Structure Reports

Online
ISSN 1600-5368

\{4,4'-Dibromo-2,2'-[propane-1,3-diyl-bis(nitrilomethylidyne)]diphenolato\}zinc(II)

Jun-Ying Ma

Chemical Engineering and Pharmaceutics College, Henan University of Science and Technology, Luoyang, Henan 471003, People's Republic of China, and Department of Chemistry, Pingdingshan University, Pingdingshan, Henan 467000, People's Republic of China
Correspondence e-mail: junying-ma@163.com
Received 14 May 2008; accepted 23 May 2008
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; disorder in main residue; R factor $=0.037 ; \omega R$ factor $=0.093$; data-to-parameter ratio $=15.0$.

The title mononuclear $\operatorname{zinc}(\mathrm{II})$ complex, $\left[\mathrm{Zn}\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Br}_{2^{-}}\right.\right.$ $\mathrm{N}_{2} \mathrm{O}_{2}$)], possesses a crystallographically imposed C_{2} axis. The Zn atom is four-coordinated by two O and two N atoms from two Schiff base ligands, forming a severely distorted squareplanar geometry. The central C atom of the propyl group is disordered over two positions about the twofold axis.

Related literature

For background on the chemistry of Schiff base zinc(II) complexes and their biological activity, see: Anderson et al. (1997); Chohan \& Kausar (1992, 1993); Chohan et al. (2003); Osowole et al. (2005); Yu et al., (2007). For related structures, see: Li \& Zhang (2005); Wu et al. (2006); Xu et al. (2006); Ma et al. (2005); Ma, Gu et al. (2006); Ma, Lv et al. (2006); Ma, Wu et al. (2006).

Experimental

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Zn}\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]} \\
& M_{r}=503.49 \\
& \text { Monoclinic, } C 2 / c \\
& a=21.418(6) \AA \\
& b=8.161(2) \AA \\
& c=9.524(3) \AA \\
& \beta=92.910(3)^{\circ}
\end{aligned}
$$

$V=1662.6(8) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=6.30 \mathrm{~mm}^{-1}$
$T=298$ (2) K
$0.32 \times 0.30 \times 0.30 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.143, T_{\text {max }}=0.152$

4709 measured reflections 1809 independent reflections 1444 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.036$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.092$ independent and constrained refinement
1809 reflections
121 parameters
$\Delta \rho_{\max }=0.45 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\text {min }}=-0.64 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Zn} 1-\mathrm{O} 1$	$1.912(3)$	$\mathrm{Zn} 1-\mathrm{N} 1$	$1.968(3)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{O} 1^{\mathrm{i}}$	$87.42(16)$	$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 1$	$93.21(12)$
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 1^{\mathrm{i}}$	$153.75(12)$		
Sym			

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The Scientific Research Foundation of Henan University of Science and Technology (Project No. 05-072) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2218).

References

Anderson, O. P., LaCour, A., Findeisen, M., Hennig, L., Simonsen, O., Taylor, L. F. \& Toftlund, H. (1997). J. Chem. Soc. Dalton Trans. pp. 111-120.

Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chohan, Z. H. \& Kausar, S. (1992). Chem. Pharm. Bull. 40, 2555-2556.
Chohan, Z. H. \& Kausar, S. (1993). Chem. Pharm. Bull. 41, 951-953.
Chohan, Z. H., Scozzafava, A. \& Supuran, C. T. (2003). J. Enzyme Inhib. Med. Chem. 18, 259-263.
Li, Z.-X. \& Zhang, X.-L. (2005). Acta Cryst. E61, m1755-m1756.
Ma, J.-Y., Gu, S.-H., Guo, J.-W., Lv, B.-L. \& Yin, W.-P. (2006). Acta Cryst. E62, m1437-m1438.
Ma, J.-Y., Lv, B.-L., Gu, S.-H., Guo, J.-W. \& Yin, W.-P. (2006). Acta Cryst. E62, m1322-m1323.
Ma, J.-Y., Wu, T.-X., She, X.-G. \& Pan, X.-F. (2005). Acta Cryst. E61, m695m696.
Ma, J.-Y., Wu, T.-X., She, X.-G. \& Pan, X.-F. (2006). Z. Kristallogr. New Cryst. Struct. 221, 53-54.
Osowole, A. A., Kolawole, G. A. \& Fagade, O. E. (2005). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 35, 829-836.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wu, Y., Shi, S.-M., Jia, B. \& Hu, Z.-Q. (2006). Acta Cryst. E62, m648-m649.
Xu, H.-J., Liu, Z.-D. \& Sheng, L.-Q. (2006). Acta Cryst. E62, m2695-m2697.
Yu, Y.-Y., Zhao, G.-L. \& Wen, Y.-H. (2007). Chin. J. Struct. Chem. 26, 13951402.

supporting information

\{4,4'-Dibromo-2,2'-[propane-1,3-diylbis(nitrilomethylidyne)]diphenolato\}zinc(II)

Jun-Ying Ma

S1. Comment

Zinc(II) complexes derived from Schiff bases have been widely studied (Anderson et al., 1997). Some of them have been found to have pharmacological and antitumor properties (Chohan \& Kausar, 1992, 1993; Osowole et al., 2005; Chohan et al., 2003; Yu et al., 2007). Recently, we have reported some metal complexes derived from the Schiff base ligands (Ma, Lv et al., 2006; Ma, Gu et al., 2006; Ma, We et al., 2005, 2006). As part of a further investigation of the structures of such complexes, the title mononuclear zinc(II) complex (Fig 1) is reported in this paper.
The title compound possesses a crystallographically imposed C_{2} axis passing through the zinc(II) atom and the midpoint of the propyl group, causing the C 9 atom to be disordered over two positions. The Zn atom is coordinated by two nitrogen atoms and two oxygen atoms from a Schiff base ligand, giving a severely distorted square planar geometry. Bond lengths and angles (Table 1) related to the Zn atom in the complex are within normal ranges, and comparable to the values observed in other Schiff base zinc(II) complexes (Li \& Zhang, 2005; Xu et al., 2006; Wu et al., 2006).

S2. Experimental

N, N^{\prime}-Propane-1,3-diamine ($0.1 \mathrm{mmol}, 14.8 \mathrm{mg}$) and 5-bromosalicylaldehyde ($0.1 \mathrm{mmol}, 20.1 \mathrm{mg}$) were dissolved in methanol (20 ml). The mixture was stirred for 1 h to obtain a clear yellow solution. To the solution was added with stirring a methanol solution (20 ml) of $\operatorname{zinc}(\mathrm{II})$ acetate $(0.1 \mathrm{mmol}, 22.0 \mathrm{mg})$. After keeping the resulting solution in air for a few days, colourless block-shaped crystals were formed on slow evaporation of the solvent.

S3. Refinement

H9A and H9B were located from a difference Fourier map and refined freely, with $\mathrm{C}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distances restrained to 0.96 (1) and 1.50 (2) respectively, and with an isotropic displacement parameter fixed to $0.08 \AA^{2} . \% \mathrm{~A}$. Other H atoms were positioned geometrically and refined using a riding model with $\mathrm{C}-\mathrm{H}=0.93-96 \AA$ and $U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Only one component of the disordered C9 atom is shown. H atoms are omitted for clarity. Unlabelled atoms are related to the labelled atoms by the symmetry operation (-x, y, 1/2-z).

\{4,4'-Dibromo-2,2'-[propane-1,3-diylbis(nitrilomethylidyne)]diphenolato\}zinc(II)

Crystal data

$\left[\mathrm{Zn}\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$
$M_{r}=503.49$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=21.418$ (6) \AA
$b=8.161$ (2) \AA
$c=9.524(3) \AA$
$\beta=92.910(3)^{\circ}$
$V=1662.6$ (8) \AA^{3}
$Z=4$

Data collection

Bruker SMART CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.143, T_{\text {max }}=0.152$
$F(000)=984$
$D_{\mathrm{x}}=2.011 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1595 reflections
$\theta=2.5-26.3^{\circ}$
$\mu=6.30 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Block, colourless
$0.32 \times 0.30 \times 0.30 \mathrm{~mm}$

4709 measured reflections
1809 independent reflections
1444 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=27.0^{\circ}, \theta_{\text {min }}=1.9^{\circ}$
$h=-27 \rightarrow 27$
$k=-10 \rightarrow 9$
$l=-12 \rightarrow 11$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.092$
$S=1.05$
1809 reflections
121 parameters
3 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

```
\(w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0396 P)^{2}+3.1273 P\right]\)
    where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}<0.001\)
\(\Delta \rho_{\max }=0.45\) e \(\AA^{-3}\)
```

$\Delta \rho_{\text {min }}=-0.64$ e \AA^{-3}
Extinction correction: SHELXTL (Bruker, 2000), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0078 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$	Occ. (<1)
Zn1	0.0000	$0.01735(7)$	0.2500	$0.0347(2)$	
Br1	$0.23023(2)$	$0.25397(6)$	$0.81463(5)$	$0.0539(2)$	
N 1	$0.04072(14)$	$-0.1416(3)$	$0.3803(3)$	$0.0343(7)$	
O1	$0.05877(12)$	$0.1867(3)$	$0.2995(3)$	$0.0370(6)$	
C1	$0.09920(16)$	$0.1906(4)$	$0.4060(4)$	$0.0310(8)$	
C2	$0.10887(15)$	$0.0587(4)$	$0.5015(4)$	$0.0298(7)$	
C3	$0.14983(16)$	$0.0782(5)$	$0.6219(4)$	$0.0362(8)$	
H3	0.1557	-0.0080	0.6851	0.043^{*}	
C4	$0.18070(17)$	$0.2229(5)$	$0.6459(4)$	$0.0367(8)$	
C5	$0.17583(18)$	$0.3491(5)$	$0.5466(4)$	$0.0406(9)$	
H5	0.1995	0.4439	0.5598	0.049^{*}	$0.0376(8)$
C6	$0.13625(17)$	$0.3329(5)$	$0.4299(4)$	0.045^{*}	
H6	0.1336	0.4176	0.3645	$0.0332(8)$	0.040^{*}
C7	$0.08158(16)$	$-0.1003(4)$	$0.4779(4)$	$0.0577(13)$	
H7	0.0949	-0.1827	0.5399	0.069^{*}	
C8	$0.0244(3)$	$-0.3170(5)$	$0.3736(5)$	0.069^{*}	
H8A	0.0119	-0.3481	0.4652	$0.0375(17)$	0.50
H8B	0.0623	-0.3752	0.3578	0.080^{*}	0.50
C9	$-0.0202(3)$	$-0.3766(8)$	$0.2766(9)$	0.080^{*}	0.50
H9A	$-0.024(4)$	$-0.4935(16)$	$0.280(12)$	$0.310(11)$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn 1	$0.0395(4)$	$0.0264(3)$	$0.0374(4)$	0.000	$-0.0056(2)$	0.000
Br 1	$0.0500(3)$	$0.0645(4)$	$0.0453(3)$	$-0.0064(2)$	$-0.01642(19)$	$-0.0038(2)$
N 1	$0.0442(17)$	$0.0228(15)$	$0.0354(17)$	$0.0001(13)$	$-0.0019(14)$	$0.0015(13)$
O 1	$0.0465(15)$	$0.0277(13)$	$0.0354(15)$	$-0.0030(11)$	$-0.0111(11)$	$0.0031(11)$
C 1	$0.0307(18)$	$0.0281(18)$	$0.034(2)$	$0.0026(14)$	$0.0015(14)$	$-0.0022(14)$
C 2	$0.0269(16)$	$0.0318(19)$	$0.0304(18)$	$0.0034(14)$	$-0.0006(13)$	$-0.0008(14)$

C3	$0.0334(18)$	$0.041(2)$	$0.034(2)$	$0.0074(16)$	$0.0008(15)$	$0.0032(16)$
C4	$0.0270(18)$	$0.045(2)$	$0.037(2)$	$0.0001(15)$	$-0.0064(15)$	$-0.0041(17)$
C5	$0.039(2)$	$0.036(2)$	$0.046(2)$	$-0.0077(16)$	$-0.0026(17)$	$-0.0016(18)$
C6	$0.040(2)$	$0.0304(19)$	$0.042(2)$	$-0.0015(16)$	$-0.0026(16)$	$0.0028(16)$
C7	$0.0371(19)$	$0.0305(19)$	$0.0317(19)$	$0.0077(15)$	$-0.0009(15)$	$0.0041(15)$
C8	$0.097(4)$	$0.025(2)$	$0.051(3)$	$-0.009(2)$	$0.000(3)$	$0.0003(19)$
C9	$0.045(5)$	$0.020(3)$	$0.047(5)$	$-0.001(3)$	$-0.003(4)$	$0.005(3)$

Geometric parameters (A, ${ }^{\circ}$)

Zn1-O1	1.912 (3)	C4-C5	1.398 (6)
$\mathrm{Zn} 1-\mathrm{Ol}^{\text {i }}$	1.912 (3)	C5-C6	1.370 (5)
$\mathrm{Zn} 1-\mathrm{N} 1^{\text {i }}$	1.968 (3)	C5-H5	0.9300
Zn1-N1	1.968 (3)	C6-H6	0.9300
$\mathrm{Br} 1-\mathrm{C} 4$	1.897 (4)	C7-H7	0.9300
N1-C7	1.289 (5)	C8-C9	1.383 (9)
N1-C8	1.474 (5)	C8-C9 ${ }^{\text {i }}$	1.509 (9)
O1-C1	1.301 (4)	C8-H8A	0.9600
C1-C2	1.417 (5)	C8-H8B	0.9599
C1-C6	1.419 (5)	C9-C9 ${ }^{\text {i }}$	1.025 (15)
C2-C3	1.417 (5)	C9-C8 ${ }^{\text {i }}$	1.509 (9)
C2-C7	1.436 (5)	C9-H9A	0.958 (10)
C3-C4	1.367 (5)	C9-H9B	0.960 (10)
C3-H3	0.9300		
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{Ol}^{\text {i }}$	87.42 (16)	C5-C6-C1	121.8 (4)
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 1^{\text {i }}$	153.75 (12)	C5-C6-H6	119.1
$\mathrm{Ol} 1^{\text {i }} \mathrm{Zn} 1-\mathrm{N} 1^{\text {i }}$	93.21 (12)	C1-C6-H6	119.1
$\mathrm{O} 1-\mathrm{Zn} 1-\mathrm{N} 1$	93.21 (12)	N1-C7-C2	127.3 (3)
$\mathrm{Ol}{ }^{\text {i }}$ - $\mathrm{Zn} 1-\mathrm{N} 1$	153.75 (12)	N1-C7-H7	116.4
N1-Zn1-N1	97.53 (18)	C2-C7-H7	116.4
C7-N1-C8	115.9 (3)	C9-C8-N1	121.7 (5)
C7-N1-Zn1	123.0 (2)	N1-C8-C9 ${ }^{\text {i }}$	110.9 (4)
C8-N1-Zn1	121.1 (3)	C9-C8-H8A	107.4
C1-O1-Zn1	127.9 (2)	N1-C8-H8A	107.1
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	123.5 (3)	C9 - C8-H8A	140.4
O1-C1-C6	119.3 (3)	C9-C8-H8B	106.4
C2-C1-C6	117.2 (3)	N1-C8-H8B	106.6
C1-C2-C3	119.9 (3)	C9 - $\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	72.7
C1-C2-C7	122.7 (3)	H8A-C8-H8B	106.8
C3-C2-C7	117.3 (3)	C9--C9-C8	76.0 (9)
C4-C3-C2	120.4 (3)	C9i-C9-C8 ${ }^{\text {i }}$	62.8 (8)
C4-C3-H3	119.8	C8-C9-C8 ${ }^{\text {i }}$	121.7 (6)
C2-C3-H3	119.8	C9 - C9-H9A	95 (4)
C3-C4-C5	120.3 (4)	C8-C9-H9A	112 (7)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{Br} 1$	120.1 (3)	C8i-C9-H9A	111 (7)
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{Br} 1$	119.6 (3)	C9i-C9-H9B	160 (5)
C6-C5-C4	120.0 (3)	C8-C9-H9B	105 (6)

supporting information

$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	120.0	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	$102(6)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	120.0	$\mathrm{H} 9 \mathrm{~A}-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	$103(2)$

Symmetry code: (i) $-x, y,-z+1 / 2$.

