metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[(*E*)-4-chloro-2-(2-furylmethyliminomethyl)phenolato]iron(II)

Dong-Sheng Xia, Wu Chen, Jing Huang and Qing-Fu Zeng*

Engineering Research Center for Clean Production of Textile Printing, Ministry of Education, Wuhan University of Science and Engineering, Wuhan 430073, People's Republic of China

Correspondence e-mail: qingfu_zeng@163.com

Received 21 May 2008; accepted 23 May 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.021 Å; *R* factor = 0.061; *wR* factor = 0.203; data-to-parameter ratio = 8.4.

The Fe atom of the title compound, $[Fe(C_{12}H_9CINO_2)_2]$, lies on a crystallographic twofold rotation axis. The Fe^{II} atom is four-coordinated in a tetrahedral geometry by the O and N atoms of the two Schiff base ligands. The O atom of the furan substituent in the ligand unit is not involved in coordination to the Fe atom.

Related literature

For related structures, see: Chen & Wang (2006); Chen *et al.* (2007); Ran *et al.* (2006); Ye *et al.* (2007); Zhu *et al.* (2003).

Experimental

Crystal data

 $[Fe(C_{12}H_9CINO_2)_2]$ $M_r = 525.15$ Monoclinic, C2 a = 22.550 (4) Å b = 4.6270 (6) Å c = 13.822 (3) Å $\beta = 127.73$ (3)° $V = 1140.6 \text{ (4) } \text{Å}^{3}$ Z = 2Mo K\alpha radiation $\mu = 0.93 \text{ mm}^{-1}$ T = 298 (2) K $0.21 \times 0.21 \times 0.20 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	1314 measured reflections
diffractometer	1262 independent reflections
Absorption correction: multi-scan	973 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.035$
$T_{\min} = 0.829, T_{\max} = 0.836$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.060$	H-atom parameters constrained
$wR(F^2) = 0.203$	$\Delta \rho_{\rm max} = 0.60 \text{ e } \text{\AA}^{-3}$
S = 1.06	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$
1262 reflections	Absolute structure: Flack (1983),
151 parameters	with no Friedel pairs
l restraint	Flack parameter: -0.02 (9)

Table 1

Fe1

01-01-

Selected	geometric	parameters	(Å,	°))
----------	-----------	------------	-----	----	---

-01	1.888 (8)	Fe1-N1	1.992 (8)
-Fe1-O1 ⁱ	124.0 (6)	$O1-Fe1-N1^i$	113.5 (3)
-Fe1-N1	95.2 (3)	$N1-Fe1-N1^i$	117.3 (5)

Symmetry code: (i) -x + 1, y, -z + 1.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors appreciate the generous financial support of this work by the Chinese Funds for Zhicheng Project (No. 2006BAC02A11) and Wuhan Yindao project (No. 20066009138-07).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2505).

References

Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, K. & Wang, J.-H. (2006). Acta Cryst. E62, m2305-m2306.

Chen, K., Zhang, Y.-L., Feng, M.-Q. & Liu, C.-H. (2007). Acta Cryst. E63, m2033.

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Ran, J.-W., Gong, D.-J. & Li, Y.-H. (2006). Acta Cryst. E62, m2668-m2669.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Ye, Y.-H., Han, Y., Chen, T.-T. & Liu, C.-H. (2007). Acta Cryst. E63, m1963. Zhu, H.-L., Xia, D.-S., Zeng, Q.-F., Wang, Z.-G. & Wang, D.-Q. (2003). Acta Cryst. E59, m1020–m1021.

supporting information

Acta Cryst. (2008). E64, m844 [doi:10.1107/S1600536808015559]

Bis[(E)-4-chloro-2-(2-furylmethyliminomethyl)phenolato]iron(II)

Dong-Sheng Xia, Wu Chen, Jing Huang and Qing-Fu Zeng

S1. Comment

As part of our ongoing interest in the structure of iron complexes (Zhu *et al.*, 2003), we report herein the crystal structure of the title compound, a new mononuclear iron(II) complex, (I), Fig. 1, derived from the Schiff base ligand 4-chloro-2-[(furan-2-ylmethylimino)methyl]phenol.

Compound (I) possesses crystallographic two-fold symmetry. The Fe^{II} atom in (I) is four-coordinate in a tetrahedral geometry, binding to the O and N atoms of two Schiff base ligands. The O atom of the furan substituent in the ligand lies well away from the coordination sphere of the Fe atom. The coordinate bond values (Table 1) are comparable to values observed in other iron(II) complexes (Chen & Wang, 2006; Chen *et al.*, 2007; Ran *et al.*, 2006; Ye *et al.*, 2007).

S2. Experimental

5-Chlorosalicylaldehyde (62.4 mg, 0.2 mmol), furan-2-ylmethylamine (19.4 mg, 0.2 mmol), and FeCl₂ (12.6 mg, 0.1 mmol) were dissolved in methanol (30 ml). The mixture was stirred for 30 min at room temperature. The resulting solution was kept still in air for a few days, yielding brown crystals.

S3. Refinement

H atoms were placed in idealized positions and constrained to ride on their parent atoms with C–H distances in the range 0.93–0.97 Å, and with U_{iso} (H) set at 1.2 U_{eq} (C).

Figure 1

The structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme. Numbered atoms are related to un-numbered atoms by the symmetry code 1-x, y, 1-z.

Bis[(E)-4-chloro-2-(2-furylmethyliminomethyl)phenolato]iron(II)

Crystal data	
$[Fe(C_{12}H_9CINO_2)_2]$ $M_r = 525.15$ Monoclinic, C2 Hall symbol: C 2y a = 22.550 (4) Å b = 4.6270 (6) Å c = 13.822 (3) Å $\beta = 127.73$ (3)° V = 1140.6 (4) Å ³ Z = 2	F(000) = 536 $D_x = 1.529 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 823 reflections $\theta = 2.4-26.2^{\circ}$ $\mu = 0.93 \text{ mm}^{-1}$ T = 298 K Block, brown $0.21 \times 0.21 \times 0.20 \text{ mm}$
Data collection Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.829, T_{\max} = 0.836$	1314 measured reflections 1262 independent reflections 973 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = -21 \rightarrow 27$ $k = -5 \rightarrow 0$ $l = -17 \rightarrow 0$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.060$	H-atom parameters constrained
$wR(F^2) = 0.203$	$w = 1/[\sigma^2(F_o^2) + (0.1149P)^2 + 2.2051P]$
S = 1.06	where $P = (F_o^2 + 2F_c^2)/3$
1262 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
151 parameters	$\Delta \rho_{\rm max} = 0.60 \text{ e } \text{\AA}^{-3}$
1 restraint	$\Delta ho_{ m min} = -0.40$ e Å ⁻³
Primary atom site location: structure-invariant	Extinction correction: SHELXL97 (Sheldrick,
direct methods	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.011 (3)
map	Absolute structure: Flack (1983), 0 Friedel pairs
	Absolute structure parameter: -0.02 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Fe1	0.5000	0.5044 (3)	0.5000	0.0419 (6)
C11	0.87863 (17)	0.7649 (11)	1.0179 (3)	0.0929 (13)
N1	0.5246 (5)	0.728 (2)	0.6435 (8)	0.055 (2)
O1	0.5933 (4)	0.313 (2)	0.5865 (7)	0.067 (2)
O2	0.4619 (6)	0.600 (3)	0.7844 (9)	0.102 (4)
C1	0.6584 (5)	0.630 (3)	0.7611 (9)	0.053 (2)
C2	0.6554 (5)	0.419 (2)	0.6848 (9)	0.053 (3)
C3	0.7253 (6)	0.309 (3)	0.7192 (11)	0.069 (3)
Н3	0.7250	0.1686	0.6709	0.083*
C4	0.7929 (6)	0.406 (3)	0.8218 (11)	0.068 (3)
H4	0.8377	0.3317	0.8429	0.081*
C5	0.7933 (6)	0.620 (3)	0.8943 (10)	0.065 (3)
C6	0.7284 (6)	0.737 (3)	0.8663 (10)	0.070 (3)
H6	0.7300	0.8824	0.9145	0.084*
C7	0.5937 (6)	0.759 (3)	0.7390 (10)	0.066 (3)
H7	0.6021	0.8786	0.8003	0.079*
C8	0.4677 (6)	0.890 (3)	0.6455 (11)	0.067 (3)
H8A	0.4926	1.0336	0.7100	0.080*
H8B	0.4329	0.9882	0.5681	0.080*
C9	0.4259 (6)	0.683 (3)	0.6671 (10)	0.061 (3)
C10	0.4146 (12)	0.427 (6)	0.786 (2)	0.137 (10)
H10	0.4242	0.3498	0.8560	0.164*

supporting information

C11	0.3509 (10)	0.381 (4)	0.6710 (18)	0.105 (6)	
H11	0.3109	0.2606	0.6466	0.126*	
C12	0.3594 (7)	0.555 (4)	0.5982 (13)	0.087 (5)	
H12	0.3238	0.5781	0.5141	0.104*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Fe1	0.0384 (9)	0.0462 (11)	0.0399 (9)	0.000	0.0233 (7)	0.000
C11	0.0661 (17)	0.122 (3)	0.0664 (18)	-0.012 (2)	0.0279 (15)	0.017 (2)
N1	0.062 (5)	0.047 (5)	0.065 (5)	0.000 (5)	0.044 (4)	-0.005 (4)
01	0.065 (4)	0.068 (6)	0.066 (4)	-0.001 (4)	0.040 (4)	-0.017 (4)
O2	0.093 (6)	0.136 (12)	0.089 (6)	0.016 (7)	0.062 (5)	0.022 (7)
C1	0.052 (5)	0.054 (6)	0.053 (5)	0.001 (5)	0.032 (5)	0.006 (5)
C2	0.053 (5)	0.050 (8)	0.053 (5)	0.005 (5)	0.031 (5)	0.009 (5)
C3	0.061 (6)	0.062 (8)	0.088 (8)	-0.007 (6)	0.048 (6)	-0.008 (7)
C4	0.056 (6)	0.070 (9)	0.081 (7)	0.012 (6)	0.043 (6)	0.019 (7)
C5	0.048 (6)	0.081 (9)	0.055 (6)	0.001 (6)	0.026 (5)	0.013 (6)
C6	0.071 (7)	0.077 (9)	0.059 (6)	-0.001 (7)	0.038 (6)	0.010 (7)
C7	0.074 (7)	0.067 (8)	0.054 (6)	-0.004 (7)	0.038 (6)	0.002 (6)
C8	0.070 (7)	0.059 (7)	0.079 (7)	0.019 (6)	0.049 (6)	0.009 (6)
C9	0.061 (6)	0.067 (8)	0.070 (7)	0.011 (6)	0.048 (6)	0.005 (6)
C10	0.161 (17)	0.15 (3)	0.199 (19)	0.037 (18)	0.158 (17)	0.06 (2)
C11	0.112 (12)	0.085 (11)	0.167 (17)	0.000 (11)	0.110 (13)	-0.004 (13)
C12	0.080 (8)	0.088 (14)	0.102 (9)	-0.001 (9)	0.061 (8)	-0.007 (9)

Geometric parameters (Å, °)

Fel—Ol	1.888 (8)	С3—Н3	0.9300	
Fe1—O1 ⁱ	1.888 (8)	C4—C5	1.402 (17)	
Fe1—N1	1.992 (8)	C4—H4	0.9300	
Fe1—N1 ⁱ	1.992 (8)	C5—C6	1.377 (16)	
Cl1—C5	1.746 (12)	С6—Н6	0.9300	
N1—C7	1.294 (13)	C7—H7	0.9300	
N1-C8	1.499 (12)	C8—C9	1.493 (16)	
O1—C2	1.310 (12)	C8—H8A	0.9700	
O2—C10	1.34 (2)	C8—H8B	0.9700	
О2—С9	1.352 (14)	C9—C12	1.328 (18)	
C1—C2	1.411 (14)	C10—C11	1.35 (2)	
C1—C7	1.424 (15)	C10—H10	0.9300	
C1—C6	1.429 (15)	C11—C12	1.39 (2)	
С2—С3	1.431 (15)	C11—H11	0.9300	
C3—C4	1.374 (16)	C12—H12	0.9300	
$O1$ —Fe1— $O1^i$	124.0 (6)	C4—C5—C11	119.4 (9)	
O1—Fe1—N1	95.2 (3)	C5—C6—C1	118.1 (13)	
O1 ⁱ —Fe1—N1	113.5 (3)	С5—С6—Н6	121.0	
O1—Fe1—N1 ⁱ	113.5 (3)	С1—С6—Н6	121.0	

O1 ⁱ —Fe1—N1 ⁱ	95.2 (3)	N1—C7—C1	127.6 (11)
N1—Fe1—N1 ⁱ	117.3 (5)	N1—C7—H7	116.2
C7—N1—C8	115.9 (9)	С1—С7—Н7	116.2
C7—N1—Fe1	120.0 (8)	C9—C8—N1	109.7 (10)
C8—N1—Fe1	123.9 (7)	C9—C8—H8A	109.7
C2-O1-Fe1	123.4 (7)	N1—C8—H8A	109.7
C10—O2—C9	106.7 (14)	C9—C8—H8B	109.7
C2—C1—C7	123.7 (10)	N1—C8—H8B	109.7
C2—C1—C6	121.3 (10)	H8A—C8—H8B	108.2
C7—C1—C6	115.0 (11)	C12—C9—O2	108.5 (12)
O1—C2—C1	124.5 (9)	C12—C9—C8	135.8 (12)
O1—C2—C3	118.3 (10)	O2—C9—C8	115.7 (11)
C1—C2—C3	117.3 (9)	O2—C10—C11	111.3 (16)
C4—C3—C2	121.8 (12)	O2-C10-H10	124.4
С4—С3—Н3	119.1	C11—C10—H10	124.4
С2—С3—Н3	119.1	C10-C11-C12	103.7 (16)
C3—C4—C5	119.1 (10)	C10-C11-H11	128.2
C3—C4—H4	120.5	C12—C11—H11	128.2
С5—С4—Н4	120.5	C9—C12—C11	109.7 (14)
C6—C5—C4	122.4 (11)	С9—С12—Н12	125.2
C6—C5—Cl1	117.9 (11)	C11—C12—H12	125.2

Symmetry code: (i) -x+1, y, -z+1.