Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-[(*E*)-3,7-Dimethylocta-2,6-dienyl]-5-methyl-*N*-nitro-1,3,5-oxadiazinan-4imine

Tie-Niu Kang, Li Zhang, Yun Ling and Xin-Ling Yang*

Department of Applied Chemistry, China Agricultural University, Beijing 100094, People's Republic of China Correspondence e-mail: yangxl@cau.edu.cn

Received 17 March 2008; accepted 16 May 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; *R* factor = 0.048; *wR* factor = 0.153; data-to-parameter ratio = 14.6.

The title compound, $C_{14}H_{24}N_4O_3$, was synthesized by the reaction of geranyl and 3-methyl-4-nitroimino-1,3,5-oxadiazinane. In the crystal structure, molecules are assembled by weak intermolecular $C-H\cdots O$ hydrogen bonds. The nitryl and the long carbon chain are located on the same side of the C=N bond due to the two weak intramolecular $C-H\cdots N$ hydrogen bonds; the configuration of the oxadiazinane is Z.

Related literature

For background literature, see: Bowers *et al.* (1972). For related literature, see: Yang *et al.* (2004); Van Oosten *et al.* (1990).

Experimental

Crystal data

 $\begin{array}{l} C_{14}H_{24}N_4O_3\\ M_r = 296.37\\ \text{Monoclinic, } P2_1/c\\ a = 7.9318 \ (16) \ \text{\AA}\\ b = 6.6423 \ (13) \ \text{\AA}\\ c = 31.191 \ (7) \ \text{\AA}\\ \beta = 99.55 \ (3)^\circ \end{array}$

Data collection

Rigaku R-AXIS RAPID IP diffractometer

```
V = 1620.5 (6) Å^{3}
Z = 4
Mo K\alpha radiation
\mu = 0.09 mm^{-1}
T = 293 (2) K
0.60 \times 0.30 \times 0.08 mm
```

Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{min} = 0.943, T_{max} = 0.993$ 7692 measured reflections 2825 independent reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ 194 parameters $wR(F^2) = 0.152$ H-atom parameters constrainedS = 0.84 $\Delta \rho_{max} = 0.28 \text{ e } \text{Å}^{-3}$ 2825 reflections $\Delta \rho_{min} = -0.30 \text{ e } \text{Å}^{-3}$

1306 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.0508$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C2-H2B\cdots O1^{i}$	0.97	2.48	3.257 (4)	136
$C3-H3A\cdots N2^{ii}$	0.97	2.43	3.336 (4)	155
$C3-H3B\cdots O1^{iii}$	0.97	2.38	3.264 (4)	151
$C5-H5B\cdots N1$	0.97	2.53	3.117 (4)	119
$C5-H5B\cdots N2$	0.97	2.55	2.960 (4)	105
$C13-H13C\cdots O2^{iv}$	0.96	2.59	3.425 (5)	145
	1 (")	1 1	. 3 ()	1 . 3 ()

Symmetry codes: (i) x, y - 1, z; (ii) $-x - 1, y - \frac{1}{2}, -z + \frac{3}{2}$; (iii) $-x, y - \frac{1}{2}, -z + \frac{3}{2}$; (iv) x + 1, y, z.

Data collection: *RAPID-AUTO* (Rigaku, 2000); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2000); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This work was supported by the National Basic Research Program of China (grant No. 2003CB 114400), the National High Technology Research and Development Program of China (grant No. 2006 A A10A209) and the '11th Five-Year Plan' Scientific and Technological Support Project on Pesticide Development Engineering (grant No. 2006BAE01A01). The authors acknowledge Shi-Wei Zhang for carrying out the X-ray diffraction at the College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2083).

References

- Bowers, W. S., Nault, L. R., Webb, R. E. & Dutky, S. R. (1972). Science, 177, 1121–1122.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2000). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2000). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Van Oosten, A. M., Gut, J., Harrewijn, P. & Piron, P. G. M. (1990). Acta Phytopathol. Entomol. Hung. 25, 331–342.
- Yang, X. L., Huang, W. Y., Ling, Y., Kan, W., Fang, Y. L. & Zhang, Z. N. (2004). *Chem. J. Chin. Univ.* 25, 1657–1661.

supporting information

Acta Cryst. (2008). E64, o1154 [doi:10.1107/S160053680801492X]

3-[(E)-3,7-Dimethylocta-2,6-dienyl]-5-methyl-N-nitro-1,3,5-oxadiazinan-4-imine

Tie-Niu Kang, Li Zhang, Yun Ling and Xin-Ling Yang

S1. Comment

E-b-farnesene (*EBF*), the primary component of aphides alarm pheromone, not only stimulate the movement of aphid (Bowers *et al.*, 1972), but also possess the acute activity to many economically aphid species at a dose of 100 ng/aphid (Van Oosten *et al.*, 1990). However, *EBF* is limited in field application due to its high volatility, readily air oxidation and degradation under field conditions. In order to improve its chemical stability and biological efficacy, the pharmacophore of neonicotinoids was introduced to substitute the conjugated double bond of *EBF* (Yang *et al.*, 2004). The title compound (**I**), in which 3-methyl-5-(*E*)-3,7-dimethylocta-2,6-dienyl connect to *N*-nitro-1,3,5-oxadiazinan-4-imine instead of the conjugated double bond, was synthesized as *EBF* analogue with potent insecticidal activity. To study the further structure-activity relationship, we reported here its molecular and crystal structure. The molecular structure showed *Z*-isomer by the interaction forces of weak intramolecular C5–H5b…N1 and C5–H5b…N2 hydrogen bonds (Fig. 1). The compound was assembled by four weak intermolecular hydrogen bonds (Fig. 2 and Table 1).

S2. Experimental

To a solution of 3-methyl-*N*-nitro-1,3,5-oxadiazinan-4-imine (1.60 g, 10.0 mmol) dissolved in anhydrous acetonitrile (15 ml), geranyl (1.89 g, 10.1 mmol) was added. Then the reaction solution was slowly heated to reflux for 7h. After removing the solvent, the residue was purified by column chromatography on silica gel (200-300 mesh) with petroleum ether/ethylacetate (2.5:1v/v) as eluent to obtain the title compound **I**. Then, 50 mg **I** was dissolved in 20 ml me thanol. The solution was kept at room temperature for 20 d by natural evaporation to give colorless single crystals of **I**, suitable for X-Ray analysis.

¹H NMR (CDCl₃, 300 MHz) 1.60 (s, 3H, CH₃–C=C), 1.68 [s, 6H, (CH₃)₂C=C], 2.07~2.10 (t, J = 5.27 Hz, 4H, -CH₂– CH₂-), 3.05 (s, 3H, N–CH₃), 4.11 (d, J = 7.26, 2H, -CH₂–N), 4.09 (s, 2H, N–CH₂–O), 4.12 (s, 2H, O–CH₂–N), 5.03~5.18 (m, 2H, 2CH=C); Calc. for C₁₄H₂₄N₄O₃: C 56.74, H 8.16, N 18.90; found C 56.69, H 8.19, N 18.80.

S3. Refinement

The H atoms were fixed geometrically and allowed to ride on their parent atoms, with C-H = 0.93-0.97 Å, and with $U_{iso}(H) = 1.2U_{eq}$ for ($C_{aromatic}$ and $C_{methylene}$) or $U_{iso}(H) = 1.5U_{eq}(C_{methyl})$. The intensities of equivalent reflections were merged ($R_{int} = 0.000$).

Figure 1

The molecular structure of **I** with the atom numbering scheme. The displacement ellipsoids are drawn at 50% probability level. H atoms are presented as a small spheres of arbitrary radius. Intramolecular hydrogen bonds are shown as dashed lines.

Figure 2

The crystal packing of I. Hydrogen bonds are shown as dashed lines. Symmetry codes: (i) x, y-1, z; (ii) -x-1, y-1/2, -z+3/2; (iii) -x, y-1/2, -z+3/2; (iv) x+1, y, z.

3-[(E)-3,7-Dimethylocta-2,6-dienyl]-5-methyl-N-nitro- 1,3,5-oxadiazinan-4-imine

Crystal data $C_{14}H_{24}N_4O_3$ $M_r = 296.37$

Monoclinic, *P*2₁/*c* Hall symbol: -P 2ybc H

Mo *K* α radiation, $\lambda = 0.71073$ Å

 $\theta = 2.6 - 25.0^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$

Block, colourless

 $0.60 \times 0.30 \times 0.08 \text{ mm}$

T = 293 K

Cell parameters from 7693 reflections

a = 7.9318 (16) Å b = 6.6423 (13) Å c = 31.191 (7) Å $\beta = 99.55 (3)^{\circ}$ $V = 1620.5 (6) \text{ Å}^{3}$ Z = 4 F(000) = 640 $D_{x} = 1.215 \text{ Mg m}^{-3}$

Data collection

Data conection		
Rigaku R-AXIS RAPID IP	2825 measured reflections	
diffractometer	2825 independent reflections	
Radiation source: Fine-focus sealed tube	1306 reflections with $I > 2\sigma(I)$	
Graphite monochromator	$R_{\rm int} = 0.051$	
Detector resolution: 10.00 pixels mm ⁻¹	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 1.3^\circ$	
ω scans	$h = 0 \rightarrow 9$	
Absorption correction: multi-scan	$k = -7 \rightarrow 0$	
(ABSCOR; Higashi, 1995)	$l = -37 \rightarrow 35$	
$T_{\min} = 0.943, \ T_{\max} = 0.993$		

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0843P)^2]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.014$
$\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	-0.0768 (3)	0.9179 (3)	0.82543 (8)	0.0604 (7)	
O2	-0.2995 (3)	1.0170 (4)	0.85187 (8)	0.0670 (7)	
03	-0.1951 (2)	0.2689 (3)	0.74730 (7)	0.0512 (6)	
N1	-0.2308 (3)	0.9002 (4)	0.82899 (8)	0.0459 (7)	
N2	-0.3292 (3)	0.7617 (4)	0.80698 (8)	0.0453 (7)	
N3	-0.1290 (3)	0.4939 (4)	0.80512 (8)	0.0414 (6)	
N4	-0.3001 (3)	0.6021 (4)	0.74324 (8)	0.0392 (6)	
C1	-0.2455 (3)	0.6227 (4)	0.78538 (9)	0.0362 (7)	

C2	-0.0594 (4)	0.3511 (5)	0.77744 (10)	0.0472 (8)
H2a	0.0212	0.4183	0.7621	0.057*
H2b	0.0004	0.2445	0.7950	0.057*
C3	-0.2672 (4)	0.4183 (5)	0.71928 (10)	0.0501 (9)
H3a	-0.3739	0.3699	0.7027	0.060*
H3b	-0.1907	0.4502	0.6990	0.060*
C4	-0.4042 (4)	0.7564 (5)	0.71773 (10)	0.0560 (9)
H4a	-0.3882	0.7482	0.6879	0.084*
H4b	-0.3700	0.8871	0.7291	0.084*
H4c	-0.5225	0.7348	0.7195	0.084*
C5	-0.0734 (3)	0.4762 (5)	0.85230 (9)	0.0439 (8)
H5a	-0.1016	0.3433	0.8619	0.053*
H5b	-0.1332	0.5747	0.8672	0.053*
C6	0.1153 (4)	0.5098 (5)	0.86376 (10)	0.0474 (8)
H6	0.1567	0.6275	0.8532	0.057*
C7	0.2293 (4)	0.3932 (5)	0.88694 (10)	0.0499 (8)
C8	0.4169 (4)	0.4518 (6)	0.89472 (10)	0.0608 (10)
H8a	0.4835	0.3403	0.8864	0.073*
H8b	0.4328	0.5654	0.8763	0.073*
C9	0.4840 (4)	0.5072 (7)	0.94162 (11)	0.0740 (11)
H9a	0.4240	0.6254	0.9494	0.089*
H9b	0.4615	0.3976	0.9604	0.089*
C10	0.6736 (4)	0.5496 (6)	0.94863 (11)	0.0624 (10)
H10	0.7444	0.4383	0.9483	0.075*
C11	0.7505 (4)	0.7241 (6)	0.95516 (10)	0.0597 (9)
C12	0.9427 (5)	0.7390 (6)	0.96099 (13)	0.0838 (13)
H12a	0.9742	0.8405	0.9419	0.126*
H12b	0.9892	0.6117	0.9542	0.126*
H12c	0.9870	0.7744	0.9906	0.126*
C13	0.6634 (6)	0.9221 (6)	0.95783 (15)	0.0974 (14)
H13a	0.7091	0.9870	0.9848	0.146*
H13b	0.5430	0.9007	0.9565	0.146*
H13c	0.6824	1.0058	0.9340	0.146*
C14	0.1868 (5)	0.2002 (6)	0.90720 (13)	0.0861 (14)
H14a	0.2656	0.0975	0.9016	0.129*
H14b	0.0725	0.1605	0.8950	0.129*
H14c	0.1950	0.2183	0.9380	0.129*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0374 (12)	0.0485 (14)	0.0951 (18)	-0.0067 (11)	0.0103 (12)	-0.0033 (13)
O2	0.0714 (16)	0.0645 (16)	0.0645 (15)	0.0175 (13)	0.0094 (12)	-0.0191 (13)
03	0.0433 (12)	0.0422 (12)	0.0677 (14)	-0.0059 (11)	0.0082 (11)	-0.0098 (12)
N1	0.0461 (17)	0.0434 (16)	0.0465 (16)	0.0077 (14)	0.0025 (13)	0.0017 (14)
N2	0.0296 (13)	0.0510 (16)	0.0534 (16)	0.0058 (13)	0.0011 (12)	-0.0096 (14)
N3	0.0336 (13)	0.0400 (14)	0.0478 (15)	0.0059 (12)	-0.0012 (11)	-0.0038 (13)
N4	0.0296 (12)	0.0432 (15)	0.0435 (15)	-0.0001 (11)	0.0027 (11)	-0.0017 (13)

C1	0.0183 (14)	0.0412 (18)	0.0479 (19)	-0.0034 (13)	0.0021 (13)	0.0002 (15)
C2	0.0379 (18)	0.0395 (18)	0.062 (2)	0.0052 (15)	0.0016 (15)	-0.0042 (17)
C3	0.0330 (17)	0.061 (2)	0.056 (2)	-0.0053 (16)	0.0070 (15)	-0.0113 (19)
C4	0.0399 (17)	0.074 (2)	0.0498 (19)	0.0089 (18)	-0.0048 (15)	0.0077 (18)
C5	0.0368 (16)	0.0465 (19)	0.0465 (18)	-0.0003 (15)	0.0014 (14)	0.0047 (16)
C6	0.0393 (17)	0.0513 (19)	0.0485 (18)	-0.0036 (16)	-0.0022 (14)	0.0069 (17)
C7	0.0458 (18)	0.056 (2)	0.0440 (18)	0.0006 (17)	-0.0053 (14)	-0.0021 (17)
C8	0.0424 (18)	0.082 (3)	0.053 (2)	0.0028 (18)	-0.0071 (16)	0.0019 (19)
C9	0.053 (2)	0.108 (3)	0.056 (2)	-0.015 (2)	-0.0043 (17)	-0.010 (2)
C10	0.046 (2)	0.072 (3)	0.065 (2)	-0.0023 (19)	-0.0049 (17)	-0.008(2)
C11	0.057 (2)	0.066 (3)	0.053 (2)	0.000(2)	-0.0002 (17)	-0.0038 (19)
C12	0.059 (2)	0.097 (3)	0.091 (3)	-0.022 (2)	0.002 (2)	-0.011 (3)
C13	0.100 (3)	0.084 (3)	0.105 (4)	0.010 (3)	0.008 (3)	-0.007 (3)
C14	0.078 (3)	0.067 (3)	0.097 (3)	-0.005 (2)	-0.032 (2)	0.027 (2)

Geometric parameters (Å, °)

01N1 1.251 (3) C6H6 0.9300 02N1 1.240 (3) C7C14 1.493 (5) 03C3 1.382 (3) C7C8 1.518 (4) 03C2 1.416 (3) C8C9 1.517 (4) N1N2 1.323 (3) C8H8a 0.9700 N2C1 1.376 (3) C8H8b 0.9700 N3C2 1.452 (4) C9H9a 0.9700 N3C2 1.452 (4) C9H9a 0.9700 N3C5 1.469 (4) C9H9b 0.9700 N4C1 1.321 (3) C10C11 1.310 (5) N4C4 1.465 (4) C10H10 0.9300 N4C3 1.477 (4) C11C12 1.508 (5) C2H2a 0.9700 C12H12a 0.9600 C3H3a 0.9700 C12H12a 0.9600 C3H3b 0.9700 C12H12a 0.9600 C3H3b 0.9700 C12H12a 0.9600 C4H4a 0.9600 C13H13a 0.9600 <					
02-N1 1.240 (3) $C7-C14$ 1.493 (5) $03-C3$ 1.382 (3) $C7-C8$ 1.518 (4) $03-C2$ 1.416 (3) $C8-C9$ 1.517 (4) $N1-N2$ 1.323 (3) $C8-H8a$ 0.9700 $N2-C1$ 1.376 (3) $C8-H8b$ 0.9700 $N3-C1$ 1.333 (3) $C9-C10$ 1.510 (4) $N3-C2$ 1.452 (4) $C9-H9a$ 0.9700 $N4-C1$ 1.321 (3) $C10-C11$ 1.310 (5) $N4-C4$ 1.465 (4) $C10-H10$ 0.9300 $N4-C4$ 1.465 (4) $C10-H10$ 0.9300 $N4-C4$ 1.465 (4) $C10-H10$ 0.9300 $N4-C3$ 1.477 (4) $C11-C12$ 1.508 (5) $C2-H2a$ 0.9700 $C12-H12a$ 0.9600 $C3-H3a$ 0.9700 $C12-H12c$ 0.9600 $C3-H3a$ 0.9700 $C12-H12c$ 0.9600 $C4-H4a$ 0.9600 $C13-H13a$ 0.9600 $C4-H4b$ 0.9600 $C13-H13c$ 0.9600 $C5-C6$ 1.496 (4) $C14-H14a$ <t< td=""><td>01—N1</td><td>1.251 (3)</td><td>С6—Н6</td><td>0.9300</td><td></td></t<>	01—N1	1.251 (3)	С6—Н6	0.9300	
03-C3 $1.382 (3)$ $C7-C8$ $1.518 (4)$ $03-C2$ $1.416 (3)$ $C8-C9$ $1.517 (4)$ $N1-N2$ $1.323 (3)$ $C8-H8a$ 0.9700 $N2-C1$ $1.376 (3)$ $C8-H8b$ 0.9700 $N3-C1$ $1.333 (3)$ $C9-C10$ $1.510 (4)$ $N3-C2$ $1.452 (4)$ $C9-H9a$ 0.9700 $N3-C5$ $1.469 (4)$ $C9-H9b$ 0.9700 $N4-C1$ $1.321 (3)$ $C10-C11$ $1.310 (5)$ $N4-C4$ $1.465 (4)$ $C10-H10$ 0.9300 $N4-C3$ $1.477 (4)$ $C11-C13$ $1.494 (5)$ $C2-H2a$ 0.9700 $C12-H12a$ 0.9600 $C3-H3a$ 0.9700 $C12-H12a$ 0.9600 $C3-H3b$ 0.9700 $C12-H12a$ 0.9600 $C3-H3b$ 0.9600 $C13-H13a$ 0.9600 $C4-H4a$ 0.9600 $C13-H13a$ 0.9600 $C4-H4b$ 0.9600 $C13-H13a$ 0.9600 $C5-C6$ $1.496 (4)$ $C14-H14a$ 0.9600 $C5-H5a$ 0.9700 $C14-H14b$ 0.9600 $C5-H5b$ 0.9700 C	O2—N1	1.240 (3)	C7—C14	1.493 (5)	
O3-C2 $1.416 (3)$ $C8-C9$ $1.517 (4)$ $N1-N2$ $1.323 (3)$ $C8-H8a$ 0.9700 $N2-C1$ $1.376 (3)$ $C8-H8b$ 0.9700 $N3-C1$ $1.333 (3)$ $C9-C10$ $1.510 (4)$ $N3-C2$ $1.452 (4)$ $C9-H9a$ 0.9700 $N3-C5$ $1.469 (4)$ $C9-H9b$ 0.9700 $N4-C1$ $1.321 (3)$ $C10-C11$ $1.310 (5)$ $N4-C4$ $1.465 (4)$ $C10-H10$ 0.9300 $N4-C3$ $1.477 (4)$ $C11-C13$ $1.494 (5)$ $C2-H2a$ 0.9700 $C12-H12a$ 0.9600 $C3-H3a$ 0.9700 $C12-H12a$ 0.9600 $C3-H3a$ 0.9700 $C12-H12a$ 0.9600 $C3-H3a$ 0.9700 $C13-H13a$ 0.9600 $C4-H4a$ 0.9600 $C13-H13a$ 0.9600 $C4-H4b$ 0.9600 $C13-H13a$ 0.9600 $C5-C6$ $1.496 (4)$ $C14-H14a$ 0.9600 $C5-H5a$ 0.9700 $C14-H14b$ 0.9600 $C5-H5b$ 0.9700 $C14-H14c$ 0.9600 $C1-N1-N2$ $121.3 (3)$ <td< td=""><td>O3—C3</td><td>1.382 (3)</td><td>C7—C8</td><td>1.518 (4)</td><td></td></td<>	O3—C3	1.382 (3)	C7—C8	1.518 (4)	
N1-N21.323 (3)C8-H8a0.9700N2-C11.376 (3)C8-H8b0.9700N3-C11.333 (3)C9-C101.510 (4)N3-C21.452 (4)C9-H9a0.9700N3-C51.469 (4)C9-H9b0.9700N4-C11.321 (3)C10-C111.310 (5)N4-C41.465 (4)C10-H100.9300N4-C31.477 (4)C11-C131.494 (5)C2-H2a0.9700C12-H12a0.9600C3-H3a0.9700C12-H12b0.9600C3-H3a0.9700C12-H12c0.9600C4-H4a0.9600C13-H13a0.9600C4-H4b0.9600C13-H13a0.9600C5-C61.496 (4)C14-H14a0.9600C5-H5a0.9700C14-H14a0.9600C5-H5b0.9700C14-H14b0.9600C5-H5b0.9700C14-H14b0.9600C5-H5a0.9700C14-H14b0.9600C5-H5a0.9700C14-H14b0.9600C5-H5b0.9700C14-H14b0.9600C5-H5b0.9700C14-H14b0.9600C5-H5b0.9700C14-H14c0.9600C5-H5b0.9700C14-H14b0.9600C5-H5b0.9700C14-H14b0.9600C5-H5b0.9700C14-H14c0.9600C5-H5b0.9700C14-H14b0.9600C1-N1-N2113.13 (3)C14-C7-C8115.9 (3)N1-N2-C1115.5 (2)C9-C8-C7113.2 (3)C1-N3-C5<	O3—C2	1.416 (3)	C8—C9	1.517 (4)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—N2	1.323 (3)	C8—H8a	0.9700	
N3-C11.333 (3)C9-C101.510 (4)N3-C21.452 (4)C9-H9a0.9700N3-C51.469 (4)C9-H9b0.9700N4-C11.321 (3)C10-C111.310 (5)N4-C41.465 (4)C10-H100.9300N4-C31.477 (4)C11-C131.494 (5)C2-H2a0.9700C12-H12a0.9600C3-H3a0.9700C12-H12a0.9600C3-H3b0.9700C12-H12c0.9600C4-H4a0.9600C13-H13a0.9600C4-H4b0.9600C13-H13a0.9600C5-C61.496 (4)C14-H14a0.9600C5-H5a0.9700C14-H14b0.9600C5-H5b0.9700C14-H14b0.9600C5-H5b0.9700C14-H14c0.9600C5-H5b0.9700C14-H14c0.9600C5-H5b0.9700C14-H14b0.9600C5-H5b0.9700C14-H14c0.9600C6-C71.313 (4)VVC3-O3-C2109.4 (2)C5-C6-H6116.1C3-O3-C2109.4 (2)C5-C6-H6116.1C3-O3-C2109.4 (2)C5-C6-H6116.1C3-O3-C2109.4 (2)C5-C6-H6116.1C3-O3-C2109.4 (2)C5-C6-H6116.1C3-O3-C2109.4 (2)C5-C6-H6116.1C3-O3-C2109.4 (2)C5-C6-H6115.9 (3)N1-N2115.5 (2)C9-C8-C7113.2 (3)C1-N3-C2116.6 (2)C9-C8-H8a108.9 <tr< td=""><td>N2—C1</td><td>1.376 (3)</td><td>C8—H8b</td><td>0.9700</td><td></td></tr<>	N2—C1	1.376 (3)	C8—H8b	0.9700	
N3-C21.452 (4)C9-H9a0.9700N3-C51.469 (4)C9-H9b0.9700N4-C11.321 (3)C10-C111.310 (5)N4-C41.465 (4)C10-H100.9300N4-C31.477 (4)C11-C131.494 (5)C2-H2a0.9700C12-H12a0.9600C3-H3a0.9700C12-H12b0.9600C3-H3b0.9700C12-H12c0.9600C3-H3b0.9700C12-H12c0.9600C4-H4a0.9600C13-H13a0.9600C4-H4b0.9600C13-H13b0.9600C5-C61.496 (4)C14-H14a0.9600C5-H5a0.9700C14-H14b0.9600C5-H5b0.9700C14-H14b0.9600C5-H5b0.9700C14-H14b0.9600C5-H5a0.9700C14-H14b0.9600C5-H5b0.9700C14-H14b0.9600C6-C71.313 (4)VVC3-O3-C2109.4 (2)C5-C6-H6116.1O2-N1-N2121.2 (3)C6-C7-C14123.8 (3)O2-N1-N2121.3 (3)C14-C7-C8115.9 (3)N1-N2-C1115.5 (2)C9-C8-C7113.2 (3)C1-N3-C5125.7 (2)C7-C8-H8a108.9	N3—C1	1.333 (3)	C9—C10	1.510 (4)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N3—C2	1.452 (4)	С9—Н9а	0.9700	
N4—C11.321 (3)C10—C111.310 (5)N4—C41.465 (4)C10—H100.9300N4—C31.477 (4)C11—C131.494 (5)C2—H2a0.9700C11—C121.508 (5)C2—H2b0.9700C12—H12a0.9600C3—H3a0.9700C12—H12b0.9600C3—H3b0.9700C12—H12b0.9600C4—H4a0.9600C13—H13a0.9600C4—H4b0.9600C13—H13b0.9600C5—C61.496 (4)C14—H14a0.9600C5—H5a0.9700C14—H14b0.9600C5—H5b0.9700C14—H14b0.9600C5—H5b0.9700C14—H14b0.9600C6—C71.313 (4)VVC3—O3—C2109.4 (2)C5—C6—H6116.1O2=N1—O1121.4 (3)C6—C7—C14123.8 (3)O2=N1—N2117.2 (3)C6—C7—C8120.3 (3)O1—N1—N2121.3 (3)C14—C7—C8115.9 (3)N1—N2—C1115.5 (2)C9—C8—C7113.2 (3)C1—N3—C2116.6 (2)C9—C8—H8a108.9C1—N3—C5125.7 (2)C7—C8—H8a108.9	N3—C5	1.469 (4)	C9—H9b	0.9700	
N4—C41.465 (4)C10—H100.9300N4—C31.477 (4)C11—C131.494 (5)C2—H2a0.9700C11—C121.508 (5)C2—H2b0.9700C12—H12a0.9600C3—H3a0.9700C12—H12b0.9600C3—H3b0.9700C12—H12c0.9600C4—H4a0.9600C13—H13a0.9600C4—H4b0.9600C13—H13b0.9600C4—H4c0.9600C13—H13b0.9600C5—C61.496 (4)C14—H14a0.9600C5—H5a0.9700C14—H14b0.9600C5—H5b0.9700C14—H14b0.9600C6—C71.313 (4)VVC3—O3—C2109.4 (2)C5—C6—H6116.1O2—N1—O1121.4 (3)C6—C7—C14123.8 (3)O2—N1—N2117.2 (3)C6—C7—C8120.3 (3)O1—N1—N2121.3 (3)C14—C7—C8115.9 (3)N1—N2—C1115.5 (2)C9—C8—H8a108.9C1—N3—C5125.7 (2)C7—C8—H8a108.9	N4—C1	1.321 (3)	C10—C11	1.310 (5)	
N4—C31.477 (4)C11—C131.494 (5)C2—H2a0.9700C11—C121.508 (5)C2—H2b0.9700C12—H12a0.9600C3—H3a0.9700C12—H12b0.9600C3—H3b0.9700C12—H12c0.9600C4—H4a0.9600C13—H13a0.9600C4—H4b0.9600C13—H13b0.9600C4—H4c0.9600C13—H13c0.9600C5—C61.496 (4)C14—H14a0.9600C5—H5a0.9700C14—H14b0.9600C5—H5b0.9700C14—H14c0.9600C6—C71.313 (4)VC3—O3—C2109.4 (2)C5—C6—H6116.1O2—N1—O1121.4 (3)C6—C7—C14123.8 (3)O2—N1—N2117.2 (3)C6—C7—C8120.3 (3)O1—N1—N2121.3 (3)C14—C7—C8115.9 (3)N1—N2—C1115.5 (2)C9—C8—C7113.2 (3)C1—N3—C2116.6 (2)C9—C8—H8a108.9C1—N3—C5125.7 (2)C7—C8—H8a108.9	N4—C4	1.465 (4)	C10—H10	0.9300	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N4—C3	1.477 (4)	C11—C13	1.494 (5)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—H2a	0.9700	C11—C12	1.508 (5)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—H2b	0.9700	C12—H12a	0.9600	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С3—Н3а	0.9700	C12—H12b	0.9600	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С3—Н3b	0.9700	C12—H12c	0.9600	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—H4a	0.9600	C13—H13a	0.9600	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—H4b	0.9600	C13—H13b	0.9600	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—H4c	0.9600	C13—H13c	0.9600	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C6	1.496 (4)	C14—H14a	0.9600	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С5—Н5а	0.9700	C14—H14b	0.9600	
C6—C71.313 (4)C3—O3—C2109.4 (2)C5—C6—H6116.1O2—N1—O1121.4 (3)C6—C7—C14123.8 (3)O2—N1—N2117.2 (3)C6—C7—C8120.3 (3)O1—N1—N2121.3 (3)C14—C7—C8115.9 (3)N1—N2—C1115.5 (2)C9—C8—C7113.2 (3)C1—N3—C2116.6 (2)C9—C8—H8a108.9C1—N3—C5125.7 (2)C7—C8—H8a108.9	С5—Н5b	0.9700	C14—H14c	0.9600	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C6—C7	1.313 (4)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3—O3—C2	109.4 (2)	С5—С6—Н6	116.1	
O2N1N2 117.2 (3) C6C7C8 120.3 (3) O1N1N2 121.3 (3) C14C7C8 115.9 (3) N1N2C1 115.5 (2) C9C8C7 113.2 (3) C1N3C2 116.6 (2) C9C8H8a 108.9 C1N3C5 125.7 (2) C7C8H8a 108.9	02—N1—O1	121.4 (3)	C6—C7—C14	123.8 (3)	
O1N1N2121.3 (3)C14C7C8115.9 (3)N1N2C1115.5 (2)C9C8C7113.2 (3)C1N3C2116.6 (2)C9C8H8a108.9C1N3C5125.7 (2)C7C8H8a108.9	O2—N1—N2	117.2 (3)	C6—C7—C8	120.3 (3)	
N1N2C1115.5 (2)C9C8C7113.2 (3)C1N3C2116.6 (2)C9C8H8a108.9C1N3C5125.7 (2)C7C8H8a108.9	01—N1—N2	121.3 (3)	C14—C7—C8	115.9 (3)	
C1-N3-C2116.6 (2)C9-C8-H8a108.9C1-N3-C5125.7 (2)C7-C8-H8a108.9	N1—N2—C1	115.5 (2)	C9—C8—C7	113.2 (3)	
C1—N3—C5 125.7 (2) C7—C8—H8a 108.9	C1—N3—C2	116.6 (2)	C9—C8—H8a	108.9	
	C1—N3—C5	125.7 (2)	C7—C8—H8a	108.9	

C2—N3—C5	117.6 (2)	C9—C8—H8b	108.9
C1—N4—C4	122.0 (2)	C7—C8—H8b	108.9
C1—N4—C3	122.2 (2)	H8a—C8—H8b	107.8
C4—N4—C3	115.7 (2)	C10—C9—C8	111.5 (3)
N4—C1—N3	118.7 (3)	С10—С9—Н9а	109.3
N4—C1—N2	116.8 (2)	С8—С9—Н9а	109.3
N3—C1—N2	123.9 (3)	С10—С9—Н9ь	109.3
O3—C2—N3	108.9 (2)	С8—С9—Н9b	109.3
O3—C2—H2a	109.9	Н9а—С9—Н9b	108.0
N3—C2—H2a	109.9	C11—C10—C9	127.9 (4)
O3—C2—H2b	109.9	C11—C10—H10	116.0
N3—C2—H2b	109.9	C9—C10—H10	116.0
H2a—C2—H2b	108.3	C10-C11-C13	125.4 (3)
O3—C3—N4	111.3 (2)	C10-C11-C12	120.8 (3)
O3—C3—H3a	109.4	C13—C11—C12	113.7 (3)
N4—C3—H3a	109.4	C11—C12—H12a	109.5
O3—C3—H3b	109.4	C11—C12—H12b	109.5
N4—C3—H3b	109.4	H12a—C12—H12b	109.5
Н3а—С3—Н3ь	108.0	C11—C12—H12c	109.5
N4—C4—H4a	109.5	H12a—C12—H12c	109.5
N4—C4—H4b	109.5	H12b—C12—H12c	109.5
H4a—C4—H4b	109.5	C11—C13—H13a	109.5
N4—C4—H4c	109.5	C11—C13—H13b	109.5
H4a—C4—H4c	109.5	H13a—C13—H13b	109.5
H4b—C4—H4c	109.5	C11—C13—H13c	109.5
N3—C5—C6	110.5 (2)	H13a—C13—H13c	109.5
N3—C5—H5a	109.6	H13b—C13—H13c	109.5
С6—С5—Н5а	109.6	C7—C14—H14a	109.5
N3—C5—H5b	109.6	C7—C14—H14b	109.5
C6—C5—H5b	109.6	H14a—C14—H14b	109.5
H5a—C5—H5b	108.1	C7-C14-H14c	109.5
C7—C6—C5	127.9 (3)	H14a—C14—H14c	109.5
С7—С6—Н6	116.1	H14b—C14—H14c	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H··· A
C2—H2B····O1 ⁱ	0.97	2.48	3.257 (4)	136
C3—H3A····N2 ⁱⁱ	0.97	2.43	3.336 (4)	155
C3—H3B····O1 ⁱⁱⁱ	0.97	2.38	3.264 (4)	151
C5—H5B…N1	0.97	2.53	3.117 (4)	119
C5—H5B…N2	0.97	2.55	2.960 (4)	105
C13—H13C…O2 ^{iv}	0.96	2.59	3.425 (5)	145

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) -*x*-1, *y*-1/2, -*z*+3/2; (iii) -*x*, *y*-1/2, -*z*+3/2; (iv) *x*+1, *y*, *z*.