# metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# trans-Bis(1H-indole-3-carbaldehyde thiosemicarbazonato- $\kappa^2 N^1$ , S)nickel(II)

## Mohd. Razali Rizal, Hapipah M. Ali and Seik Weng Ng\*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.mv

Received 24 April 2008; accepted 12 May 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.034; wR factor = 0.081; data-to-parameter ratio = 15.1.

The Ni atom in the centrosymmetric title compound,  $[Ni(C_{10}H_9N_4S)_2]$ , is N,S-chelated by the deprotonated Schiff bases in a square-planar geometry. The -CH=N-N=C(S)-NH<sub>2</sub> frament is planar. Adjacent molecules are linked by hydrogen bonds between the indolyl -NH (donor) site and the double-bond = N- (acceptor) site of an adjacent molecule, forming a layer motif.

#### **Related literature**

For the structure of the neutral Schiff base, see: Rizal et al. (2008). For background literature on the medicinal activity of metal complexes of the Schiff base and related compounds, see: Husain et al. (2007); Wilson et al. (2005).



#### **Experimental**

Crystal data

 $\left[Ni(C_{10}H_9N_4S)_2\right]$  $M_r = 493.25$ Monoclinic,  $P2_1/c$ a = 10.4388 (3) Å b = 5.2604 (1) Åc = 19.1122 (5) Å  $\beta = 104.803 \ (2)^{\circ}$ 

V = 1014.66 (4) Å<sup>3</sup> Z = 2Mo  $K\alpha$  radiation  $\mu = 1.19 \text{ mm}^{-1}$ T = 100 (2) K $0.14 \times 0.04 \times 0.01 \ \mathrm{mm}$ 

12357 measured reflections

 $R_{\rm int} = 0.062$ 

2326 independent reflections

1774 reflections with  $I > 2\sigma(I)$ 

#### Data collection

Bruker SMART APEX

diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{\min} = 0.851, T_{\max} = 0.988$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.034$ | H atoms treated by a mixture of                            |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.081$               | independent and constrained                                |
| S = 1.02                        | refinement                                                 |
| 2326 reflections                | $\Delta \rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 154 parameters                  | $\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$ |
| 3 restraints                    |                                                            |

### Table 1

Selected geometric parameters (Å, °).

| Ni1-N2                  | 1.918 (2)                   | Ni1-S1                 | 2.1669 (6) |
|-------------------------|-----------------------------|------------------------|------------|
| N2-Ni1-S1               | 85.72 (6)                   | N2-Ni1-S1 <sup>i</sup> | 94.28 (6)  |
| Symmetry code: (i) _r ⊥ | $1 - y \perp 1 - z \perp 1$ |                        |            |

metry code: (1) -x + 1, -y + 1, -z + 1

## Table 2

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                     | D-H                           | $H \cdots A$      | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|--------------------------------------|-------------------------------|-------------------|--------------|---------------------------|
| $N1 - H1n \cdot \cdot \cdot N3^{ii}$ | 0.88 (3)                      | 2.06 (2)          | 2.876 (3)    | 155 (3)                   |
| Symmetry code: (ii) -                | $-x + 1, y + \frac{1}{2}, -z$ | $x + \frac{3}{2}$ |              |                           |

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001; Dolomanov et al., 2003); software used to prepare material for publication: publCIF (Westrip, 2008).

We thank the Science Fund (12-02-03-2031) for supporting this study, and the University of Malaya for the purchase of the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2241).

#### References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283-1284.

Husain, K., Abid, M. & Azam, A. (2007). Eur. J. Med. Chem. 42, 1300-1308.

Rizal, R. M., Ali, H. M. & Ng, S. W. (2008). Acta Cryst. E64, 0919-0920. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2008). publCIF. In preparation.
- Wilson, B. A., Venkatraman, R., Whitaker, C. & Tillison, Q. (2005). Int. J. Env. Res. Pub. Health, 2, 170-174.

# supporting information

Acta Cryst. (2008). E64, m824 [doi:10.1107/S1600536808014293]

# *trans*-Bis(1*H*-indole-3-carbaldehyde thiosemicarbazonato- $\kappa^2 N^1$ ,*S*)nickel(II)

## Mohd. Razali Rizal, Hapipah M. Ali and Seik Weng Ng

## S1. Comment

A previous study reports the structure of 1*H*-indole-3-carboxaldehyde thiosemicarbazone (Rizal *et al.*, 2008). The compound in its deprotonated form can function as a bidentate chelate, and this is confirmed in the present nickel(II) derivative (Scheme I, Fig. 1). The metal center lies on a center-of-inversion in a square planar coordination geometry. Adjacent molecules are linked by hydrogen bonds between the indolyl –NH (donor) site and the double-bond =N– (acceptor) site of an adjacent molecule to form a layer motif (Fig. 2).

## S2. Experimental

Nickel acetate tetrahydrate (0.06 g,0.22 mmol) and 1*H*-indole-3-carboxaldehyde thiosemicarbazone (0.10 g, 0.44 mmol), ethanol (4 ml) and water (10 ml) were sealed in a 15-ml, Teflon-lined, Parr bomb. The bomb was heated at 383 K for 2 days. The bomb when cooled to room temperature over a day to give orange plates.

## **S3. Refinement**

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The nitrogen-bound H-atoms were located in a difference Fourier map, and were refined with an N–H distance restraint of  $0.88\pm0.01$  Å; their temperature factors were freely refined.



## Figure 1

Thermal ellipsoid plot of Ni(C<sub>10</sub>H<sub>9</sub>N<sub>4</sub>S)<sub>2</sub> at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The molecule lies on a center-of-inversion. Unlabeled atoms are related to the labeled ones by this symmetry element.



## Figure 2

OLEX (Dolomanov et al., 2003) representation of the hydrogen-bonded layer motif.

## *trans*-Bis(1*H*-indole-3-carbaldehyde thiosemicarbazonato- $\kappa^2 N_{I}^1$ ,S)nickel(II)

| Crystal data                    |                                                       |
|---------------------------------|-------------------------------------------------------|
| $[Ni(C_{10}H_9N_4S)_2]$         | F(000) = 508                                          |
| $M_r = 493.25$                  | $D_{\rm x} = 1.614 {\rm Mg} {\rm m}^{-3}$             |
| Monoclinic, $P2_1/c$            | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ybc            | Cell parameters from 1799 reflections                 |
| a = 10.4388 (3)  Å              | $\theta = 2.6 - 24.7^{\circ}$                         |
| b = 5.2604 (1) Å                | $\mu = 1.19 \text{ mm}^{-1}$                          |
| c = 19.1122 (5) Å               | T = 100  K                                            |
| $\beta = 104.803 \ (2)^{\circ}$ | Plate, orange                                         |
| V = 1014.66 (4) Å <sup>3</sup>  | $0.14 \times 0.04 \times 0.01 \text{ mm}$             |
| Z=2                             |                                                       |

Data collection

| Bruker SMART APEX<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>$\varphi$ and $\omega$ scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Sheldrick, 1996)<br>$T_{\min} = 0.851, T_{\max} = 0.988$<br><i>Refinement</i> | 12357 measured reflections<br>2326 independent reflections<br>1774 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.062$<br>$\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 2.0^{\circ}$<br>$h = -12 \rightarrow 13$<br>$k = -6 \rightarrow 6$<br>$l = -24 \rightarrow 24$                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.034$<br>$wR(F^2) = 0.081$<br>S = 1.02<br>2326 reflections<br>154 parameters<br>3 restraints<br>Primary atom site location: structure-invariant<br>direct methods                                  | Secondary atom site location: difference Fourier<br>map<br>Hydrogen site location: inferred from<br>neighbouring sites<br>H atoms treated by a mixture of independent<br>and constrained refinement<br>$w = 1/[\sigma^2(F_o^2) + (0.0362P)^2 + 0.5143P]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} = 0.001$<br>$\Delta\rho_{max} = 0.43$ e Å <sup>-3</sup><br>$\Delta\rho_{min} = -0.30$ e Å <sup>-3</sup> |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | x            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|--------------|--------------|--------------|-----------------------------|--|
| Ni1  | 0.5000       | 0.5000       | 0.5000       | 0.01261 (12)                |  |
| S1   | 0.33444 (6)  | 0.74950 (12) | 0.45463 (3)  | 0.01747 (15)                |  |
| N1   | 0.6654 (2)   | 1.1528 (4)   | 0.78929 (11) | 0.0171 (5)                  |  |
| H1N  | 0.637 (3)    | 1.262 (5)    | 0.8165 (14)  | 0.045 (10)*                 |  |
| N2   | 0.52205 (19) | 0.6972 (4)   | 0.58664 (10) | 0.0143 (4)                  |  |
| N3   | 0.42554 (19) | 0.8723 (4)   | 0.59419 (10) | 0.0153 (4)                  |  |
| N4   | 0.2345 (2)   | 1.0700 (4)   | 0.53342 (12) | 0.0205 (5)                  |  |
| H4N1 | 0.240 (3)    | 1.177 (5)    | 0.5691 (12)  | 0.042 (10)*                 |  |
| H4N2 | 0.184 (3)    | 1.121 (6)    | 0.4919 (10)  | 0.043 (10)*                 |  |
| C1   | 0.7786 (2)   | 0.8186 (5)   | 0.76257 (12) | 0.0154 (5)                  |  |
| C2   | 0.8845 (2)   | 0.6471 (5)   | 0.77478 (13) | 0.0182 (5)                  |  |
| H2   | 0.8869       | 0.5159       | 0.7410       | 0.022*                      |  |
| C3   | 0.9859 (2)   | 0.6731 (5)   | 0.83732 (13) | 0.0195 (5)                  |  |
| H3   | 1.0588       | 0.5590       | 0.8460       | 0.023*                      |  |
| C4   | 0.9830 (2)   | 0.8646 (5)   | 0.88809 (13) | 0.0190 (5)                  |  |
| H4   | 1.0538       | 0.8766       | 0.9306       | 0.023*                      |  |
| C5   | 0.8795 (2)   | 1.0361 (5)   | 0.87760 (12) | 0.0178 (5)                  |  |
| Н5   | 0.8774       | 1.1659       | 0.9118       | 0.021*                      |  |
| C6   | 0.7782 (2)   | 1.0092 (5)   | 0.81421 (12) | 0.0159 (5)                  |  |
| C7   | 0.5945 (2)   | 1.0621 (5)   | 0.72458 (12) | 0.0166 (5)                  |  |
| H7   | 0.5132       | 1.1309       | 0.6969       | 0.020*                      |  |
| C8   | 0.6586 (2)   | 0.8537 (5)   | 0.70493 (12) | 0.0166 (5)                  |  |
| C9   | 0.6276 (2)   | 0.6972 (5)   | 0.64112 (12) | 0.0163 (5)                  |  |
| H9   | 0.6935       | 0.5761       | 0.6381       | 0.020*                      |  |

# supporting information

| C10    | 0.3354 (                               | (2) 0       | .9073 (5)   | 0.53374 (13) | 0.0159 (5)   |               |  |  |
|--------|----------------------------------------|-------------|-------------|--------------|--------------|---------------|--|--|
| Atomic | Atomic displacement parameters $(Å^2)$ |             |             |              |              |               |  |  |
|        | $U^{11}$                               | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$      |  |  |
| Ni1    | 0.0129 (2)                             | 0.0143 (2)  | 0.0104 (2)  | 0.00022 (19) | 0.00260 (16) | -0.00047 (18) |  |  |
| S1     | 0.0180 (3)                             | 0.0207 (3)  | 0.0124 (3)  | 0.0042 (3)   | 0.0014 (2)   | -0.0010 (2)   |  |  |
| N1     | 0.0177 (11)                            | 0.0189 (11) | 0.0140 (10) | 0.0007 (9)   | 0.0029 (8)   | -0.0039 (9)   |  |  |
| N2     | 0.0161 (10)                            | 0.0141 (10) | 0.0127 (9)  | 0.0014 (8)   | 0.0036 (8)   | -0.0004 (8)   |  |  |
| N3     | 0.0155 (11)                            | 0.0171 (11) | 0.0137 (10) | 0.0021 (9)   | 0.0047 (8)   | -0.0002 (8)   |  |  |
| N4     | 0.0225 (12)                            | 0.0210 (12) | 0.0172 (11) | 0.0080 (9)   | 0.0035 (9)   | -0.0025 (9)   |  |  |
| C1     | 0.0156 (12)                            | 0.0156 (12) | 0.0151 (11) | -0.0034 (10) | 0.0042 (10)  | 0.0002 (9)    |  |  |
| C2     | 0.0190 (13)                            | 0.0192 (13) | 0.0177 (12) | -0.0019 (10) | 0.0068 (10)  | -0.0025 (10)  |  |  |
| С3     | 0.0153 (13)                            | 0.0225 (14) | 0.0205 (12) | 0.0005 (11)  | 0.0040 (10)  | 0.0028 (11)   |  |  |
| C4     | 0.0166 (13)                            | 0.0245 (14) | 0.0148 (11) | -0.0037 (11) | 0.0018 (10)  | -0.0005 (10)  |  |  |
| C5     | 0.0196 (13)                            | 0.0207 (14) | 0.0127 (11) | -0.0040 (11) | 0.0034 (10)  | -0.0005 (10)  |  |  |
| C6     | 0.0172 (12)                            | 0.0167 (12) | 0.0151 (11) | -0.0011 (11) | 0.0063 (9)   | 0.0013 (10)   |  |  |
| C7     | 0.0166 (12)                            | 0.0190 (14) | 0.0137 (11) | -0.0016 (10) | 0.0030 (10)  | -0.0003 (9)   |  |  |
| C8     | 0.0191 (13)                            | 0.0177 (13) | 0.0135 (11) | -0.0022 (10) | 0.0051 (10)  | 0.0001 (10)   |  |  |
| С9     | 0.0175 (12)                            | 0.0176 (13) | 0.0145 (11) | 0.0008 (10)  | 0.0055 (10)  | 0.0003 (10)   |  |  |
| C10    | 0.0180 (13)                            | 0.0140 (12) | 0.0182 (12) | -0.0033 (10) | 0.0092 (10)  | 0.0007 (10)   |  |  |

# Geometric parameters (Å, °)

| Ni1—N2 <sup>i</sup>                  | 1.919 (2)   | C1—C6    | 1.408 (3) |  |
|--------------------------------------|-------------|----------|-----------|--|
| Ni1—N2                               | 1.918 (2)   | C1—C8    | 1.453 (3) |  |
| Ni1—S1 <sup>i</sup>                  | 2.1669 (6)  | C2—C3    | 1.386 (3) |  |
| Ni1—S1                               | 2.1669 (6)  | C2—H2    | 0.9500    |  |
| S1—C10                               | 1.723 (2)   | C3—C4    | 1.404 (4) |  |
| N1—C7                                | 1.355 (3)   | С3—Н3    | 0.9500    |  |
| N1—C6                                | 1.377 (3)   | C4—C5    | 1.382 (4) |  |
| N1—H1n                               | 0.88 (3)    | C4—H4    | 0.9500    |  |
| N2—C9                                | 1.309 (3)   | C5—C6    | 1.397 (3) |  |
| N2—N3                                | 1.399 (3)   | С5—Н5    | 0.9500    |  |
| N3—C10                               | 1.303 (3)   | C7—C8    | 1.385 (3) |  |
| N4—C10                               | 1.355 (3)   | С7—Н7    | 0.9500    |  |
| N4—H4n1                              | 0.88 (3)    | C8—C9    | 1.438 (3) |  |
| N4—H4n2                              | 0.88 (3)    | С9—Н9    | 0.9500    |  |
| C1—C2                                | 1.400 (3)   |          |           |  |
| N2 <sup>i</sup> —Ni1—N2              | 180.000 (1) | С2—С3—Н3 | 119.3     |  |
| N2 <sup>i</sup> —Ni1—S1 <sup>i</sup> | 85.72 (6)   | C4—C3—H3 | 119.3     |  |
| N2—Ni1—S1                            | 85.72 (6)   | C5—C4—C3 | 121.5 (2) |  |
| N2—Ni1—S1 <sup>i</sup>               | 94.28 (6)   | C5—C4—H4 | 119.3     |  |
| N2 <sup>i</sup> —Ni1—S1              | 94.28 (6)   | C3—C4—H4 | 119.3     |  |
| S1 <sup>i</sup> —Ni1—S1              | 180.0       | C4—C5—C6 | 116.8 (2) |  |
| C10—S1—Ni1                           | 96.63 (9)   | C4—C5—H5 | 121.6     |  |
| C7—N1—C6                             | 110.0 (2)   | С6—С5—Н5 | 121.6     |  |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                         | 107.7 (2)<br>122.9 (2)<br>109.7 (2)<br>125.1<br>131.6 (2)<br>106.1 (2)<br>122.2 (2)<br>129.5 (2)<br>15.3<br>18.5 (2)<br>23.44 (19)                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                         | 122.9 (2)<br>109.7 (2)<br>125.1<br>125.1<br>131.6 (2)<br>106.1 (2)<br>122.2 (2)<br>129.5 (2)<br>115.3<br>115.3<br>118.5 (2)<br>23.44 (19)                    |
| C9-N2-Ni1       125.30 (17)       N1-C7-C8       10         N3-N2-Ni1       120.96 (14)       N1-C7-H7       12         C10-N3-N2       112.16 (19)       C8-C7-H7       12         C10-N4-H4N1       121 (2)       C7-C8-C9       13         C10-N4-H4N2       119 (2)       C7-C8-C1       10         H4N1-N4-H4N2       114 (3)       C9-C8-C1       12         C2-C1-C6       119.1 (2)       N2-C9-C8       12         C2-C1-C8       134.4 (2)       N2-C9-H9       11 | 109.7 (2)<br>125.1<br>125.1<br>131.6 (2)<br>106.1 (2)<br>122.2 (2)<br>129.5 (2)<br>115.3<br>115.3<br>118.5 (2)<br>23.44 (19)                                 |
| N3—N2—Ni1       120.96 (14)       N1—C7—H7       12         C10—N3—N2       112.16 (19)       C8—C7—H7       12         C10—N4—H4N1       121 (2)       C7—C8—C9       13         C10—N4—H4N2       119 (2)       C7—C8—C1       10         H4N1—N4—H4N2       114 (3)       C9—C8—C1       12         C2—C1—C6       119.1 (2)       N2—C9—C8       12         C2—C1—C8       134.4 (2)       N2—C9—H9       11                                                             | 125.1         125.1         131.6 (2)         106.1 (2)         122.2 (2)         129.5 (2)         115.3         115.3         18.5 (2)         .23.44 (19) |
| C10-N3-N2112.16 (19)C8-C7-H712C10-N4-H4N1121 (2)C7-C8-C913C10-N4-H4N2119 (2)C7-C8-C110H4N1-N4-H4N2114 (3)C9-C8-C112C2-C1-C6119.1 (2)N2-C9-C812C2-C1-C8134.4 (2)N2-C9-H911                                                                                                                                                                                                                                                                                                    | 125.1<br>131.6 (2)<br>106.1 (2)<br>122.2 (2)<br>129.5 (2)<br>115.3<br>115.3<br>118.5 (2)<br>.23.44 (19)                                                      |
| C10N4H4N1121 (2)C7C8C913C10N4H4N2119 (2)C7C8C110H4N1N4H4N2114 (3)C9C8C112C2C1C6119.1 (2)N2C9C812C2C1C8134.4 (2)N2C9H911                                                                                                                                                                                                                                                                                                                                                      | 131.6 (2)<br>106.1 (2)<br>122.2 (2)<br>129.5 (2)<br>15.3<br>115.3<br>118.5 (2)<br>.23.44 (19)                                                                |
| C10—N4—H4N2119 (2)C7—C8—C110H4N1—N4—H4N2114 (3)C9—C8—C112C2—C1—C6119.1 (2)N2—C9—C812C2—C1—C8134.4 (2)N2—C9—H911                                                                                                                                                                                                                                                                                                                                                              | 106.1 (2)<br>122.2 (2)<br>129.5 (2)<br>115.3<br>115.3<br>118.5 (2)<br>.23.44 (19)                                                                            |
| H4N1—N4—H4N2114 (3)C9—C8—C112C2—C1—C6119.1 (2)N2—C9—C812C2—C1—C8134.4 (2)N2—C9—H911                                                                                                                                                                                                                                                                                                                                                                                          | 122.2 (2)<br>129.5 (2)<br>115.3<br>115.3<br>118.5 (2)<br>.23.44 (19)                                                                                         |
| C2-C1-C6       119.1 (2)       N2-C9-C8       12         C2-C1-C8       134.4 (2)       N2-C9-H9       11                                                                                                                                                                                                                                                                                                                                                                    | 129.5 (2)<br>115.3<br>115.3<br>118.5 (2)<br>.23.44 (19)                                                                                                      |
| C2—C1—C8 134.4 (2) N2—C9—H9 11                                                                                                                                                                                                                                                                                                                                                                                                                                               | 115.3<br>115.3<br>18.5 (2)<br>23.44 (19)                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 115.3<br>118.5 (2)<br>23.44 (19)                                                                                                                             |
| C6—C1—C8 106.5 (2) C8—C9—H9 11                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.5 (2)<br>23.44 (19)                                                                                                                                       |
| C3—C2—C1 118.5 (2) N3—C10—N4 11                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23.44 (19)                                                                                                                                                   |
| C3—C2—H2 120.8 N3—C10—S1 12                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · · /                                                                                                                                                        |
| C1—C2—H2 120.8 N4—C10—S1 11                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18.03 (18)                                                                                                                                                   |
| C2—C3—C4 121.3 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                              |
| N2 <sup>i</sup> —Ni1—S1—C10 172.73 (10) C8—C1—C6—N1 -0                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.4 (3)                                                                                                                                                     |
| N2—Ni1—S1—C10 -7.27 (10) C2—C1—C6—C5 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                     | ).1 (4)                                                                                                                                                      |
| S1 <sup>i</sup> —Ni1—N2—C9 15.3 (2) C8—C1—C6—C5 -1                                                                                                                                                                                                                                                                                                                                                                                                                           | -179.6 (2)                                                                                                                                                   |
| S1—Ni1—N2—C9 –164.7 (2) C6—N1—C7—C8 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                      | ).3 (3)                                                                                                                                                      |
| S1 <sup>i</sup> —Ni1—N2—N3 –169.40 (16) N1—C7—C8—C9 –1                                                                                                                                                                                                                                                                                                                                                                                                                       | -177.4 (2)                                                                                                                                                   |
| S1—Ni1—N2—N3 10.60 (16) N1—C7—C8—C1 -0                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.5 (3)                                                                                                                                                     |
| C9—N2—N3—C10 166.4 (2) C2—C1—C8—C7 -1                                                                                                                                                                                                                                                                                                                                                                                                                                        | -179.1 (3)                                                                                                                                                   |
| Ni1—N2—N3—C10 –9.4 (3) C6—C1—C8—C7 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                       | ).6 (3)                                                                                                                                                      |
| C6-C1-C2-C3 -0.5 (4) C2-C1-C8-C9 -1                                                                                                                                                                                                                                                                                                                                                                                                                                          | -1.8 (4)                                                                                                                                                     |
| C8—C1—C2—C3 179.2 (3) C6—C1—C8—C9 17                                                                                                                                                                                                                                                                                                                                                                                                                                         | 77.8 (2)                                                                                                                                                     |
| C1—C2—C3—C4 0.6 (4) N3—N2—C9—C8 -2                                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.0 (4)                                                                                                                                                     |
| C2—C3—C4—C5 –0.4 (4) Ni1—N2—C9—C8 17                                                                                                                                                                                                                                                                                                                                                                                                                                         | 73.7 (2)                                                                                                                                                     |
| C3—C4—C5—C6 0.1 (4) C7—C8—C9—N2 -7                                                                                                                                                                                                                                                                                                                                                                                                                                           | -7.0 (5)                                                                                                                                                     |
| C7—N1—C6—C5 179.2 (2) C1—C8—C9—N2 17                                                                                                                                                                                                                                                                                                                                                                                                                                         | 76.5 (2)                                                                                                                                                     |
| C7—N1—C6—C1 0.1 (3) N2—N3—C10—N4 17                                                                                                                                                                                                                                                                                                                                                                                                                                          | 79.1 (2)                                                                                                                                                     |
| C4—C5—C6—N1 –178.9 (2) N2—N3—C10—S1 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                      | .4 (3)                                                                                                                                                       |
| C4—C5—C6—C1 0.1 (4) Ni1—S1—C10—N3 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.4 (2)                                                                                                                                                      |
| C2—C1—C6—N1 179.3 (2) Ni1—S1—C10—N4 -1                                                                                                                                                                                                                                                                                                                                                                                                                                       | -172.37(19)                                                                                                                                                  |

Symmetry code: (i) -x+1, -y+1, -z+1.

## Hydrogen-bond geometry (Å, °)

| D—H···A                   | D—H      | H···A    | D····A    | <i>D</i> —H··· <i>A</i> |
|---------------------------|----------|----------|-----------|-------------------------|
| N1—H1n···N3 <sup>ii</sup> | 0.88 (3) | 2.06 (2) | 2.876 (3) | 155 (3)                 |

Symmetry code: (ii) –*x*+1, *y*+1/2, –*z*+3/2.