Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-2-[2-(2-Thienyl)vinyl]-1H-1,3benzimidazole

Tian Hang and Oiong Ye*

Ordered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: yeqiong@seu.edu.cn

Received 27 January 2008; accepted 7 March 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.085; wR factor = 0.214; data-to-parameter ratio = 18.2.

In the title compound, $C_{13}H_{10}N_2S$, the dihedral angle between the imidazole and thiophene rings is $16.89 (19)^{\circ}$, and the double bond adopts an E configuration. In the crystal structure, N-H···N hydrogen bonds link the molecules into rows along b. There is also evidence of weak $C-H \cdots S$ interactions.

Related literature

For general background, see: Huang et al. (2003); Wang et al. (2005); Ye et al. (2006, 2007). For the crystal structures of related compounds, see: Ozbey et al. (1998); Li & Clarkson (2007).

Experimental

Crystal data	
$C_{13}H_{10}N_2S$	V = 2304.1 (7) Å ³
$M_r = 226.06$	Z = 8
Orthorhombic, Pnna	Mo $K\alpha$ radiation
a = 12.239 (2) Å	$\mu = 0.25 \text{ mm}^{-1}$
b = 16.389 (3) Å	T = 293 (2) K
c = 11.487 (2) Å	$0.15 \times 0.10 \times 0.07 \text{ mm}$


```
Rigaku Mercury2 diffractometer
Absorption correction: multi-scan
  (CrystalClear; Rigaku, 2005)
  T_{\min} = 0.796, \ T_{\max} = 1.000
  (expected range = 0.782 - 0.983)
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.084$ $wR(F^2) = 0.214$ S = 1.072637 reflections 145 parameters

21849 measured reflections 2637 independent reflections 1360 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.145$

l restraint	
H-atom parameters constrained	
$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$	
$\Delta \rho_{\rm min} = -0.28 \ {\rm e} \ {\rm \AA}^{-3}$	

Table 1

Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C11 - H11A \cdots S1$	0.93	2.76	3.161 (4)	107
N1 - H1B \cdots N1 ⁱ	0.86	2.01	2.865 (6)	170
N2 - H2B \cdots N2 ⁱⁱ	0.86	2.11	2.906 (5)	154

Symmetry codes: (i) $-x + \frac{3}{2}, -y, z$; (ii) $x, -y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by a Start-up Grant from Southeast University (to YQ).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2460).

References

- Huang, X.-C., Zhang, J.-P. & Chen, X.-M. (2003). Chin. Sci. Bull. 48, 1531-1534
- Li, L. & Clarkson, G. J. (2007). Org. Lett. 9, 497-500.
- Ozbey, S., Ide, S. & Kendi, E. (1998). J. Mol. Struct. 442, 23-30.
- Rigaku (2005). CrystalClear. Version 1.4.0. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, X.-S., Song, Y.-M., Ye, Q. & Xiong, R.-G. (2005). Chin. Sci. Bull. 50, 2317-2340.
- Ye, Q., Song, Y.-M., Fu, D.-W., Wang, G.-X. & Xiong, R.-G. (2007). Cryst. Growth Des. 7, 1568-1570.
- Ye, Q., Song, Y.-M., Wang, G.-X. & Xiong, R.-G. (2006). J. Am. Chem. Soc. 128, 6554-6555.

supporting information

Acta Cryst. (2008). E64, o964 [doi:10.1107/S1600536808006405]

(E)-2-[2-(2-Thienyl)vinyl]-1H-1,3-benzimidazole

Tian Hang and Qiong Ye

S1. Comment

It has been generally accepted that imidazole groups play an important role in coordination chemistry (Huang *et al.*, 2003). A flexible ligand readily induces coordination compounds to crystallize in non-centrosymmetric space groups, which makes it possible to investigate their interesting physical properties such as second harmonic generation, ferroelectric and piezoelectric properties (Wang *et al.*, 2005). As a continuation of our work in this field, (Ye *et al.*, 2006, 2007), we have synthesized the title compound, 1, Fig 1.

The title compound, $C_{12}H_{10}N_2S$, was successfully prepared through the reaction between 2-methyl-1*H*-benzo[*d*]imidazole and thiophene-2-carbaldehyde. It adopts a *trans* configuration about the C9?C11 bond and the dihedral angle between the mean plane of the imidazole ring and thiophenyl ring is 16.89 (19)°. The crystal packing is dominated by N—H···N interactions linking the molecules into rows along b, Fig 2. There is also evidence of weak C—H···S interactions.

S2. Experimental

2-methyl-1*H*-benzo[*d*]imidazole (10 mmol, 1.32 g) and thiophene-2-carbaldehyde (45 mmol, 5.04 g) were reacted as a melt at 180°C with stirring for 18 h. Then 20 ml 2-propanol and 1.5 g oxalic acid were added to the reaction mixture, the solution filtered and the precipitate washed with copious quantities of boiling water. The pH was adjusted to 8–9 with ammonia to afford the title compound as a pale-yellow solid powder. Crystals suitable for single-crystal X-ray diffraction studies were obtained by slow evaporation of a solution in ethanol at room temperature over several days.

S3. Refinement

All carbon-bound H atoms were positioned geometrically, with C—H = 0.93 Å and included in the refinement as riding, with $U_{iso}(H) = 1.2U_{eq}$. The H atoms attached to N were found in the difference Fourier map and were subsequently treated as riding atoms, with N—H = 0.86 Å, and $U_{iso}(H) = 1.2U_{eq}(N)$.

Figure 1

The molecular structure of the compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

Figure 2

The crystal packing of 1 with hydrogen bonds drawn as dashed lines.

(E)-2-[2-(2-Thienyl)vinyl]-1H-1,3-benzimidazole

Crystal data	
$C_{13}H_{10}N_2S$ b	= 16.389 (3) Å
$M_r = 226.06$ c =	= 11.487 (2) Å
Orthorhombic, Pnna V	= 2304.1 (7) Å ³
Hall symbol: -P 2a 2bc Z	= 8
a = 12.239 (2) Å F((000) = 944

 $D_x = 1.305 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 14820 reflections $\theta = 3.0-29.2^{\circ}$

Data collection

Mercury2 (2x2 bin mode) diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 13.6612 pixels mm⁻¹ CCD profile fitting scans Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{min} = 0.796, T_{max} = 1.000$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.084$	Hydrogen site location: inferred from
$wR(F^2) = 0.214$	neighbouring sites
S = 1.07	H-atom parameters constrained
2637 reflections	$w = 1/[\sigma^2(F_o^2) + (0.081P)^2 + 0.7151P]$
145 parameters	where $P = (F_o^2 + 2F_c^2)/3$
1 restraint	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\mu = 0.25 \text{ mm}^{-1}$

Block, colorless

 $0.15\times0.10\times0.07~mm$

 $\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.3^{\circ}$

21849 measured reflections

2637 independent reflections

1360 reflections with $I > 2\sigma(I)$

T = 293 K

 $R_{\rm int} = 0.145$

 $h = -15 \rightarrow 15$ $k = -21 \rightarrow 21$

 $l = -14 \rightarrow 14$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1	0.88515 (10)	0.06908 (7)	0.51647 (11)	0.0801 (5)	
N1	0.6821 (2)	0.07121 (18)	0.1000 (3)	0.0577 (9)	
H1B	0.7264	0.0309	0.0924	0.069*	0.50
N2	0.5945 (2)	0.17665 (16)	0.1790 (2)	0.0452 (7)	
H2B	0.5751	0.2134	0.2283	0.054*	0.50
C1	0.5111 (4)	0.1178 (3)	-0.1555 (4)	0.0824 (14)	
H1A	0.4956	0.1028	-0.2319	0.099*	
C2	0.8179 (4)	0.1317 (3)	0.7051 (4)	0.0898 (15)	
H2A	0.8136	0.1453	0.7836	0.108*	
C3	0.8987 (5)	0.0855 (3)	0.6610 (4)	0.0890 (16)	
H3A	0.9559	0.0647	0.7053	0.107*	
C4	0.7391 (3)	0.1583 (3)	0.6209 (3)	0.0653 (11)	

H4A	0.6790	0.1913	0.6364	0.078*	
C5	0.5901 (4)	0.0750 (3)	-0.0942 (4)	0.0753 (13)	
H5A	0.6278	0.0316	-0.1277	0.090*	
C6	0.4751 (3)	0.2076 (2)	0.0054 (3)	0.0604 (11)	
H6A	0.4376	0.2514	0.0381	0.073*	
C7	0.4546 (4)	0.1825 (3)	-0.1057 (4)	0.0720 (12)	
H7A	0.4015	0.2094	-0.1492	0.086*	
C8	0.7672 (3)	0.1264 (2)	0.5105 (3)	0.0581 (10)	
С9	0.7079 (3)	0.1380 (2)	0.4039 (3)	0.0532 (10)	
H9A	0.6461	0.1709	0.4074	0.064*	
C10	0.6101 (3)	0.0995 (2)	0.0186 (3)	0.0515 (9)	
C11	0.7328 (3)	0.1064 (2)	0.3007 (3)	0.0526 (10)	
H11A	0.7950	0.0740	0.2961	0.063*	
C12	0.6700 (3)	0.1188 (2)	0.1941 (3)	0.0479 (9)	
C13	0.5538 (3)	0.1655 (2)	0.0678 (3)	0.0461 (9)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0830 (9)	0.0654 (8)	0.0918 (10)	-0.0012 (6)	-0.0304 (7)	0.0032 (6)
N1	0.0607 (19)	0.0583 (19)	0.054 (2)	0.0158 (16)	-0.0072 (15)	-0.0140 (16)
N2	0.0532 (17)	0.0401 (16)	0.0422 (17)	0.0063 (13)	0.0015 (13)	-0.0027 (13)
C1	0.097 (3)	0.096 (4)	0.054 (3)	0.004 (3)	-0.017 (3)	-0.015 (3)
C2	0.113 (4)	0.106 (4)	0.050 (3)	-0.026 (3)	-0.023 (2)	0.013 (3)
C3	0.112 (4)	0.076 (3)	0.079 (4)	-0.023 (3)	-0.043 (3)	0.023 (3)
C4	0.070 (3)	0.081 (3)	0.045 (2)	-0.018 (2)	-0.0037 (18)	0.001 (2)
C5	0.083 (3)	0.079 (3)	0.064 (3)	0.018 (2)	-0.011 (2)	-0.028 (2)
C6	0.072 (3)	0.054 (2)	0.055 (2)	0.009 (2)	-0.009 (2)	0.001 (2)
C7	0.081 (3)	0.071 (3)	0.064 (3)	0.009 (2)	-0.021 (2)	0.007 (2)
C8	0.063 (2)	0.051 (2)	0.061 (3)	-0.0153 (19)	-0.014 (2)	0.0087 (19)
C9	0.055 (2)	0.049 (2)	0.056 (3)	-0.0009 (18)	-0.0023 (18)	0.0054 (18)
C10	0.053 (2)	0.051 (2)	0.051 (2)	0.0034 (18)	-0.0051 (18)	-0.0070 (18)
C11	0.051 (2)	0.048 (2)	0.059 (3)	0.0005 (17)	-0.0004 (19)	-0.0009 (18)
C12	0.048 (2)	0.049 (2)	0.047 (2)	-0.0011 (17)	0.0016 (17)	0.0022 (17)
C13	0.052 (2)	0.0418 (19)	0.044 (2)	-0.0023 (17)	0.0020 (17)	0.0001 (16)

Geometric parameters (Å, °)

S1—C3	1.690 (5)	C4—C8	1.415 (5)	
S1—C8	1.723 (4)	C4—H4A	0.9300	
N1-C12	1.341 (4)	C5—C10	1.379 (5)	
N1-C10	1.366 (4)	С5—Н5А	0.9300	
N1—H1B	0.8600	C6—C7	1.365 (5)	
N2-C12	1.335 (4)	C6—C13	1.385 (5)	
N2—C13	1.383 (4)	C6—H6A	0.9300	
N2—H2B	0.8600	C7—H7A	0.9300	
C1—C5	1.386 (6)	C8—C9	1.436 (5)	
C1—C7	1.390 (6)	C9—C11	1.329 (5)	

C1—H1A	0.9300	С9—Н9А	0.9300
C2—C3	1.344 (6)	C10—C13	1.401 (5)
C2—C4	1.435 (6)	C11—C12	1.461 (4)
C2—H2A	0.9300	C11—H11A	0.9300
С3—НЗА	0.9300		
C3—S1—C8	92.0 (3)	С7—С6—Н6А	121.3
C12—N1—C10	106.4 (3)	С13—С6—Н6А	121.3
C12—N1—H1B	126.8	C6—C7—C1	121.6 (4)
C10—N1—H1B	126.8	С6—С7—Н7А	119.2
C12—N2—C13	106.0 (3)	С1—С7—Н7А	119.2
C12—N2—H2B	127.0	C4—C8—C9	126.3 (4)
C13—N2—H2B	127.0	C4—C8—S1	111.7 (3)
C5—C1—C7	121.6 (4)	C9—C8—S1	122.0 (3)
C5—C1—H1A	119.2	С11—С9—С8	126.3 (4)
C7—C1—H1A	119.2	С11—С9—Н9А	116.8
C3—C2—C4	114.3 (4)	С8—С9—Н9А	116.8
C3—C2—H2A	122.8	N1—C10—C5	131.2 (4)
C4—C2—H2A	122.8	N1—C10—C13	107.7 (3)
C2—C3—S1	112.8 (4)	C5-C10-C13	121.1 (4)
С2—С3—НЗА	123.6	C9—C11—C12	125.0 (3)
S1—C3—H3A	123.6	C9—C11—H11A	117.5
C8—C4—C2	109.2 (4)	C12—C11—H11A	117.5
C8—C4—H4A	125.4	N1—C12—N2	112.7 (3)
C2—C4—H4A	125.4	N1—C12—C11	122.5 (3)
C1—C5—C10	117.0 (4)	N2—C12—C11	124.9 (3)
C1—C5—H5A	121.5	N2—C13—C6	131.5 (3)
С10—С5—Н5А	121.5	N2-C13-C10	107.3 (3)
C7—C6—C13	117.5 (4)	C6—C13—C10	121.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···· A	D—H···A
C11—H11A····S1	0.93	2.76	3.161 (4)	107
N1—H1 <i>B</i> ····N1 ⁱ	0.86	2.01	2.865 (6)	170
$N2$ — $H2B$ ···· $N2^{ii}$	0.86	2.11	2.906 (5)	154

Symmetry codes: (i) -x+3/2, -y, z; (ii) x, -y+1/2, -z+1/2.