C2—C1	119.1 (4)	C12—C11—H11A	119.8
C3—C2—C1	122.9 (4)	C10—C11—H11A	119.8
C4—C3—C2	119.8 (4)	C11—C12—C13	122.2 (4)
С4—С3—НЗА	120.1	C11—C12—H12A	118.9
С2—С3—НЗА	120.1	C13—C12—H12A	118.9
N1—C4—C3	122.0 (4)	C12—C13—C8	118.6 (4)
N1—C4—H4A	119.0	C12—C13—C14	114.1 (4)
C3—C4—H4A	119.0	C8-C13-C14	127.3 (4)
N1-C5-C6	124.3 (4)	06—C14—O5	120.8 (4)
N1—C5—H5B	117.9	06—C14—C13	118.3 (4)
C6—C5—H5B	117.9	05-C14-C13	120.9 (4)
C5-C6-C2	118.0 (5)	C5—N1—C4	117.8 (4)
C5—C6—H6A	121.0	C5—N1—Ag1	118.6 (3)
C2—C6—H6A	121.0	C4-N1-Ag1	123.3 (3)
03-07-04	121.4 (4)	C1-O1-H1A	109 5
03-07-08	117.0 (4)	C7-O3-Ag1	114.1 (3)
04	121.6 (4)	C14-O5-H5A	109 5
C9-C8-C13	117 6 (4)		107.0
	11/10(1)		
O2—C1—C2—C6	16.8 (8)	C9—C8—C13—C12	0.2 (7)
O1—C1—C2—C6	-162.7 (4)	C7—C8—C13—C12	-178.0 (4)
O2—C1—C2—C3	-163.7 (5)	C9—C8—C13—C14	179.3 (4)
O1—C1—C2—C3	16.8 (7)	C7—C8—C13—C14	1.1 (8)
C6—C2—C3—C4	1.3 (7)	C12—C13—C14—O6	15.3 (7)
C1—C2—C3—C4	-178.2 (5)	C8—C13—C14—O6	-163.8 (5)
C2—C3—C4—N1	-0.5 (8)	C12—C13—C14—O5	-164.4 (5)
N1C5C6C2	0.4 (8)	C8—C13—C14—O5	16.5 (8)
C3—C2—C6—C5	-1.3 (7)	C6—C5—N1—C4	0.4 (8)

C1—C2—C6—C5	178.3 (5)	C6—C5—N1—Ag1	-173.0 (4)
O3—C7—C8—C9	-16.1 (6)	C3—C4—N1—C5	-0.4 (7)
O4—C7—C8—C9	162.6 (5)	C3—C4—N1—Ag1	172.6 (4)
O3—C7—C8—C13	162.1 (5)	O3—Ag1—N1—C5	4.1 (8)
O4—C7—C8—C13	-19.2 (8)	Ag1 ⁱⁱ —Ag1—N1—C5	-64.4 (4)
C13—C8—C9—C10	-0.1 (7)	O3—Ag1—N1—C4	-168.9 (5)
C7—C8—C9—C10	178.3 (4)	Ag1 ⁱⁱ —Ag1—N1—C4	122.6 (4)
C8—C9—C10—C11	-0.1 (8)	O4—C7—O3—Ag1	0.9 (6)
C9—C10—C11—C12	0.3 (8)	C8—C7—O3—Ag1	179.6 (3)
C10-C11-C12-C13	-0.2 (8)	N1—Ag1—O3—C7	0.2 (8)
C11—C12—C13—C8	-0.1 (7)	Ag1 ⁱⁱ —Ag1—O3—C7	72.7 (4)
C11—C12—C13—C14	-179.3 (5)		

Symmetry codes: (i) *x*, *y*–1, *z*; (ii) –*x*+1, *y*, –*z*+3/2.

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D··· A	D—H…A
01—H1 <i>A</i> ···O6 ⁱⁱⁱ	0.82	1.80	2.616 (5)	175
O5—H5 <i>A</i> ···O4	0.82	1.57	2.390 (5)	180

Symmetry code: (iii) x, -y+1, z-1/2.