organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 2-(5-bromo-2-methylnaphtho-[2,1-b]furan-1-yl)acetate

Martyn Jevric,^a Dennis K. Taylor^b‡ and Edward R. T. Tiekink^c*

^aDepartment of Chemistry, The University of Adelaide, 5005 South Australia, Australia, ^bDepartment of Wine and Horticulture, The University of Adelaide, Waite Campus, Glen Osmond 5064, South Australia, Australia, and ^cDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA

Correspondence e-mail: edward.tiekink@utsa.edu

Received 20 May 2008; accepted 22 May 2008

Key indicators: single-crystal X-ray study; T = 223 K; mean σ (C–C) = 0.004 Å; R factor = 0.045; wR factor = 0.137; data-to-parameter ratio = 20.9.

The three fused six-, six- and five-membered rings in the title compound, $C_{16}H_{13}BrO_3$, are coplanar, the $CH_2C(=O)OCH_3$ residue being twisted out of this plane [dihedral angle = $-26.9 (4)^{\circ}$]. Centrosymmetric dimers are found in the crystal structure stabilized by $C-H \cdots O$ interactions involving the furan O atom.

Related literature

For related literature, see: Chatterjea *et al.* (1979); Einhorn *et al.* (1983); Monte *et al.* (1996); Jevric *et al.* (2008).

Experimental

Crystal data

Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{min} = 0.492, T_{max} = 1.000$ (expected range = 0.299–0.607)

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.044$	183 parameters
$vR(F^2) = 0.136$	H-atom parameters constrained
S = 1.13	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$
8817 reflections	$\Delta \rho_{\rm min} = -0.77 \ {\rm e} \ {\rm \AA}^{-3}$

10676 measured reflections

 $R_{\rm int} = 0.035$

3817 independent reflections

2967 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

 $D-H\cdots A$ D-H $H\cdots A$ $D\cdots A$ $D-H\cdots A$
 $C4-H4\cdots O3^i$ 0.94 2.58 3.468 (4)
 157

Symmetry code: (i) -x, -y + 1, -z + 1.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPII* (Johnson, 1976) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *SHELXL97*.

We are grateful to the Australian Research Council for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2059).

References

Altomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435–435.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin U.S. A.

Chatterjea, J. N., Lal, S., Jha, U., Rycroft, D. S. & Carnduff, J. (1979). J. Chem. Res. Synop. pp. 356–356.

Einhorn, J., Demerseman, P., Royer, R. & Cavier, R. (1983). Eur. J. Med. Chem. 18, 175–180.

Jevric, M., Taylor, D. K. & Tiekink, E. R. T. (2008). Acta Cryst. E64, 01167.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Monte, A. P., Marona-Lewicka, D., Parker, M. A., Wainscott, D. B., Nelson, D. L. & Nichols, D. E. (1996). J. Med. Chem. 39, 2953–2961.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

‡ Additional correspondence e-mail: dennis.taylor@adelaide.edu.au.

supporting information

Acta Cryst. (2008). E64, o1168 [doi:10.1107/S1600536808015511]

Methyl 2-(5-bromo-2-methylnaphtho[2,1-b]furan-1-yl)acetate

Martyn Jevric, Dennis K. Taylor and Edward R. T. Tiekink

S1. Comment

Little has been done on observing aromatic electrophillic substitutions on polycyclic aromatic systems related to 1 shown in Fig. 3 (Chatterjea *et al.*, 1979). Previous work showed that substitution should proceed at position five in the ring system of 1 (Chatterjea *et al.*, 1979). Treatment of 1 with bromine in acetic acid according to a literature procedure (Einhorn *et al.*, 1983 & Monte *et al.*, 1996) gave the title compound (I) as the sole isolatable product. ¹H NMR analysis of (I) showed five aromatic proton signals, two of which experienced two large *ortho* couplings and one a singlet (δ 7.81). This coupling pattern indicated that an aromatic electrophilic substitution had occurred on the ring adjoining the furan. However, although all signals were unobscured it was not possible to assign the *peri* proton as no detectable crosspeak in the ROESY spectrum was observed. X-ray crystallography showed that the position of the bromine substitution was in accordance with previous literature (Chatterjea *et al.*, 1979).

Compound (I), Fig. 1, is comprised of three fused rings; two six-membered rings (A & B) and one five-membered ring (C). The respective A/B, A/C & B/C dihedral angles between their least-squares planes are 1.88 (13), 4.16 (15) & 2.48 (14)°. The CH₂C(=O)OCH₃ residue is twisted out of the tricyclic system, as seen in the value of the C1/C11/C12/O12 torsion angle of -26.9 (4)°. The crystal packing features centrosymmetric dimers consolidated by C— H…O contacts involving the furan-O atom; Table 1 and Fig. 2.

The structure of the related compound 2-(2-methylnaphtho[2,1-*b*]furan-1-yl)acetic acid has been reported in the preceding paper (Jevric *et al.*, 2008).

S2. Experimental

Compound (I) was formed (Einhorn *et al.*, 1983 & Monte *et al.*, 1996) in 88% yield as a colourless solid recrystallized from n-heptane; m.p.: 391 - 393 K. $R_f = 0.24$ (12% acetone in hexane). IR (CH₂Cl₂, cm⁻¹) 1741, 1618, 1577, 1521. ¹H NMR (d₆-benzene, 600 MHz) δ 2.00 (s, 3H), 3.21 (s, 3H), 3.41 (s, 2H), 7.27 (ddd, J = 7.0, 7.0, 1.2 Hz, 1H), 7.38 (ddd, J = 7.0, 7.0, 1.2 Hz, 1H), 7.81 (s, 1H), 8.36 (dd, J = 7.0, 1.2 Hz, 1H), 8.46 (dd, J = 7.0, 1.2 Hz, 1H) p.p.m.. ¹³C NMR (CDCl₃, 50 MHz) δ 11.9, 31.4, 52.3, 109.5, 116.5, 118.1, 122.3, 123.1, 125.2, 126.9, 128.3, 128.4, 128.8, 150.7, 152.9, 171.3 p.p.m.. MS m/z (%): 332 (*M*+, 100), 273 (93), 259 (25), 194 (37), 165 (62). HRMS, C₁₆H₁₃BrO₃: calcd, 332.0049; found 332.0062.

S3. Refinement

All H atoms were included in calculated positions and treated as riding atoms: C—H = 0.94 - 0.98 Å, and with $U_{iso}(H) = 1.5$ or $1.2U_{eq}(C)$.

Figure 1

The molecular structure of compound (I) showing the atom-labelling scheme and displacement ellipsoids drawn at the 50% probability level.

Figure 2

Crystal packing of compound (I) viewed in projection down the c axis, highlighting the stacking of the dimeric aggregates. Colour scheme olive (Br), red (O), grey (C), and green (H). The C—H…O contacts are shown as orange dashed lines.

Figure 3

The formation of the title compound.

Methyl 2-(5-bromo-2-methylnaphtho[2,1-b]furan-1-yl)acetate

Crystal data

C₁₆H₁₃BrO₃ $M_r = 333.17$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 17.050 (2) Å b = 14.5064 (17) Å c = 5.3660 (7) Å $\beta = 96.443$ (3)° V = 1318.8 (3) Å³ Z = 4

Data collection

Bruker SMART CCD	1
diffractometer	3
Radiation source: fine-focus sealed tube	2
Graphite monochromator	K
ωscans	6
Absorption correction: multi-scan	h
(SADABS; Bruker, 2000)	k
$T_{\min} = 0.492, \ T_{\max} = 1.0$	l

F(000) = 672 $D_x = 1.678 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71069 \text{ Å}$ Cell parameters from 2984 reflections $\theta = 2.4-29.7^{\circ}$ $\mu = 3.12 \text{ mm}^{-1}$ T = 223 KPlate, pale-yellow $0.68 \times 0.18 \times 0.16 \text{ mm}$

10676 measured reflections 3817 independent reflections 2967 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 30.1^{\circ}, \ \theta_{min} = 1.2^{\circ}$ $h = -23 \rightarrow 23$ $k = -14 \rightarrow 20$ $l = -7 \rightarrow 7$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.136$	neighbouring sites
<i>S</i> = 1.13	H-atom parameters constrained
3817 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0586P)^2 + 0.71P]$
183 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.47$ e Å ⁻³
direct methods	$\Delta ho_{\min} = -0.77 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br5	0.04963 (2)	0.33514 (2)	-0.16830 (6)	0.04284 (14)	
03	0.10671 (11)	0.56263 (13)	0.5779 (4)	0.0285 (4)	
012	0.33445 (13)	0.68019 (14)	0.3251 (4)	0.0321 (4)	
013	0.44151 (12)	0.62588 (17)	0.5516 (4)	0.0379 (5)	
C1	0.23909 (16)	0.56919 (18)	0.6116 (5)	0.0242 (5)	
C2	0.17380 (16)	0.60179 (18)	0.7005 (5)	0.0258 (5)	
C3A	0.13162 (16)	0.50429 (18)	0.4058 (5)	0.0262 (5)	
C4	0.08136 (18)	0.45375 (19)	0.2380 (5)	0.0308 (6)	
H4	0.0263	0.4554	0.2388	0.037*	
C5	0.11641 (18)	0.40163 (19)	0.0720 (5)	0.0307 (6)	
C5A	0.19934 (18)	0.39606 (18)	0.0699 (5)	0.0293 (6)	
C6	0.2347 (2)	0.34180 (19)	-0.1028 (6)	0.0384 (7)	
H6	0.2027	0.3084	-0.2251	0.046*	
C7	0.3142 (2)	0.3368 (2)	-0.0963 (6)	0.0422 (8)	
H7	0.3368	0.3005	-0.2146	0.051*	
C8	0.3627 (2)	0.3850 (2)	0.0844 (6)	0.0371 (7)	
H8	0.4178	0.3802	0.0899	0.044*	
C9	0.33055 (18)	0.43933 (19)	0.2536 (5)	0.0306 (6)	
Н9	0.3639	0.4719	0.3744	0.037*	
C9A	0.24847 (17)	0.44736 (18)	0.2501 (5)	0.0268 (5)	
C9B	0.21225 (16)	0.50423 (17)	0.4179 (5)	0.0242 (5)	
C11	0.32098 (16)	0.59630 (19)	0.7023 (5)	0.0259 (5)	
H11A	0.3502	0.5416	0.7670	0.031*	
H11B	0.3199	0.6399	0.8413	0.031*	
C12	0.36339 (16)	0.63946 (18)	0.5035 (5)	0.0258 (5)	

C13	0.4870 (2)	0.6604 (3)	0.3638 (8)	0.0546 (10)	
H13A	0.4710	0.6295	0.2058	0.082*	
H13B	0.5425	0.6489	0.4141	0.082*	
H13C	0.4782	0.7262	0.3438	0.082*	
C21	0.16031 (19)	0.66841 (19)	0.8973 (6)	0.0315 (6)	
H21A	0.1419	0.6362	1.0380	0.047*	
H21B	0.1209	0.7129	0.8313	0.047*	
H21C	0.2093	0.7001	0.9526	0.047*	

Atomic displacement parameters (A

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Br5	0.0624 (3)	0.0341 (2)	0.02918 (18)	-0.01456 (14)	-0.00759 (14)	-0.00306 (11)
O3	0.0299 (10)	0.0309 (10)	0.0251 (9)	-0.0050 (8)	0.0054 (7)	-0.0038 (8)
O12	0.0351 (11)	0.0337 (11)	0.0268 (10)	0.0006 (8)	0.0003 (8)	0.0070 (8)
013	0.0265 (10)	0.0498 (13)	0.0375 (12)	0.0037 (9)	0.0032 (9)	0.0119 (10)
C1	0.0328 (14)	0.0211 (11)	0.0183 (11)	-0.0022 (10)	0.0018 (9)	0.0015 (9)
C2	0.0310 (13)	0.0232 (12)	0.0231 (12)	-0.0028 (10)	0.0025 (10)	0.0012 (9)
C3A	0.0322 (14)	0.0246 (12)	0.0221 (11)	-0.0042 (10)	0.0047 (10)	0.0012 (10)
C4	0.0345 (15)	0.0304 (14)	0.0267 (13)	-0.0095 (11)	0.0005 (11)	0.0013 (11)
C5	0.0427 (16)	0.0240 (12)	0.0238 (12)	-0.0093 (11)	-0.0036 (11)	0.0019 (10)
C5A	0.0463 (16)	0.0208 (12)	0.0206 (12)	-0.0010 (11)	0.0035 (11)	0.0027 (9)
C6	0.064 (2)	0.0249 (14)	0.0262 (14)	0.0001 (13)	0.0036 (13)	-0.0017 (11)
C7	0.069 (2)	0.0293 (15)	0.0304 (15)	0.0110 (15)	0.0131 (15)	-0.0013 (12)
C8	0.0463 (17)	0.0279 (14)	0.0382 (16)	0.0105 (13)	0.0101 (13)	0.0048 (12)
C9	0.0400 (15)	0.0239 (13)	0.0283 (13)	0.0031 (11)	0.0058 (11)	0.0036 (10)
C9A	0.0383 (15)	0.0198 (12)	0.0227 (12)	0.0002 (10)	0.0052 (10)	0.0030 (9)
C9B	0.0333 (14)	0.0191 (11)	0.0198 (11)	-0.0032 (10)	0.0010 (10)	0.0022 (9)
C11	0.0298 (13)	0.0262 (13)	0.0207 (11)	-0.0016 (10)	-0.0020 (10)	0.0021 (9)
C12	0.0294 (13)	0.0232 (12)	0.0239 (12)	0.0003 (10)	-0.0009 (10)	-0.0032 (9)
C13	0.0363 (18)	0.079 (3)	0.051 (2)	-0.0019 (17)	0.0130 (16)	0.0162 (19)
C21	0.0381 (15)	0.0305 (14)	0.0265 (13)	-0.0039 (12)	0.0068 (11)	-0.0034 (11)

Geometric parameters (Å, °)

Br5—C5	1.887 (3)	С6—Н6	0.9400	
O3—C3A	1.355 (3)	C7—C8	1.390 (5)	
O3—C2	1.377 (3)	С7—Н7	0.9400	
O12—C12	1.184 (3)	C8—C9	1.362 (4)	
O13—C12	1.343 (3)	C8—H8	0.9400	
O13—C13	1.429 (4)	C9—C9A	1.402 (4)	
C1—C2	1.345 (4)	С9—Н9	0.9400	
С1—С9В	1.439 (3)	C9A—C9B	1.413 (4)	
C1-C11	1.479 (4)	C11—C12	1.492 (4)	
C2—C21	1.468 (4)	C11—H11A	0.9800	
СЗА—С9В	1.369 (4)	C11—H11B	0.9800	
C3A—C4	1.382 (4)	C13—H13A	0.9700	
C4—C5	1.357 (4)	C13—H13B	0.9700	

C4—H4	0.9400	C13—H13C	0.9700
C5—C5A	1.417 (4)	C21—H21A	0.9700
C5A—C6	1.403 (4)	C21—H21B	0.9700
C5A—C9A	1.417 (4)	C21—H21C	0.9700
C6—C7	1.354 (6)		
C3A—O3—C2	106.0 (2)	С8—С9—Н9	119.5
C12—O13—C13	114.7 (2)	С9А—С9—Н9	119.5
C2—C1—C9B	106.1 (2)	C9—C9A—C9B	123.1 (3)
C2—C1—C11	125.3 (2)	C9—C9A—C5A	118.6 (3)
C9B—C1—C11	128.6 (2)	C9B—C9A—C5A	118.3 (3)
C1—C2—O3	111.2 (2)	C3A—C9B—C9A	118.6 (2)
C1—C2—C21	133.6 (3)	C3A—C9B—C1	105.7 (2)
O3—C2—C21	115.2 (2)	C9A—C9B—C1	135.7 (3)
O3—C3A—C9B	111.0 (2)	C1—C11—C12	113.1 (2)
O3—C3A—C4	123.8 (3)	C1—C11—H11A	109.0
C9B—C3A—C4	125.2 (3)	C12—C11—H11A	109.0
C5—C4—C3A	115.9 (3)	C1—C11—H11B	109.0
C5—C4—H4	122.1	C12—C11—H11B	109.0
C3A—C4—H4	122.1	H11A—C11—H11B	107.8
C4—C5—C5A	123.4 (3)	O12—C12—O13	122.9 (3)
C4—C5—Br5	117.2 (2)	O12—C12—C11	126.6 (3)
C5A—C5—Br5	119.4 (2)	O13—C12—C11	110.6 (2)
C6—C5A—C9A	118.7 (3)	O13—C13—H13A	109.5
C6—C5A—C5	122.7 (3)	O13—C13—H13B	109.5
C9A—C5A—C5	118.6 (3)	H13A—C13—H13B	109.5
C7—C6—C5A	121.1 (3)	O13—C13—H13C	109.5
С7—С6—Н6	119.5	H13A—C13—H13C	109.5
С5А—С6—Н6	119.5	H13B—C13—H13C	109.5
C6—C7—C8	120.4 (3)	C2—C21—H21A	109.5
С6—С7—Н7	119.8	C2—C21—H21B	109.5
С8—С7—Н7	119.8	H21A—C21—H21B	109.5
C9—C8—C7	120.2 (3)	C2—C21—H21C	109.5
С9—С8—Н8	119.9	H21A—C21—H21C	109.5
С7—С8—Н8	119.9	H21B—C21—H21C	109.5
С8—С9—С9А	121.0 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
C4—H4···O3 ⁱ	0.94	2.58	3.468 (4)	157

Symmetry code: (i) -x, -y+1, -z+1.